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Check
Yourself

Assuming all values are initially zero, what are the values of A and B after executing
this Verilog code inside an always block?

C=1;
A <= C;
B = C;

The arithmetic logic unit (ALU) is the brawn of the computer, the device that per-
forms the arithmetic operations like addition and subtraction or logical opera-
tions like AND and OR. This section constructs an ALU from four hardware
building blocks (AND and OR gates, inverters, and multiplexors) and illustrates
how combinational logic works. In the next section, we will see how addition can
be sped up through more clever designs. 

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let’s
assume that we will connect 32 1-bit ALUs to create the desired ALU. We’ll there-
fore start by constructing a 1-bit ALU.

A 1-Bit ALU

The logical operations are easiest, because they map directly onto the hardware
components in Figure B.2.1. 

The 1-bit logical unit for AND and OR looks like Figure B.5.1. The multiplexor
on the right then selects a AND b or a OR b, depending on whether the value of
Operation is 0 or 1. The line that controls the multiplexor is shown in color to dis-
tinguish it from the lines containing data. Notice that we have renamed the con-
trol and output lines of the multiplexor to give them names that reflect the
function of the ALU.

The next function to include is addition. An adder must have two inputs for the
operands and a single-bit output for the sum. There must be a second output to
pass on the carry, called CarryOut.Since the CarryOut from the neighbor adder
must be included as an input, we need a third input. This input is called CarryIn.
Figure B.5.2 shows the inputs and the outputs of a 1-bit adder. Since we know
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FIGURE B.5.1 The 1-bit logical unit for AND and OR.

ALU n. [Arthritic Logic Unit 
or (rare) Arithmetic Logic 
Unit] A random-number 
generator supplied as stan-
dard with all computer sys-
tems.

Stan Kelly-Bootle, The Devil’s 
DP Dictionary, 1981
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what addition is supposed to do, we can specify the outputs of this “black box”
based on its inputs, as Figure B.5.3 demonstrates.

We can express the output functions CarryOut and Sum as logical equations,
and these equations can in turn be implemented with logic gates. Let’s do Carry-
Out. Figure B.5.4 shows the values of the inputs when CarryOut is a 1.

We can turn this truth table into a logical equation:

If  is true, then all of the other three terms must also be true, so we
can leave out this last term corresponding to the fourth line of the table. We can
thus simplify the equation to

Figure B.5.5 shows that the hardware within the adder black box for CarryOut
consists of three AND gates and one OR gate. The three AND gates correspond

FIGURE B.5.2 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder because it
has 3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half adder. 

Inputs Outputs

Commentsa b CarryIn CarryOut Sum

0 0 0 0 0 0 + 0 + 0 = 00two

0 0 1 0 1 0 + 0 + 1 = 01two

0 1 0 0 1 0 + 1 + 0 = 01two

0 1 1 1 0 0 + 1 + 1 = 10two

1 0 0 0 1 1 + 0 + 0 = 01two

1 0 1 1 0 1 + 0 + 1 = 10two

1 1 0 1 0 1 + 1 + 0 = 10two

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE B.5.3 Input and output specification for a 1-bit adder.
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exactly to the three parenthesized terms of the formula above for CarryOut, and
the OR gate sums the three terms.

The Sum bit is set when exactly one input is 1 or when all three inputs are 1.
The Sum results in a complex Boolean equation (recall that  means NOT a):

The drawing of the logic for the Sum bit in the adder black box is left as an exercise.
Figure B.5.6 shows a 1-bit ALU derived by combining the adder with the earlier

components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to
expand the multiplexor controlled by the Operation line and, for this example, to
connect 0 directly to the new input of that expanded multiplexor.

Inputs

a b CarryIn

0 1 1

1 0 1

1 1 0

1 1 1

FIGURE B.5.4 Values of the inputs when CarryOut is a 1.

