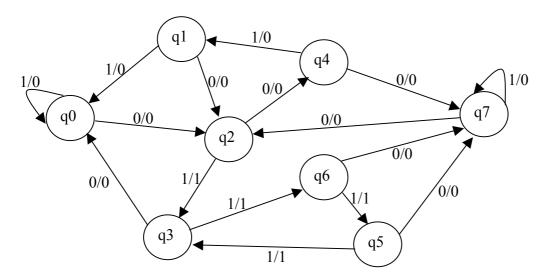
Secondo esonero di Architetture degli Elaboratori I Canale P-Z 11 Gennaio 2006

Compito A

Esercizio 1 (16 punti)


Progettare una rete sequenziale con 2 linee di ingresso x e y e una linea di uscita z tale che: z = 1 ogni volta che sono state ricevute tre coppie xy=00 (non necessariamente consecutive!). Il conteggio si azzera ogni volta che z=1.

Esempio x: **0**1011**00**101111**0**00

y: **0**0101**00**1**0**011**0**10 z: 000000100000001

Esercizio 2 (14 punti)

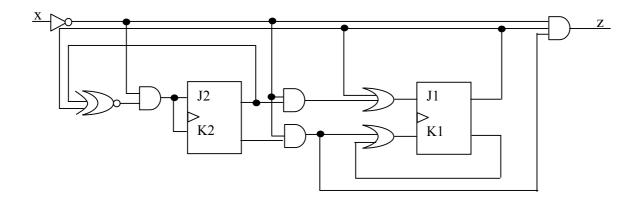
Minimizzare il seguente automa e progettare la rete sequenziale relativa all'automa minimo, secondo il procedimento di sintesi illustrato a lezione, utilizzando FF di tipo D.

.

Secondo esonero di Architetture degli Elaboratori I Canale P-Z 11 gennaio 2006

Compito B

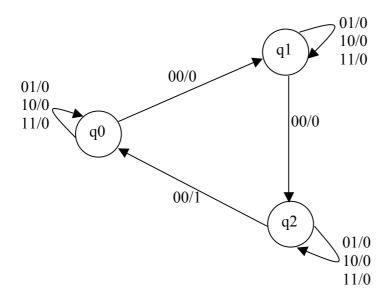
Esercizio 1 (16 punti)


Progettare una rete sequenziale con 2 linee di ingresso x e y e una linea di uscita z tale che: z = 1 quando contando il numero di "1" ricevuti fino all'istante t, è stato ricevuto un numero pari di 1 sia su x che su y

Esempio x: 110111010101

y: 011101101101 z: 00**1**00000**1**00**1**

Esercizio 2 (14 punti)


Analizzare il seguente circuito sequenziale, seguendo il procedimento illustrato a lezione (inclusa la descrizione verbale delle sequenze riconosciute).

Soluzioni compito A

Esercizio 1

L'automa è quello di un contatore mod 3 che cambia stato a fronte della coppia xy=00 e resta nello stato in cui si trova a fronte delle altre tre possibili coppie in ingresso.

Indichiamo i due bit di codifica degli stati w1 e w2 e utilizziamo la seguente codifica:

q0 = 00

q1=01

q2 = 10

La tavola di verità è la seguente :

w2w1xy	W1W2	Z	J2k2	J1k1
0000	01	0	0x	1x
0001	00	0	0x	0x
0010	00	0	0x	0x
0011	00	0	0x	0x
0100	10	0	1x	x1
0101	01	0	0x	x0
0110	01	0	0x	x0
0111	01	0	0x	X0
1000	00	1	x1	0x
1001	10	0	x0	0x
1010	10	0	x0	0x
1011	10	0	x0	0x
1100	XX	X	XX	XX
1101	XX	X	XX	XX
1110	XX	X	XX	XX
1111	XX	X	XX	XX

Dalla tabella si ricava subito che:

$$j2 = \underline{x} \underline{y} w1$$

$$k2 = \underline{x} \underline{y}$$

e minimizzando con Karnaugh si ottengono le espressioni:

$$j1 = \underline{x} \underline{y} \underline{w2}$$

$$\mathbf{k}_1 = \mathbf{\underline{x}} \mathbf{\underline{y}}$$

$$z = \underline{x} \underline{y} w2$$

Lo schema circuitale si ottiene facilmente utilizzando le espressioni ricavate.

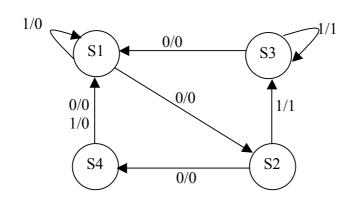
Esercizio 2 L'automa in forma tabellare è:

	0	1
Q0	Q2/0	Q0/0
Q1	Q2/0	Q0/0
Q2	Q4/0	Q3/1
Q3	Q0/0	Q6/1
Q4	Q7/0	Q1/0
Q5	Q7/0	Q3/1
Q6	Q7/0	Q5/1
Q7	Q2/0	Q7/0

La tabella triangolare è:

Q1			_				
Q2	X	X		_			
Q3	X	X	(0,4)(3,6)		_		
Q4	(2,7)(0,1)	(2,7)	X	X		_	
Q5	X	X	(4,7)	(0,7)(3,6)	X		_
Q6	X	X	(4,7)(3,5)	(0,7)(5,6)	X		
Q7		(4,7)	X	X	(1,7)(2,7)	X	X
	Q0	Q1	Q2	Q3	Q4	Q5	Q6

Dopo una seconda analisi della tabella triangolare ed utilizzando il grafo di equivalenza si ottengono le seguenti equivalenze cui assegniamo i seguenti nuovi nomi di stato:


$$S1={Q0,Q1,Q7}$$

$$S2 = \{Q2\}$$

$$S3={Q3,Q5,Q6}$$

$$S4 = \{Q4\}$$

L'automa minimo è:

Assegnando la seguente codifica agli stati:

S1 = 00

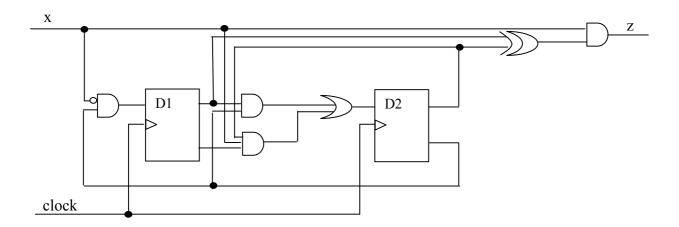
S2 = 01

S3=10

S4=11

si ottiene la tabella di verità:

xy2y1	Y2Y1	Z	D2D1
000	0 1	0	0 1
001	1 1	0	1 1
010	0 0	0	0 0
011	0 0	0	0 0
100	0 0	0	0 0
101	1 0	1	1 0
110	1 0	1	1 0
111	0 0	0	0 0

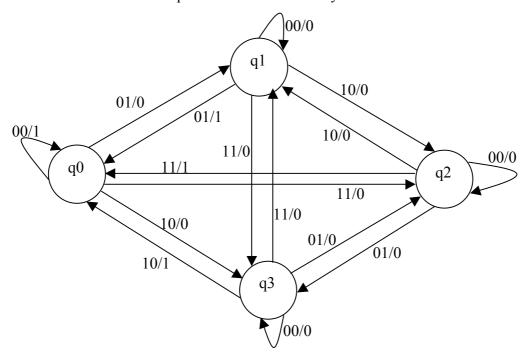

Le espressioni booleane per le funzioni di eccitazione e per la funzione di uscita z sono (per la complementazione uso la sottolineatura):

$$D2 = \underline{y2} y1 + x y2 \underline{y1}$$

$$D1 = \underline{x} \underline{y2}$$

$$z = x (y1XORy2)$$

La realizzazione circuitale è:



Soluzioni compito B

Esercizio 1

Per costruire l'automa assegniamo agli stati il seguente significato:

- q0: è stato ricevuto un numero pari di 1 sia su x che su y
- q1: è stato ricevuto un numero pari di 1 su x e un numero dispari su y
- q2: è stato ricevuto un numero dispari di 1 su x e un numero pari su y
- q3: è stato ricevuto un numero dispari di 1 sia su x che su y

La tavola di verità è la seguente:

xyw1w2	W1W2	Z	j1k1	j2k2
0000	00	1	0x	0x
0001	01	0	0x	x0
0010	10	0	x0	0x
0011	11	0	x0	x0
0100	01	0	0x	1x
0101	00	1	0x	x1
0110	11	0	x0	1x
0111	10	0	x0	x1
1000	10	0	1x	0x
1001	11	0	1x	x0
1010	00	1	x1	0x
1011	01	0	x1	x0
1100	11	0	1x	1x
1101	10	0	1x	x1
1110	01	0	x1	1x
1111	00	1	x1	x1

Minimizzando con Karnaugh si ottengono le seguenti espressioni:

$$j1 = k1 = x$$

$$j2 = k2 = xXORy$$

L'espressione di z non è minimizzbile ed è:

$$z = \underline{x} \underline{y} \underline{w1} \underline{w2} + \underline{x} \underline{y} \underline{w1} \underline{w1} \underline{w2} + \underline{x} \underline{y} \underline{w1} \underline{w2} + \underline{x} \underline{y} \underline{w1} \underline{w1} \underline{w2} + \underline{x} \underline{y} \underline{w1} \underline{w2} + \underline{x} \underline{y} \underline{w1} \underline{w1} \underline{w2} + \underline{x} \underline{y} \underline{w1} \underline{$$

Alternativamente si possono ricavare le espressioni minimali per FF di tipo D, che sono:

$$d1 = \underline{x} w1 + x \underline{w1} = x XOR w1$$

$$d2 = \underline{y} w2 + \underline{y} \underline{w2} = \underline{y} XOR w2$$

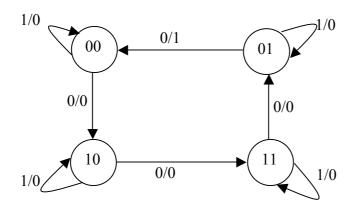
Si ricava facilmente lo schema circuitale.

Esercizio 2

Le espressioni per le funzioni di eccitazione e per lla funzione di uscita sono rispettivamente (per la complementazione uso la sottolineatura):

$$J2 = K2 = \underline{x}(\underline{y}1\underline{X}\underline{O}\underline{R}\underline{y}\underline{2})$$

$$J1 = \underline{x}\underline{y}2 + \underline{y}1$$


$$K1 = \underline{x}\underline{y}\underline{2} + \underline{y}\underline{1}$$

$$z = \underline{x}\underline{y}\underline{2}\underline{y}1$$

La tabella degli stati futuri è:

xy2y1	Z	J2K2	J1K1	Y2Y1
000	0	1 1	0 1	1 0
001	1	0 0	1 1	0 0
010	0	0.0	1 1	1 1
011	0	1 1	1 0	0 1
100	0	0 0	0 1	0 0
101	0	0 0	1 0	0 1
110	0	0 0	0 1	1 0
111	0	0 0	1 0	1 1

L'automa relativo alla tabella è:

L'automa rappresenta un contatore mod 4 degli 0 su una linea x. La sequenza di conteggio è 00-10-11-01-00-....

La rete emette 1 in uscita dopo aver ricevuto 4 volte 0.