11 Gennaio 2018

FILA A

Nome e Cognome

Esercizio 1 (6 punti) Minimizzare il seguente automa di stato iniziale S0 e progettare poi la rete sequenziale corrispondente all'automa minimo usando un FF di tipo SR per il bit più significativo e FF di tipo T per gli eventuali altri bit di stato.

	0	1
S0	S0/0	S4/0
S1	S1/1	S3/1
S2	S1/1	S2/1
S3	S0/0	S6/0
S4	S3/1	S6/0
S5	S5/0	S6/0
S6	S5/1	S6/0

Esercizio 2 (5 punti). Si considerino quattro registri sorgente $S_0 - S_3$ e tre registri destinazione $D_1 - D_3$. Si progetti una rete di interconnessione tale che:

- in D_1 copia il contenuto del registro S_i , dove l'indice i è dato dai due bit più significativi di S_0 (visti come un naturale in base 2);
- Copia il minimo tra S_2 e S_3 in D_2 , se S_1 contiene un numero pari, o in D_3 , altrimenti.

I trasferimenti sono abilitati se S_2 è maggiore di S_1 .

Esercizio 3 (4 punti) Si disegni un automa che accetti le sequenze di caratteri AC e ABB, senza sovrapposizioni. Era necessario specificare che l'accettazione avviene senza sovrapposizioni? Perché? Si disegni poi il diagramma temporale per la sequenza di input AABBACB.

Esercizio 4 (6 punti) Si consideri la seguente espressione di *f*:

$$\overline{a \oplus b} \, \overline{bc} + \overline{ac}$$

- Semplificare l'espressione portandola in forma normale SOP, poi scrivere la complementare \bar{f} (1 punto)
- Stendere la tavola di verità di f e di \bar{f} (1 punto)
- Scrivere la forma minimale SOP e la forma canonica SOP di f (2 punti)
- Considerare la funzione $\bar{a}f + c\bar{f}$ e scriverla usando solo l'operatore NOR (2 punti)

Esercizio 5 (3 punti) Dato A=-34,83 rappresentarlo in virgola mobile usando base 2, 10 bit di mantissa e 4 di esponente. Eseguire poi la somma tra A e B=<0;1101101100;0100> e rappresentare il risultato in virgola mobile.

Esercizio 6 (2 punti) Si consideri X = 110110 rappresentato in complemento a 2 (a 6 bit) e lo si converta in base 10. Rappresentare poi Y = -27 in complemento a 2, usando il minimo numero n di bit necessari per rappresentarlo. E' possibile eseguire la somma X+Y con n bit, sia per gli operandi che per il risultato?

Esercizio 7 (4 punti) Si consideri f(x3,x2,x1,x0) = y2y1y0 tale che il valore Y = y2y1y0 è dato dalla somma algebrica tra x3x2 e x1x0, considerati come numeri naturali rappresentati in binario.

- Stendere la tavola di verità di f e realizzare Y con una ROM (2 punti)
- Realizzare y2 con il minor numero di porte logiche (1 punto)
- Realizzare y1 con un multiplexer 4-a-1 (1 punto)

11 Gennaio 2018

Nome e Cognome

Esercizio 1 (6 punti) Minimizzare il seguente automa e progettare la rete sequenziale corrispondente all'automa minimo seguendo il procedimento di sintesi. Si usino un FF di tipo SR per il bit più significativo e FF di tipo T per gli eventuali altri bit.

	0	1		
A	B/0	C/0		
В	A/0	C/1		
C	B/1	A/1		
D	B/0	E/0		
E	B/1	D/1		
F	G/0	E/1		
G	F/0	C/0		

Esercizio 2 (5 punti). Si considerino quattro registri sorgente $S_0 - S_3$ e tre registri destinazione $D_1 - D_3$. Si progetti una rete di interconnessione tale che:

- in D₃ copia il contenuto del registro $S_{(i+1) \text{ MOD } 4}$, dove l'indice i è dato dai due bit più significativi di S_2 (visti come un naturale in base 2);
- Copia lo XOR tra S_2 ed S_3 in D_1 , se S_1 contiene un numero dispari, o in D_2 , altrimenti.

I trasferimenti sono abilitati se il minimo tra S2 ed S3, visto come un numero in complemento a 2, è negativo.

Esercizio 3 (4 punti) Si disegni un automa che accetti le sequenze di caratteri XYZ e YXZ, senza sovrapposizioni. Era necessario specificare che l'accettazione avviene senza sovrapposizioni? Perché? Si disegni poi il diagramma temporale per la sequenza di input XYZYYXZY.

Esercizio 4 (6 punti) Si consideri la seguente espressione di *f*:

$$(x \oplus y)(\bar{x}+z)+y+z$$

- Semplificare l'espressione portandola in forma normale SOP, poi scrivere la duale \tilde{f} (1 punto)
- Stendere la tavola di verità di f e di \tilde{f} (1 punto)
- Scrivere la forma minimale POS e la forma canonica POS di f (2 punti)
- Scrivere \tilde{f} usando solo l'operatore NAND (1 punto)
- Scrivere f usando solo l'operatore NOR (1 punto)

Esercizio 5 (3 punti) Sia dato X = <1;1100110100;0101>. Rappresentare Y = 70,26 in virgola mobile usando base 2, 10 bit di mantissa e 4 di esponente. Eseguire la somma X+Y e rappresentare il risultato in virgola mobile.

Esercizio 6 (2 punti) Rappresentare A=-30 in complemento a 2, usando il minimo numero n di bit necessari per rappresentarlo. Si consideri poi B=101010 rappresentato in complemento a 2 (a 6 bit) e se ne dia il valore in base 10. E' possibile eseguire la somma A+B con n bit, sia per gli operandi che per il risultato?

Esercizio 7 (4 punti) Si consideri f(x3,x2,x1,x0) = y2y1y0 tale che Y = y2y1y0 è dato dalla somma algebrica tra x3x2 e x1x0, considerati come numeri interi rappresentati in complemento a 2.

- Stendere la tavola di verità di f e realizzare y1 e y0 con una PLA (3 punti)
- Realizzare y2 con un multiplexer 4-a-1 (1 punto)

FILA B