FIGURE B.5.5 Adder hardware for the carry out signal. The rest of the adder hardware is the
logic for the Sum output given in the equation on page B-28.
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A 32-Bit ALU

Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Figure B.5.7 shows
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a
quiet lake, a single carry out of the least significant bit (Result0) can ripple all the
way through the adder, causing a carry out of the most significant bit (Result31).
Hence, the adder created by directly linking the carries of 1-bit adders is called a
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on
page B-38.

Subtraction is the same as adding the negative version of an operand, and this
is how adders perform subtraction. Recall that the shortcut for negating a two’s
complement number is to invert each bit (sometimes called the one’s complement)
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses
between b and , as Figure B.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure B.5.7. The
added multiplexor gives the option of b or its inverted value, depending on Bin-
vert, but this is only one step in negating a two’s complement number. Notice that
the least significant bit still has a CarryIn signal, even though it’s unnecessary for
addition. What happens if we set this CarryIn to 1 instead of 0? The adder will
then calculate a + b + 1. By selecting the inverted version of b, we get exactly what
we want:

FIGURE B.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure B.5.5).
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The simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for inte-
ger computer arithmetic.

 A MIPS ALU also needs a NOR function. Instead of adding a separate gate for
NOR, we can reuse much of the hardware already in the ALU, like we did for sub-
tract. The insight comes from the following truth about NOR:

That is, NOT (a OR b) is equivalent to NOT a AND NOT b. This fact is called
DeMorgan’s theorem and is explored in the exercises in more depth.

Since we have AND and NOT b, we only need to add NOT a to the ALU. Figure
B.5.9 shows that change.

FIGURE B.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less significant bit
is connected to the CarryIn of the more significant bit. This organization is called ripple carry.
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FIGURE B.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By
selecting b (Binvert = 1) and setting CarryIn to 1 in the least significant bit of the ALU, we get two’s comple-
ment subtraction of b from a instead of addition of b to a.

FIGURE B.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By
selecting a (Ainvert = 1) and b (Binvert = 1), we get a NOR b instead of a AND b.
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Tailoring the 32-Bit ALU to MIPS

These four operations—add, subtract, AND, OR—are found in the ALU of almost
every computer, and the operations of most MIPS instructions can be performed
by this ALU. But the design of the ALU is incomplete. 

One instruction that still needs support is the set on less than instruction
(slt). Recall that the operation produces 1 if rs < rt, and 0 otherwise. Conse-
quently, slt will set all but the least significant bit to 0, with the least significant
bit set according to the comparison. For the ALU to perform slt, we first need to
expand the three-input multiplexor in Figure B.5.8 to add an input for the slt
result. We call that new input Less and use it only for slt.

The top drawing of Figure B.5.10 shows the new 1-bit ALU with the expanded
multiplexor. From the description of slt above, we must connect 0 to the Less
input for the upper 31 bits of the ALU, since those bits are always set to 0. What
remains to consider is how to compare and set the least significant bit for set on
less than instructions. 

What happens if we subtract b from a? If the difference is negative, then a < b
since

We want the least significant bit of a set on less than operation to be a 1 if a < b;
that is, a 1 if a – b is negative and a 0 if it’s positive. This desired result corresponds
exactly to the sign bit values: 1 means negative and 0 means positive. Following
this line of argument, we need only connect the sign bit from the adder output to
the least significant bit to get set on less than.

Unfortunately, the Result output from the most significant ALU bit in the top
of Figure B.5.10 for the slt operation is not the output of the adder; the ALU out-
put for the slt operation is obviously the input value Less. 

Thus, we need a new 1-bit ALU for the most significant bit that has an extra
output bit: the adder output. The bottom drawing of Figure B.5.10 shows the
design, with this new adder output line called Set, and used only for slt. As long
as we need a special ALU for the most significant bit, we added the overflow detec-
tion logic since it is also associated with that bit. 

Alas, the test of less than is a little more complicated than just described
because of overflow, as we explore in the exercises. Figure B.5.11 shows the 32-bit
ALU.

