
Chapter 4 <1>

Verilog

Harris & Harris, Digital Design and Computer Architecture
Ch. 4 - Hardware Description Languages

▪ 4.2.10 Delays
▪ 4.4 SEQUENTIAL LOGIC
▪ 4.5 MORE COMBINATIONAL LOGIC

Chapter 4 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

Delays
• HDL statements may be associated with delays, helpful during

simulation to predict how fast a circuit will work and for
debugging purposes (but ignored during synthesis)

• Let’s consider a previous example and its simulation waveforms

module example(input logic a, b, c,

output logic y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;

endmodule

Chapter 4 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

• We now add delays to the previous function

• We assume:
– inverters have a delay of 1 ns,

– three-input AND gates have a delay of 2 ns,

– three-input OR gates have a delay of 4 ns

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} = ~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays

In SystemVerilog,
a # symbol is
used to indicate
the number of
units of delay

Chapter 4 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} = ~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays

Let’s analyze the
simulation waveform

Chapter 4 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

Delays

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Note that the beginning of the
simulation only the variables a, b, c
are known.
In particular y is initially unknown

Chapter 4 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays
1

After 1 ns inverters produce their outputs

Chapter 4 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

Delays
2

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

After 2 ns and gates produce their outputs

Chapter 4 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

Delays

2

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Chapter 4 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

Delays

4

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Chapter 4 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

• SystemVerilog uses idioms to describe latches,
flip-flops and FSMs

• Other coding styles may simulate correctly but
produce incorrect hardware

Sequential Logic

Chapter 4 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

• The majority of modern commercial systems are built with
registers using positive edge-triggered D flip-flops

• In SystemVerilog always statements signals keep their old
value until an event in the sensitivity list takes place that
explicitly causes them to change

always @(sensitivity list)

statement;

• Whenever the event in sensitivity list occurs, statement is
executed

• Hence, code using always, with appropriate sensitivity lists,
can be used to describe sequential circuits

Always Statement

Chapter 4 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

• For example, the flip-flop includes only clk in the sensitive list
• It remembers its old value of q until the next rising edge of

the clk, even if d changes in the interim

module flop(input logic clk,

input logic [3:0] d,

output logic [3:0] q);

always_ff@(posedge clk)

q <= d; // pronounced “q gets d”

endmodule

D Flip-Flop

Chapter 4 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

• <= is called a nonblocking assignment
• <= is used instead of assign inside an always statement

module flop(input logic clk,

input logic [3:0] d,

output logic [3:0] q);

always_ff@(posedge clk)

q <= d; // pronounced “q gets d”

endmodule

D Flip-Flop

Chapter 4 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

• always statements can be used to imply flip-flops, latches,
or combinational logic, depending on the sensitivity list and
statement

• To reduce the risk of common errors, SystemVerilog
introduces always_ff, always_latch, and
always_comb

• always_ff behaves like always but is used exclusively to
imply flip-flops and allows tools to produce a warning if
anything else is implied

D Flip-Flop

Chapter 4 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

• When simulation begins or power is first applied to a circuit,
the output of a flop or register is unknown

• This is indicated with x in SystemVerilog

• It is good practice to use resettable registers so that on
powerup you can put your system in a known state

• The reset may be either asynchronous or synchronous:
• asynchronous reset occurs immediately
• synchronous reset clears the output only on the next rising

edge of the clock

Resettable registers

Chapter 4 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

module flopr(input logic clk,

input logic reset,

input logic [3:0] d,

output logic [3:0] q);

// synchronous reset

always_ff @(posedge clk)

if (reset) q <= 4'b0;

else q <= d;

endmodule

q[3:0]

q[3:0]
[3:0]

d[3:0]
[3:0]

reset

clk
[3:0]

Q[3:0]
[3:0]

D[3:0]
R

Resettable D Flip-Flop

Posedge clk is
alone in the
sensitivity list
thus:
• synchronously

resettable flops
respond to reset
only on the
rising edge of
the clock

Chapter 4 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

module flopr(input logic clk,

input logic reset,

input logic [3:0] d,

output logic [3:0] q);

// asynchronous reset

always_ff @(posedge clk, posedge reset)

if (reset) q <= 4'b0;

else q <= d;

endmodule

q[3:0]

R

q[3:0]
[3:0]

d[3:0]
[3:0]

reset

clk
[3:0]

Q[3:0]
[3:0]

D[3:0]

Resettable D Flip-Flop

Posedge reset is in
the sensitivity list
only on the
asynchronously
resettable flop,
thus:
• asynchronously

resettable flops
immediately
respond to a
rising edge on
reset

Chapter 4 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

module flopren(input logic clk,

input logic reset,

input logic en,

input logic [3:0] d,

output logic [3:0] q);

// enable and asynchronous reset

always_ff @(posedge clk, posedge reset)

if (reset) q <= 4'b0;

else if (en) q <= d;

endmodule

D Flip-Flop with Enable
• Enabled

registers
respond to the
clock only
when the
enable is
asserted

• Asynchronously
resettable
enabled
registers retain
their old value
if both reset
and en are
FALSE

