Verilog

Harris & Harris, Digital Design and Computer Architecture

Ch. 4 - Hardware Description Languages
= 4.2.10 Delays
= 4.4 SEQUENTIAL LOGIC
= 4.5 MORE COMBINATIONAL LOGIC

Visualize a circuit

* To visualize the circuit, we need a sequence of commands
that we run with yosys

 The sequence can be in a file having extension .ys
$ yosys synth.ys

example of synth.ys

read design

read -sv example.v

elaborate design hierarchy

hierarchy -top example

convert processes (always blocks)to netlist
elements and perform some simple optimizations
proc; opt

translate netlist to gate logic and perform
some simple optimizations

techmap; opt

write design netlist to a json file

write json example.js

Visualize a circuit

* From file example.js produced by yosys, afile
example.svg (Scalable Vector Graphics format) can be

produced using the command
S netlistsvg example.js -o example.svg

* File example.svg can be finally seen in a graphical
window using the command ristretto
(plcture.viewer)

$ ristretto example.svg

Visualize a circuit

e Let us consider the module for the full-adder, stored in a
file with extension (for example esempioFA.v)
module fulladder (input 1logic a, b, cin,
output logic s, cout);
logic p, g; // internal nodes
assign p = a * b;
assign g = a & b;
assign s = p * cin;
assign cout = g | (p & cin);
endmodule

Give the following commands to visualize the circuit
$ yosys synth-esempioFA.ys
$ netlistsvg esempioFA.js -o esempioFA.svg
$ ristretto esempioFA.svg

Delays

HDL statements may be associated with delays, helpful during
simulation to predict how fast a circuit will work and for
debugging purposes (but ignored during synthesis)

Let’s consider a previous example and its simulation waveforms

module example (input 1logic a, b, c,

output logic y);
assign y = ~a & ~b & ~¢c | a & ~b & ~¢c | a & ~b & c;
endmodule

Now:
Ons 160 320ns 480 640ns 800
800 ns FEREEREERREEEEEE R

& a
b
Mc
oL

o o o O

Delays

 We now add delays to the previous function

* We assume:
— inverters have a delay of 1 ns,
— three-input AND gates have a delay of 2 ns,
— three-input OR gates have a delay of 4 ns

module example (input 1logic a, b, c,
output logic y);

logic ab, bb, cb, nl, n2, n3;

assign #1 {ab, bb, cb} = ~{a, b, c};

assign #2 nl = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 a & bb & c;

assign #4 y = nl | n2 | n3;
endmodule

In SystemVerilog,
a # symbol is
used to indicate
the number of
units of delay

Delays

module example (input 1logic a, b, c,
output logic y);
logic ab, bb, ¢cb, nl, n2, n3;
assign #1 {ab, bb, cb} = ~{a, b, c};
assign #2 nl = ab & bb & cb;
a & bb & cb;
a & bb & ¢c;
assign #4 y = nl | n2 | n3;
endmodule

assign #2 n2

assign #2 n3 Let’s analyze the

simulation waveform

a0

Delays

module example (input 1logic a, b, c,
output logic y);
logic ab, bb, cb, nl, n2, n3;
assign #1 {ab, bb, cb} =
~{a, b, c};
assign #2 nl ab & bb & cb;
assign #2 n2 = a & bb & cb;
a & bb & c;
assign #4 y = nl | n2 | n3;
endmodule

assign #2 n3

Note that the beginning of the
simulation only the variablesa, b, c
are known.

In particular y is initially unknown

10

Delays

module example (input 1logic a, b, c,
output logic y);
logic ab, bb, cb, nl, n2, n3;
assign #1 {ab, bb, cb} =
~{a, b, c};
assign #2 nl ab & bb & cb;
assign #2 n2 = a & bb & cb;
a & bb & c;
assign #4 y = nl | n2 | n3;
endmodule

assign #2 n3

After 1 ns inverters produce their outputs

10

Delays

module example (input 1logic a, b, c,
output logic y);
logic ab, bb, cb, nl, n2, n3;
assign #1 {ab, bb, cb} =
~{a, b, c};
ab & bb & cb;
a & bb & cb;
a & bb & c;
assign #4 y = nl | n2 | n3;
endmodule

assign #2 nl

assign #2 n2

assign #2 n3

After 2 ns and gates produce their outputs

10

Delays

module example (input 1logic a, b,

logic ab,

assign

assign
assign
assign
assign
endmodule

#1

#2
#2
#2
#4

output logic y);
bb, cb, nl, n2, n3;
{ab, bb, cb} =

~{a, b, c};
nl ab & bb & cb;
n2 = a & bb & cb;
n3 a & bb & c;

y = nl | n2 | n3;