Notice that every time we want the ALU to subtract, we set both CarryIn and
Binvert to 1. For adds or logical operations, we want both control lines to be 0. We
can therefore simplify control of the ALU by combining the CarryIn and Binvert
to a single control line called Bnegate.

a b–( ) 0< a b–( ) b+( ) 0 b+( )<⇒
a b<⇒
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FIGURE B.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b,
and (bottom) a 1-bit ALU for the most significant bit. The top drawing includes a direct input that
is connected to perform the set on less than operation (see Figure B.5.11); the bottom has a direct output
from the adder for the less than comparison called Set. (See Exercise 3.24 to see how to calculate overflow
with fewer inputs.)
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To further tailor the ALU to the MIPS instruction set, we must support condi-
tional branch instructions. These instructions branch either if two registers are
equal or if they are unequal. The easiest way to test equality with the ALU is to
subtract b from a and then test to see if the result is 0 since

FIGURE B.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top
of Figure B.5.10 and one 1-bit ALU in the bottom of that figure. The Less inputs are connected
to 0 except for the least significant bit, which is connected to the Set output of the most significant bit. If the
ALU performs a – b and we select the input 3 in the multiplexor in Figure B.5.10, then Result = 0 . . . 001 if
a < b, and Result = 0 . . . 000 otherwise.
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Thus, if we add hardware to test if the result is 0, we can test for equality. The
simplest way is to OR all the outputs together and then send that signal through
an inverter:

Figure B.5.12 shows the revised 32-bit ALU. We can think of the combination
of the 1-bit Ainvert line, the 1-bit Binvert line, and the 2-bit Operation lines as 4-
bit control lines for the ALU, telling it to perform add, subtract, AND, OR, or set
on less than. Figure B.5.13 shows the ALU control lines and the corresponding
ALU operation. 

FIGURE B.5.12 The final 32-bit ALU. This adds a Zero detector to Figure B.5.11. 
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Finally, now that we have seen what is inside a 32-bit ALU, we will use the uni-
versal symbol for a complete ALU, as shown in Figure B.5.14. 

 

Defining the MIPS ALU in Verilog

 

Figure B.5.15 shows how a combinational MIPS ALU might be specified in Ver-
ilog; such a specification would probably be compiled using a standard parts
library that provided an adder, which could be instantiated. For completeness, we
show the ALU control for MIPS in Figure B.5.16, which we will use later when we
build a Verilog version of the MIPS datapath in Chapter 5.    

The next question is, How quickly can this ALU add two 32-bit operands? We
can determine the a and b inputs, but the CarryIn input depends on the operation
in the adjacent 1-bit adder. If we trace all the way through the chain of dependen-

 

ALU control lines Function

 

0000 AND

0001 OR

0010 add

0110 subtract

0111 set on less than

1100 NOR

 

FIGURE B.5.13 The values of the three ALU control lines Bnegate and Operation and the
corresponding ALU operations.

FIGURE B.5.14 The symbol commonly used to represent an ALU, as shown in Figure
B.5.12. 

 

This symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder.
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cies, we connect the most significant bit to the least significant bit, so the most
significant bit of the sum must wait for the 

 

sequential

 

 evaluation of all 32 1-bit
adders. This sequential chain reaction is too slow to be used in time-critical hard-
ware. The next section explores how to speed up addition. This topic is not crucial
to understanding the rest of the appendix and may be skipped.

 

module MIPSALU (ALUctl, A, B, ALUOut, Zero);
   input [3:0] ALUctl;
   input [31:0] A,B; 
   output reg [31:0] ALUOut;
   output Zero;

   assign Zero = (ALUOut==0); //Zero is true if ALUOut is 0
   always @(ALUctl, A, B) begin //reevaluate if these change
      case (ALUctl)
         0: ALUOut <= A & B;
         1: ALUOut <= A | B;
         2: ALUOut <= A + B; 
         6: ALUOut <= A - B; 
         7: ALUOut <= A < B ? 1 : 0; 
         12: ALUOut <= ~(A | B); // result is nor
         default: ALUOut <= 0;
      endcase
    end
endmodule

 

FIGURE B.5.15 A Verilog behavioral definition of a MIPS ALU.

