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Delays
• HDL statements may be associated with delays, helpful during 

simulation to predict how fast a circuit will work and for 
debugging purposes (but ignored during synthesis)

• Let’s consider a previous example and its simulation waveforms 

module example(input  logic a, b, c,

output logic y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;

endmodule
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• We now add delays to the previous function

• We assume: 
– inverters have a delay of 1 ns, 

– three-input AND gates have a delay of 2 ns, 

– three-input OR gates have a delay of 4 ns

module example(input  logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} = ~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays

In SystemVerilog, 
a # symbol is 
used to indicate 
the number of 
units of delay
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module example(input  logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} = ~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays

Let’s analyze the 
simulation waveform
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Delays

module example(input  logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} = 

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Note that the beginning of the 
simulation only the variables a, b, c 
are known.
In particular y is initially unknown 
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module example(input  logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} = 

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays
1

After 1 ns inverters produce their outputs
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Delays
2

module example(input  logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} = 

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

After 2 ns and gates produce their outputs
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Delays

2

module example(input  logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} = 

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule
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Delays

4

module example(input  logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} = 

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule
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• SystemVerilog uses idioms to describe latches, 
flip-flops and FSMs

• Other coding styles may simulate correctly but 
produce incorrect hardware

Sequential Logic
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• The majority of modern commercial systems are built with 
registers using positive edge-triggered D flip-flops

• In SystemVerilog always statements signals keep their old 
value until an event in the sensitivity list takes place that 
explicitly causes them to change

always @(sensitivity list)

statement;

• Whenever the event in sensitivity list occurs, statement is 
executed

• Hence, code using always, with appropriate sensitivity lists, 
can be used to describe sequential circuits 

Always Statement
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• For example, the flip-flop includes only clk in the sensitive list
• It remembers its old value of q until the next rising edge of 

the clk, even if d changes in the interim

module flop(input  logic clk, 

input  logic [3:0] d, 

output logic [3:0] q);

always_ff@(posedge clk)

q <= d;             // pronounced “q gets d”

endmodule

D Flip-Flop
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• <= is called a nonblocking assignment
• <= is used instead of assign inside an always statement

module flop(input  logic clk, 

input  logic [3:0] d, 

output logic [3:0] q);

always_ff@(posedge clk)

q <= d;             // pronounced “q gets d”

endmodule

D Flip-Flop



Chapter 4 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

• always statements can be used to imply flip-flops, latches, 
or combinational logic, depending on the sensitivity list and 
statement

• To reduce the risk of common errors, SystemVerilog
introduces always_ff, always_latch, and 
always_comb

• always_ff behaves like always but is used exclusively to 
imply flip-flops and allows tools to produce a warning if 
anything else is implied

D Flip-Flop



Chapter 4 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

• When simulation begins or power is first applied to a circuit, 
the output of a flop or register is unknown

• This is indicated with x in SystemVerilog

• It is good practice to use resettable registers so that on 
powerup you can put your system in a known state

• The reset may be either asynchronous or synchronous:
• asynchronous reset occurs immediately
• synchronous reset clears the output only on the next rising 

edge of the clock

Resettable registers
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module flopr(input  logic clk,

input  logic reset, 

input  logic [3:0] d, 

output logic [3:0] q);

// synchronous reset

always_ff @(posedge clk)

if (reset) q <= 4'b0;

else       q <= d;

endmodule

q[3:0]

q[3:0]
[3:0]

d[3:0]
[3:0]

reset

clk
[3:0]

Q[3:0]
[3:0]

D[3:0]
R

Resettable D Flip-Flop

Posedge clk is 
alone in the 
sensitivity list 
thus:
• synchronously

resettable flops 
respond to reset 
only on the 
rising edge of 
the clock
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module flopr(input  logic       clk,

input  logic       reset, 

input  logic [3:0] d, 

output logic [3:0] q);

// asynchronous reset

always_ff @(posedge clk, posedge reset)

if (reset) q <= 4'b0;

else       q <= d;

endmodule

q[3:0]

R

q[3:0]
[3:0]

d[3:0]
[3:0]

reset

clk
[3:0]

Q[3:0]
[3:0]

D[3:0]

Resettable D Flip-Flop

Posedge reset is in 
the sensitivity list 
only on the 
asynchronously 
resettable flop, 
thus:
• asynchronously

resettable flops 
immediately
respond to a 
rising edge on 
reset
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module flopren(input  logic       clk,

input  logic       reset, 

input  logic       en, 

input  logic [3:0] d, 

output logic [3:0] q);

// enable and asynchronous reset

always_ff @(posedge clk, posedge reset)

if      (reset) q <= 4'b0;

else if (en) q <= d;

endmodule

D Flip-Flop with Enable
• Enabled 

registers 
respond to the 
clock only
when the 
enable is 
asserted

• Asynchronously 
resettable 
enabled 
registers retain 
their old value 
if both reset
and en are 
FALSE
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module latch(input  logic clk, 

input  logic [3:0] d, 

output logic [3:0] q);

always_latch

if (clk) q <= d;

endmodule

lat

q[3:0]

q[3:0]
[3:0]d[3:0]