10

Delays

module example (input 1logic a, b, c,

output logic y);

logic ab, bb, cb, nl, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 nl = ab & bb & cb;

A

assign #2 n2 = a & bb & cb;
assign #2 n3 = a & bb & c;

assign #4 y = nl | n2 | n3;

endmodule

Sequential Logic

e SystemVerilog uses idioms to describe latches,
flip-flops and FSMs

e Other coding styles may simulate correctly but
produce incorrect hardware

Always Statement

* The majority of modern commercial systems are built with
registers using positive edge-triggered D flip-flops

* In SystemVerilog always statements signals keep their old
value until an event in the sensitivity list takes place that
explicitly causes them to change
always @ (sensitivity list)

statement;

* Whenever the event in sensitivity list occurs, statement is
executed

* Hence, code using always, with appropriate sensitivity lists,
can be used to describe sequential circuits

D Flip-Flop

* For example, the flip-flop includes only clk in the sensitive list
* It remembers its old value of g until the next rising edge of
the clk, even if d changes in the interim

module flop(input 1logic clk,
input 1logic [3:0] d,
output logic [3:0] q):

always ff@ (posedge clk)

q <= d; // pronounced “q gets d”
endmodule
ck = -
3.0 3.0 —
J[30] e D[3:0] Q[3:0] e q[3:0] ==

q[3:0]

D Flip-Flop

 <=js called a nonblocking assignment
e <=jsused instead of assign inside an always statement

module flop(input 1logic clk,
input 1logic [3:0] d,
output logic [3:0] q):

always ff@ (posedge clk)
q <= d; // pronounced “q gets d”
endmodule

clk = o] 3:0] —

d[3:0] Toe——D[3:0] Q[3:0] —3:0] =

q[3:0]

D Flip-Flop

* always statements can be used to imply flip-flops, latches,

or combinational logic, depending on the sensitivity list and
statement

* To reduce the risk of common errors, SystemVerilog
introduces always ff,always latch,and
always comb

* always ff behaves like always butis used exclusively to

imply flip-flops and allows tools to produce a warning if
anything else is implied

Resettable registers

 When simulation begins or power is first applied to a circuit,
the output of a flop or register is unknown
e Thisis indicated with x in SystemVerilog

* Itis good practice to use resettable registers so that on
powerup you can put your system in a known state

* The reset may be either asynchronous or synchronous:
* asynchronous reset occurs immediately

* synchronous reset clears the output only on the next rising
edge of the clock

Resettable D Flip-Flop

module flopr (input 1logic clk, Posedge clk is
input logic reset, alone in the
input 1logic [3:0] 4,

_ sensitivity list
output logic [3:0] qg);

thus:
* synchronously

// synchronous reset
resettable flops

always ff @ (posedge clk)

if (reset) g <= 4'b0; respond to reset
else q <= d; only on the
rising edge of
endmodule the clock
clk

d3: 01>H—I-L D[s 0] Q[3:0] peetilemdZll o[3:0]

reset

q[3:0]

Resettable D Flip-Flop

module flopr (input 1logic

input 1logic
input 1logic [3:0]
output logic [3:0]

// asynchronous reset

always ff @ (posedge clk, posedge reset)

if (reset) g <= 4'b0;

else

endmodule

clk

q <= d;

d[3:0 <K

3:0

>
D[3:0] Q[3:0]
R

reset

q[3:0]

3:0

clk,
reset,
d/

q) ;

S e

Posedge reset is in
the sensitivity list
only on the
asynchronously
resettable flop,
thus:

e asynchronously
resettable flops
immediately
respond to a
rising edge on
reset

D Flip-Flop with Enable

* Enabled
module flopren (input 1logic clk, registers
input logic reset, respond to the
input 1logic en, clock only
input 1logic [3:0] d, when the
output logic [3:0] q); enable is
asserted
// enable and asynchronous reset + Asynchronously
always ff (@ (posedge clk, posedge reset)
: — resettable
if (reset) g <= 4'b0; bled
else if (en) q <= d; enable _
registers retain
endmodule their old value
- if both reset
clk : e | .]
a0 e B0 [g qpao) REIBA Y gag — andenare
en = . E FALSE
H
| reset Hﬂ___.'-'-"

q[3:0]

Latch

module latch (input 1logic clk,
input 1logic [3:0] 4,
output logic [3:0] q);

always latch
if (clk) g <= d4d;

endmodule

. 3:0 3: .
& 2 a0

always latchis
equivalent to
always@ (clk,d):
if clk is HIGH, d flows
through to q (positive
level sensitive)
otherwise, q keeps its
old value