 

module ALUControl (ALUOp, FuncCode, ALUCtl);

   input [1:0] ALUOp;
   input [5:0] FuncCode;
   output [3:0] reg ALUCtl;

   always case (FuncCode) 

   32: ALUOp<=2; // add
   34: ALUOp<=6; //subtract
   36: ALUOP<=0; // and
   37: ALUOp<=1; // or
   39: ALUOp<=12; // nor
   42: ALUOp<=7; // slt
   default: ALUOp<=15; // should not happen
   endcase
endmodule

 

FIGURE B.5.16 The MIPS ALU control: a simple piece of combinational control logic. 
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Check
Yourself

 

Suppose you wanted to add the operation NOT (a AND b), called NAND. How
could the ALU change to support it?

1. No change. You can calculate NAND quickly using the current ALU since
 and we already have NOT a, NOT b, and OR.

2. You must expand the big multiplexor to add another input, and then add
new logic to calculate NAND.

The key to speeding up addition is determining the carry in to the high-order bits
sooner. There are a variety of schemes to anticipate the carry so that the worst-
case scenario is a function of the log

 

2

 

 of the number of bits in the adder. These
anticipatory signals are faster because they go through fewer gates in sequence,
but it takes many more gates to anticipate the proper carry. 

A key to understanding fast carry schemes is to remember that, unlike software,
hardware executes in parallel whenever inputs change. 

 

Fast Carry Using “Infinite” Hardware

 

As we mentioned earlier, any equation can be represented in two levels of logic.
Since the only external inputs are the two operands and the CarryIn to the least
significant bit of the adder, in theory we could calculate the CarryIn values to all
the remaining bits of the adder in just two levels of logic. 

For example, the CarryIn for bit 2 of the adder is exactly the CarryOut of bit 1,
so the formula is

Similarly, CarryIn1 is defined as

Using the shorter and more traditional abbreviation of c

 

i

 

 for CarryIn

 

i

 

, we can
rewrite the formulas as

Substituting the definition of c1 for the first equation results in this formula:
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B.6

a b⋅( ) a b+=

CarryIn2 b1 CarryIn1⋅( ) a1 CarryIn1⋅( ) a1 b1⋅( )+ +=

CarryIn1 b0 CarryIn0⋅( ) a0 CarryIn0⋅( ) a0 b0⋅( )+ +=

c2 b1 c1⋅( ) a1 c1⋅( ) a1 b1⋅( )+ +=
c1 b0 c0⋅( ) a0 c0⋅( ) a0 b0⋅( )+ +=

c2   a1 a0 b0 ⋅ ⋅( )= a1 a0 c0 ⋅ ⋅( ) a1 b0 c0 ⋅ ⋅( )+ +

b1 a0 b0⋅ ⋅( ) b1 a0 c0⋅ ⋅( ) b1 b0 c0⋅ ⋅( ) a1 b1⋅( )+ + + +
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You can imagine how the equation expands as we get to higher bits in the adder; it
grows rapidly with the number of bits. This complexity is reflected in the cost of
the hardware for fast carry, making this simple scheme prohibitively expensive for
wide adders.

 

Fast Carry Using the First Level of Abstraction: Propagate 
and Generate

 

Most fast carry schemes limit the complexity of the equations to simplify the
hardware, while still making substantial speed improvements over ripple carry.
One such scheme is a 

 

carry-lookahead adder

 

. In Chapter 1, we said computer sys-
tems cope with complexity by using levels of abstraction. A carry-lookahead adder
relies on levels of abstraction in its implementation. 