Chapter 4 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

module latch(input logic clk,

input logic [3:0] d,

output logic [3:0] q);

always_latch

if (clk) q <= d;

endmodule

lat

q[3:0]

q[3:0]
[3:0]d[3:0]

[3:0]

clk

[3:0]
D[3:0] [3:0]

Q[3:0]
C

Latch
always_latch is
equivalent to
always@(clk,d):
if clk is HIGH, d flows
through to q (positive
level sensitive)
otherwise, q keeps its
old value

It is the preferred
idiom for describing a
SystemVerilog latch:
a warning is
generated if the
always_latch block is
not a latch

Chapter 4 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

More combinational logic

• SystemVerilog always statements are used to describe
sequential circuits, because they remember the old state
when no new state is prescribed

• We used assignment statements to describe combinational
logic behaviorally

• always statements can also be used to describe
combinational logic behaviorally, but:
• the sensitivity list MUST respond to changes in all of

the inputs
• all outputs should have default values or must be

assigned for every input combination, otherwise a
latch will be generated to hold the current value

Chapter 4 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

• SystemVerilog supports blocking and nonblocking assignments
in an always statement

• = is blocking assignment:

– A group of blocking assignments are evaluated in the order
in which they appear in the code, just as one would expect
in a standard programming language

• <= is nonblocking assignment:

– A group of nonblocking assignments are evaluated
concurrently

– all of the statements are evaluated before any of the
signals on the left hand sides are updated

Blocking vs. Nonblocking Assignment

Chapter 4 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

module inv(input logic [3:0] a,

 output logic [3:0] y);

 always_comb

 y = ~a;

endmodule

• always_comb reevaluates the statements inside the
always statement any time any of the signals on the right
hand side of <= or = in the always statement change

• In this case, it is equivalent to always @(a), but is better
because it avoids mistakes if signals in the always statement
are renamed or added

• If the code inside the always block is not combinational logic,
SystemVerilog will report a warning

Blocking vs. Nonblocking Assignment

Chapter 4 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

module fulladder(input logic a, b, cin,

 output logic s, cout);

 logic p, g;

 always_comb

 begin

 p = a ^ b; // blocking

 g = a & b; // blocking

 s = p ^ cin; // blocking

cout = g | (p & cin); // blocking

 end

endmodule

• In this case, always@(a,b,cin) would have been
equivalent to always_comb but always_comb is better
because it avoids missing signals in the sensitivity list

• this example uses blocking assignments, first computing p,
then g, then s, and finally cout, that are better for
combinational logic

Blocking vs. Nonblocking Assignment

Chapter 4 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

• case and if statements are convenient for modeling more
complicated combinational logic

• case and if statements MUST appear within always
statements

• case statement

• performs different actions depending on the value of its input

• implies combinational logic only if all possible input

combinations described

• need to use default statement, otherwise it implies

sequential logic, because the output will keep its old value in

the undefined cases

Other Behavioral Statements

Chapter 4 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

module sevenseg(input logic [3:0] data,

output logic [6:0] segments);

always_comb

case (data)

// abc_defg

0: segments = 7'b111_1110;

1: segments = 7'b011_0000;

2: segments = 7'b110_1101;

3: segments = 7'b111_1001;

4: segments = 7'b011_0011;

5: segments = 7'b101_1011;

6: segments = 7'b101_1111;

7: segments = 7'b111_0000;

8: segments = 7'b111_1111;

9: segments = 7'b111_0011;

default: segments = 7'b000_0000; //required

endcase

endmodule

Combinational Logic using case
• The case

statement checks
the value of data
and performs the
action after the
colon

• The default
clause is used to
define the output
for all cases not
explicitly listed,
guaranteeing
combinational logic

Chapter 4 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

• always statements may also contain if statements
• The if statement may be followed by an else statement
• If all possible input combinations are handled, the

statement implies combinational logic; otherwise, it
produces sequential logic

module priorityckt(input logic [3:0] a,

 output logic [3:0] y);

 always_comb

 if (a[3]) y = 4'b1000;

else if (a[2]) y = 4'b0100;

else if (a[1]) y = 4'b0010;

else if (a[0]) y = 4'b0001;

 else y = 4'b0000;

endmodule

Other Behavioral Statements

priority circuit:
N-input priority
circuit sets the
output bit TRUE
that corresponds
to the most
significant input
that is TRUE

Chapter 4 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

• Truth tables may include don’t care’s to allow simplification
• A priority circuit can be defined using don’t cares
• The casez statement acts like a case statement but it also

recognizes ? as don’t care

module priority_casez(input logic [3:0] a,

output logic [3:0] y);

always_comb

casez(a)

4'b1???: y = 4'b1000; // ?=don’t care

4'b01??: y = 4'b0100;

4'b001?: y = 4'b0010;

4'b0001: y = 4'b0001;

default: y = 4'b0000;

endcase

endmodule

Combinational Logic using casez

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27