It is the preferred
idiom for describing a
SystemVerilog latch:
a warning is
generated if the
always_latch block is
not a latch

More combinational logic

* SystemVerilog always statements are used to describe
sequential circuits, because they remember the old state
when no new state is prescribed

* We used assignment statements to describe combinational
logic behaviorally

* always statements can also be used to describe
combinational logic behaviorally, but:
* the sensitivity list MUST respond to changes in all of
the inputs
* all outputs should have default values or must be
assigned for every input combination, otherwise a
latch will be generated to hold the current value

Blocking vs. Nonblocking Assignment

e SystemVerilog supports blocking and nonblocking assignments
in an always statement

* =is blocking assighment:

— A group of blocking assignments are evaluated in the order
in which they appear in the code, just as one would expect
in a standard programming language

* <=js nonblocking assignment:

— A group of nonblocking assignments are evaluated
concurrently

— all of the statements are evaluated before any of the
signals on the left hand sides are updated

Blocking vs. Nonblocking Assignment

module inv(input 1logic [3:0] a,
output logic [3:0] y);
always comb
y = ~ay
endmodule

* always comb reevaluates the statements inside the
always statement any time any of the signals on the right
hand side of <= or =in the always statement change

* Inthis case, itis equivalent to always @ (a), butis better

because it avoids mistakes if signals in the always statement
are renamed or added

* If the code inside the always block is not combinational logic,
SystemVerilog will report a warning

Blocking vs. Nonblocking Assignment

module fulladder (input 1logic a, b, cin,
output logic s, cout);

logic p, g;
always comb
begin
p=a” b; // blocking
g=a &b; // blocking
s = p » cin; // blocking
cout = g | (p & cin); // blocking
end
endmodule

* |Inthiscase, always@ (a,b,cin) would have been
equivalentto always comb but always comb is better
because it avoids missing signhals in the sensitivity list

* this example uses blocking assignments, first computing p,
then g, then s, and finally cout, that are better for
combinational logic

Other Behavioral Statements

case and if statements are convenient for modeling more

complicated combinational logic
case and if statements MUST appear within always

statements

case statement

* performs different actions depending on the value of its input

* implies combinational logic only if all possible input
combinations described

* needto use default statement, otherwise it implies
sequential logic, because the output will keep its old value in

the undefined cases

Combinational Logic using case

module sevenseg(input 1logic [3:0] data, e The case
output logic [6:0] segments) ; statement checks
always_comb the value of data
case (data) and performs the
/7 abc_detfg action after the
0: segments = 7'blll 1110; colon
1l: segments = 7'b011 _0000;
2: segments = 7'bl10_1101; e Thedefault
3: segments = 7'bl11 1001; .
- clause is used to
4: segments = 7'b011 0011;)
5: segments = 7'b101 1011; deﬂnethecnﬂPUt
6: segments = 7'b101—1111; for a_”_case.S not
7: segments = 7'b111:0000; epr|C|tIyI|.sted,
8: segments = 7'b111 1111; guaranteeing
9: segments = 7.b111:0011; combinational logic
default: segments = 7'b000 0000; //required
endcase

endmodule

Other Behavioral Statements

* always statements may also contain i £ statements

* The if statement may be followed by an else statement

e If all possible input combinations are handled, the
statement implies combinational logic; otherwise, it
produces sequential logic

module priorityckt(input 1logic [3:0] a, priority circuit:
output logic [3:0] ¥)/ N-input priority

circuit sets the

output bit TRUE

always comb
if (a[3]) y = 4'b1000;
else if (a[2]) y = 4'b0100;

else if (a[l]) y = 4'b0010; that corresponds
else if (a[0]) y = 4'b0001; to the most
else y = 4'b0000; significant input

endmodule that is TRUE

Combinational Logic using casez

* Truth tables may include don’t care’s to allow simplification
e A priority circuit can be defined using don’t cares
* The casez statement acts like a case statement but it also

recognizes ? as don’t care

module priority casez (input 1logic [3:0] a,

always comb

casez (a)

4'bl???:
4'b01?7?:
4'b001>:
4'b0001:
default:

endcase
endmodule

R K K K K

output logic [3:0] vy);

[3:

4'b1000;
4'b0100;
4'b0010;
4'b0001;
4'b0000;

0]

(3]

[a[2:0]

// ?=don’t care

y[3:0]

=)

y23[0]

L

y24[0]

[4]
o
2
&)

y25