Let’s factor our original equation as a first step:

If we were to rewrite the equation for c2 using this formula, we would see some
repeated patterns:

Note the repeated appearance of  and  in the formula above.
These two important factors are traditionally called 

 

generate

 

 (g

 

i

 

) and 

 

propagate

 

(p

 

i

 

):

 

 

 

Using them to define c

 

i+1

 

, we get

To see where the signals get their names, suppose g

 

i

 

 is 1. Then

That is, the adder 

 

generates

 

 a CarryOut (c

 

i+1

 

) independent of the value of CarryIn
(c

 

i

 

). Now suppose that g

 

i

 

 is 0 and p

 

i

 

 is 1. Then

That is, the adder 

 

propagate

 

s CarryIn to a CarryOut. Putting the two together,
CarryIn

 

i+1

 

 is a 1 if either g

 

i

 

 is 1 or both p

 

i

 

 is 1 and CarryIn

 

i

 

 is 1. 
As an analogy, imagine a row of dominoes set on edge. The end domino can be

tipped over by pushing one far away provided there are no gaps between the two.
Similarly, a carry out can be made true by a generate far away provided all the
propagates between them are true. 

ci+1 bi ci⋅( ) ai ci⋅( ) ai bi⋅( )+ +=
ai bi⋅( ) ai bi+( ) ci⋅+=

c2  a1 b1 ⋅( )= a1 b1 +( ) a0 b0 ⋅( ) a0 b0 +( ) c0 ⋅+( )⋅+

ai bi⋅( ) ai bi+( )

gi ai bi⋅=
pi ai bi+=

ci+1 gi pi ci⋅+=

ci+1 gi pi ci⋅+ 1 pi ci⋅+ 1= = =

ci+1 gi pi ci⋅+ 0 1 ci⋅+ ci= = =
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Relying on the definitions of propagate and generate as our first level of
abstraction, we can express the CarryIn signals more economically. Let’s show it
for 4 bits:

 

 

 

 

 

 

These equations just represent common sense: CarryIn

 

i

 

 is a 1 if some earlier adder
generates a carry and all intermediary adders propagate a carry. Figure B.6.1 uses
plumbing to try to explain carry lookahead. 

Even this simplified form leads to large equations and, hence, considerable
logic even for a 16-bit adder. Let’s try moving to two levels of abstraction. 

 

Fast Carry Using the Second Level of Abstraction

 
First we consider this 4-bit adder with its carry-lookahead logic as a single build-
ing block. If we connect them in ripple carry fashion to form a 16-bit adder, the
add will be faster than the original with a little more hardware. 

To go faster, we’ll need carry lookahead at a higher level. To perform carry
lookahead for 4-bit adders, we need propagate and generate signals at this higher
level. Here they are for the four 4-bit adder blocks:

 

 

 

That is, the “super” propagate signal for the 4-bit abstraction (P

 

i

 

) is true only if
each of the bits in the group will propagate a carry. 

For the “super” generate signal (G

 

i

 

), we care only if there is a carry out of the
most significant bit of the 4-bit group. This obviously occurs if generate is true for
that most significant bit; it also occurs if an earlier generate is true 

 

and

 

 all the
intermediate propagates, including that of the most significant bit, are also true:

 

 

c1 g0= p0 c0⋅( )+

c2 g1= p1 g0⋅( ) p1 p0 c0⋅ ⋅( )+ +

c3 g2= p2 g1⋅( ) p2 p1 g0⋅ ⋅( ) p2 p1 p0 c0⋅ ⋅ ⋅( )+ + +

c4 g3= p3 g2⋅( ) p3 p2 g1⋅ ⋅( ) p3 p2 p1 g0⋅ ⋅ ⋅( )+ + +
p3 p2 p1 p0 c0⋅ ⋅ ⋅ ⋅( )+

P0 p3= p2 p1 p0⋅ ⋅ ⋅
P1 p7= p6 p5 p4⋅ ⋅ ⋅
P2 p11= p10 p9 p8⋅ ⋅ ⋅
P3 p15= p14 p13 p12⋅ ⋅ ⋅