[3:0]

clk

[3:0]
D[3:0] [3:0]

Q[3:0]
C

Latch
always_latch is 
equivalent to 
always@(clk,d):
if clk is HIGH, d flows 
through to q (positive 
level sensitive)
otherwise, q keeps its 
old value

It is the preferred
idiom for describing a 
SystemVerilog latch:  
a warning is 
generated if the 
always_latch block is 
not a latch
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More combinational logic

• SystemVerilog always statements are used to describe 
sequential circuits, because they remember the old state 
when no new state is prescribed

• We used assignment statements to describe combinational 
logic behaviorally

• always statements can also be used to describe 
combinational logic behaviorally, but:
• the sensitivity list MUST respond to changes in all of

the inputs 
• all outputs should have default values or must be 

assigned for every input combination, otherwise a 
latch will be generated to hold the current value
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• SystemVerilog supports blocking and nonblocking assignments 
in an always statement

• = is blocking assignment:

– A group of blocking assignments are evaluated in the order 
in which they appear in the code, just as one would expect 
in a standard programming language

• <= is nonblocking assignment:

– A group of nonblocking assignments are evaluated 
concurrently

– all of the statements are evaluated before any of the 
signals on the left hand sides are updated

Blocking vs. Nonblocking Assignment
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module inv(input  logic [3:0] a,

           output logic [3:0] y);

 always_comb

   y = ~a;

endmodule

• always_comb reevaluates the statements inside the 
always statement any time any of the signals on the right 
hand side of <= or = in the always statement change

• In this case, it is equivalent to always @(a), but is better 
because it avoids mistakes if signals in the always statement 
are renamed or added

• If the code inside the always block is not combinational logic, 
SystemVerilog will report a warning

Blocking vs. Nonblocking Assignment
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module fulladder(input  logic a, b, cin,

                 output logic s, cout);

 logic p, g;

 always_comb

  begin

   p = a ^ b;   // blocking

   g = a & b;   // blocking

   s = p ^ cin;   // blocking

cout = g | (p & cin); // blocking

  end

endmodule

• In this case, always@(a,b,cin) would have been 
equivalent to always_comb but always_comb is better 
because it avoids missing signals in the sensitivity list

• this example uses blocking assignments, first computing p, 
then g, then s, and finally cout, that are better for 
combinational logic

Blocking vs. Nonblocking Assignment
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• case and if statements are convenient for modeling more 
complicated combinational logic

• case and if statements MUST appear within always
statements

• case statement

• performs different actions depending on the value of its input

• implies combinational logic only if all possible input 

combinations described 

• need to use default statement, otherwise it implies 

sequential logic, because the output will keep its old value in 

the undefined cases

Other Behavioral Statements
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module sevenseg(input  logic [3:0] data, 

output logic [6:0] segments);

always_comb

case (data)

//                     abc_defg

0: segments =       7'b111_1110;

1: segments =       7'b011_0000;

2: segments =       7'b110_1101;

3: segments =       7'b111_1001;

4: segments =       7'b011_0011;

5: segments =       7'b101_1011;

6: segments =       7'b101_1111;

7: segments =       7'b111_0000;

8: segments =       7'b111_1111;

9: segments =       7'b111_0011;

default: segments = 7'b000_0000; //required

endcase

endmodule

Combinational Logic using case
• The case

statement checks 
the value of data 
and performs the 
action after the 
colon

• The default
clause is used to 
define the output 
for all cases not 
explicitly listed, 
guaranteeing 
combinational logic
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• always statements may also contain if statements
• The if statement may be followed by an else statement
• If all possible input combinations are handled, the 

statement implies combinational logic; otherwise, it 
produces sequential logic

module priorityckt(input  logic [3:0] a,

    output logic [3:0] y);

 always_comb

  if (a[3]) y = 4'b1000;

else if (a[2]) y = 4'b0100;

else if (a[1]) y = 4'b0010;

else if (a[0]) y = 4'b0001;

  else y = 4'b0000;

endmodule

Other Behavioral Statements

priority circuit: 
N-input priority 
circuit sets the 
output bit TRUE 
that corresponds 
to the most 
significant input 
that is TRUE
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• Truth tables may include don’t care’s to allow simplification
• A priority circuit can be defined using don’t cares
• The casez statement acts like a case statement but it also 

recognizes ? as don’t care

module priority_casez(input  logic [3:0] a, 

output logic [3:0] y);

always_comb

casez(a)

4'b1???: y = 4'b1000; // ?=don’t care

4'b01??: y = 4'b0100;

4'b001?: y = 4'b0010;

4'b0001: y = 4'b0001;

default: y = 4'b0000;

endcase

endmodule

Combinational Logic using casez
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