G0 g3= p3 g2⋅( ) p3 p2 g1⋅ ⋅( ) p3 p2 p1 g0⋅ ⋅ ⋅( )+ + +
G1 g7= p7 g6⋅( ) p7 p6 g5⋅ ⋅( ) p7 p6 p5 g4⋅ ⋅ ⋅( )+ + +
G2 g11= p11 g10⋅( ) p11 p10 g9⋅ ⋅( ) p11 p10 p9 g8⋅ ⋅ ⋅( )+ + +
G3 g15= p15 g14⋅( ) p15 p14 g13⋅ ⋅( ) p15 p14 p13 g12⋅ ⋅ ⋅( )+ + +
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FIGURE B.6.1 A plumbing analogy for carry lookahead for 1 bit, 2 bits, and 4 bits using
water pipes and valves. The wrenches are turned to open and close valves. Water is shown in color.
The output of the pipe (ci+1) will be full if either the nearest generate value (gi) is turned on or if the i
propagate value (pi) is on and there is water further upstream, either from an earlier generate, or propagate
with water behind it. CarryIn (c0) can result in a carry out without the help of any generates, but with the
help of all propagates.
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Figure B.6.2 updates our plumbing analogy to show P0 and G0.  

FIGURE B.6.2 A plumbing analogy for the next-level carry-lookahead signals P0 and G0.
P0 is open only if all four propagates (pi) are open, while water flows in G0 only if at least one generate (gi)
is open and all the propagates downstream from that generate are open.
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Then the equations at this higher level of abstraction for the carry in for each 4-
bit group of the 16-bit adder (C1, C2, C3, C4 in Figure B.6.3) are very similar to
the carry out equations for each bit of the 4-bit adder (c1, c2, c3, c4) on page B-40:

 

 

 

 

Figure B.6.3 shows 4-bit adders connected with such a carry-lookahead unit. The
exercises explore the speed differences between these carry schemes, different
notations for multibit propagate and generate signals, and the design of a 64-bit
adder.

Both Levels of the Propagate and Generate

Determine the gi, pi, Pi, and Gi values of these two 16-bit numbers:

a: 0001 1010 0011 0011two
b: 1110 0101 1110 1011two

Also, what is CarryOut15 (C4)?

Aligning the bits makes it easy to see the values of generate gi  and
propagate pi :

a: 0001 1010 0011 0011
b: 1110 0101 1110 1011
gi: 0000 0000 0010 0011
pi: 1111 1111 1111 1011

where the bits are numbered 15 to 0 from left to right. Next, the “super”
propagates (P3, P2, P1, P0) are simply the AND of the lower-level propagates:

C1 G0= P0 c0⋅( )+

C2 G1= P1 G0⋅( ) P1 P0 c0⋅ ⋅( )+ +

C3 G2= P2 G1⋅( ) P2 P1 G0⋅ ⋅( ) P2 P1 P0 c0⋅ ⋅ ⋅( )+ + +

C4 G3= P3 G2⋅( ) P3 P2 G1⋅ ⋅( ) P3 P2 P1 G0⋅ ⋅ ⋅( )+ + +
P3 P2 P1 P0 c0⋅ ⋅ ⋅ ⋅( )+

EXAMPLE

ANSWER
ai bi⋅( )

ai bi+( )

P3 1 1 1 1⋅ ⋅ ⋅ 1= =

P2 1 1 1 1⋅ ⋅ ⋅ 1= =

P1 1 1 1 1⋅ ⋅ ⋅ 1= =

P0 1 0 1 1⋅ ⋅ ⋅ 0= =
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FIGURE B.6.3 Four 4-bit ALUs using carry lookahead to form a 16-bit adder. Note that the
carries come from the carry-lookahead unit, not from the 4-bit ALUs.
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The reason carry lookahead can make carries faster is that all logic begins evaluat-
ing the moment the clock cycle begins, and the result will not change once the
output of each gate stops changing. By taking a shortcut of going through fewer
gates to send the carry in signal, the output of the gates will stop changing sooner,
and hence the time for the adder can be less.

To appreciate the importance of carry lookahead, we need to calculate the rela-
tive performance between it and ripple carry adders.

The “super” generates are more complex, so use the following equations:

G0  = g3 + (p3 • g2) + (p3 • p2 • g1) + (p3 • p2 • p1 • g0)
 = 0 + (1 • 0) + (1 • 0 • 1) + (1 • 0 • 1 • 1) = 0 + 0 + 0 + 0 = 0

G1  = g7 + (p7 • g6) + (p7 • p6 • g5) + (p7 • p6 • p5 • g4)
 = 0 + (1 • 0) + (1 • 1 • 1) + (1 • 1 • 1 • 0) = 0 + 0 + 1 + 0 = 1

G2  = g11 + (p11 • g10) + (p11 • p10 • g9) + (p11 • p10 • p9 • g8)
 = 0 + (1 • 0) + (1 • 1 • 0) + (1 • 1 • 1 • 0) = 0 + 0 + 0 + 0 = 0

G3  = g15 + (p15 • g14) + (p15 • p14 • g13) + (p15 • p14 • p13 • g12)
 = 0 + (1 • 0) + (1 • 1 • 0) + (1 • 1 • 1 • 0) = 0 + 0 + 0 + 0 = 0

Finally, CarryOut15 is

C4 = G3 + (P3 • G2) + (P3 • P2 • G1) + (P3 • P2 • P1• G0)
 + (P3 • P2 • P1 • P0 • c0)
 = 0 + (1 • 0) + (1 • 1 • 1) + (1 • 1 • 1 • 0) + (1 • 1 • 1 • 0 • 0) 
 = 0 + 0 + 1 + 0 + 0 = 1

Hence there is a carry out when adding these two 16-bit numbers.

Speed of Ripple Carry versus Carry Lookahead

One simple way to model time for logic is to assume each AND or OR gate
takes the same time for a signal to pass through it. Time is estimated by sim-
ply counting the number of gates along the path through a piece of logic.
Compare the number of gate delays for paths of two 16-bit adders, one using
ripple carry and one using two-level carry lookahead.

Figure B.5.5 on page B-28 shows that the carry out signal takes two gate de-
lays per bit. Then the number of gate delays between a carry in to the least
significant bit and the carry out of the most significant is 16 × 2 = 32.

EXAMPLE

ANSWER
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Summary

Carry lookahead offers a faster path than waiting for the carries to ripple through
all 32 1-bit adders. This faster path is paved by two signals, generate and propa-
gate. The former creates a carry regardless of the carry input, and the other passes
a carry along. Carry lookahead also gives another example of how abstraction is
important in computer design to cope with complexity.

Check
Yourself

Using the simple estimate of hardware speed above with gate delays, what is the
relative performance of a ripple carry 8-bit add versus a 64-bit add using carry-
lookahead logic?

1. A 64-bit carry-lookahead adder is three times faster: 8-bit adds are 16 gate
delays and 64-bit adds are 7 gate delays.

2. They are about the same speed, since 64-bit adds need more levels of logic
in the 16-bit adder.

3. 8-bit adds are faster than 64 bits, even with carry lookahead.

Elaboration: We have now accounted for all but one of the arithmetic and logical
operations for the core MIPS instruction set: the ALU in Figure B.5.14 omits support of
shift instructions. It would be possible to widen the ALU multiplexor to include a left
shift by 1 bit or a right shift by 1 bit. But hardware designers have created a circuit
called a barrel shifter, which can shift from 1 to 31 bits in no more time than it takes to
add two 32-bit numbers, so shifting is normally done outside the ALU.

Elaboration: The logic equation for the Sum output of the full adder on page B-28
can be expressed more simply by using a more powerful gate than AND and OR. An
exclusive OR gate is true if the two operands disagree; that is,

x ≠ y ⇒ 1 and x == y ⇒ 0 

 For carry lookahead, the carry out of the most significant bit is just C4, de-
fined in the example. It takes two levels of logic to specify C4 in terms of Pi and
Gi (the OR of several AND terms). Pi is specified in one level of logic (AND)
using pi, and Gi is specified in two levels using pi and gi, so the worst case for
this next level of abstraction is two levels of logic. pi and gi are each one level
of logic, defined in terms of ai and bi. If we assume one gate delay for each level
of logic in these equations, the worst case is 2 + 2 + 1 = 5 gate delays.

 Hence, for the path from carry in to carry out, the 16-bit addition by a
carry-lookahead adder is six times faster, using this very simple estimate of
hardware speed.
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