
Chapter 4 <1>

Verilog

Harris & Harris, Digital Design and Computer Architecture
Ch. 4 - Hardware Description Languages

 4.2.10 Delays
 4.4 SEQUENTIAL LOGIC
 4.5 MORE COMBINATIONAL LOGIC

Chapter 4 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

Visualize a circuit
• To visualize the circuit, we need a sequence of commands

that we run with yosys
• The sequence can be in a file having extension .ys

$ yosys synth.ys

example of synth.ys

read design

read -sv example.v

elaborate design hierarchy

hierarchy -top example

convert processes (always blocks)to netlist

elements and perform some simple optimizations

proc; opt

translate netlist to gate logic and perform

some simple optimizations

techmap; opt

write design netlist to a json file

write_json example.js

Chapter 4 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

Visualize a circuit

• From file example.js produced by yosys, a file
example.svg (Scalable Vector Graphics format) can be
produced using the command

$ netlistsvg example.js -o example.svg

• File example.svg can be finally seen in a graphical
window using the command ristretto

(picture.viewer)

$ ristretto example.svg

Chapter 4 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

• Let us consider the module for the full-adder, stored in a
file with extension (for example esempioFA.v)
module fulladder(input logic a, b, cin,

output logic s, cout);

logic p, g; // internal nodes

assign p = a ^ b;

assign g = a & b;

assign s = p ^ cin;

assign cout = g | (p & cin);

endmodule

Give the following commands to visualize the circuit

Visualize a circuit

$ yosys synth-esempioFA.ys

$ netlistsvg esempioFA.js -o esempioFA.svg

$ ristretto esempioFA.svg

Chapter 4 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

Delays
• HDL statements may be associated with delays, helpful during

simulation to predict how fast a circuit will work and for
debugging purposes (but ignored during synthesis)

• Let’s consider a previous example and its simulation waveforms

module example(input logic a, b, c,

output logic y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;

endmodule

Chapter 4 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

• We now add delays to the previous function

• We assume:
– inverters have a delay of 1 ns,

– three-input AND gates have a delay of 2 ns,

– three-input OR gates have a delay of 4 ns

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} = ~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays

In SystemVerilog,
a # symbol is
used to indicate
the number of
units of delay

Chapter 4 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} = ~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays

Let’s analyze the
simulation waveform

Chapter 4 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

Delays

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Note that the beginning of the
simulation only the variables a, b, c
are known.
In particular y is initially unknown

Chapter 4 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays
1

After 1 ns inverters produce their outputs

Chapter 4 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

Delays
2

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

After 2 ns and gates produce their outputs

Chapter 4 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

Delays

2

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Chapter 4 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

Delays

4

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Chapter 4 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

• SystemVerilog uses idioms to describe latches,
flip-flops and FSMs

• Other coding styles may simulate correctly but
produce incorrect hardware

Sequential Logic

Chapter 4 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

• The majority of modern commercial systems are built with
registers using positive edge-triggered D flip-flops

• In SystemVerilog always statements signals keep their old
value until an event in the sensitivity list takes place that
explicitly causes them to change

always @(sensitivity list)

statement;

• Whenever the event in sensitivity list occurs, statement is
executed

• Hence, code using always, with appropriate sensitivity lists,
can be used to describe sequential circuits

Always Statement

Chapter 4 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

• For example, the flip-flop includes only clk in the sensitive list
• It remembers its old value of q until the next rising edge of

the clk, even if d changes in the interim

module flop(input logic clk,

input logic [3:0] d,

output logic [3:0] q);

always_ff@(posedge clk)

q <= d; // pronounced “q gets d”

endmodule

D Flip-Flop

Chapter 4 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

• <= is called a nonblocking assignment
• <= is used instead of assign inside an always statement

module flop(input logic clk,

input logic [3:0] d,

output logic [3:0] q);

always_ff@(posedge clk)

q <= d; // pronounced “q gets d”

endmodule

D Flip-Flop

Chapter 4 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

• always statements can be used to imply flip-flops, latches,
or combinational logic, depending on the sensitivity list and
statement

• To reduce the risk of common errors, SystemVerilog
introduces always_ff, always_latch, and
always_comb

• always_ff behaves like always but is used exclusively to
imply flip-flops and allows tools to produce a warning if
anything else is implied

D Flip-Flop

Chapter 4 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

• When simulation begins or power is first applied to a circuit,
the output of a flop or register is unknown

• This is indicated with x in SystemVerilog

• It is good practice to use resettable registers so that on
powerup you can put your system in a known state

• The reset may be either asynchronous or synchronous:
• asynchronous reset occurs immediately
• synchronous reset clears the output only on the next rising

edge of the clock

Resettable registers

Chapter 4 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

module flopr(input logic clk,

input logic reset,

input logic [3:0] d,

output logic [3:0] q);

// synchronous reset

always_ff @(posedge clk)

if (reset) q <= 4'b0;

else q <= d;

endmodule

q[3:0]

q[3:0]
[3:0]

d[3:0]
[3:0]

reset

clk
[3:0]

Q[3:0]
[3:0]

D[3:0]
R

Resettable D Flip-Flop

Posedge clk is
alone in the
sensitivity list
thus:
• synchronously

resettable flops
respond to reset
only on the
rising edge of
the clock

Chapter 4 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

module flopr(input logic clk,

input logic reset,

input logic [3:0] d,

output logic [3:0] q);

// asynchronous reset

always_ff @(posedge clk, posedge reset)

if (reset) q <= 4'b0;

else q <= d;

endmodule

q[3:0]

R

q[3:0]
[3:0]

d[3:0]
[3:0]

reset

clk
[3:0]

Q[3:0]
[3:0]

D[3:0]

Resettable D Flip-Flop

Posedge reset is in
the sensitivity list
only on the
asynchronously
resettable flop,
thus:
• asynchronously

resettable flops
immediately
respond to a
rising edge on
reset

Chapter 4 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

module flopren(input logic clk,

input logic reset,

input logic en,

input logic [3:0] d,

output logic [3:0] q);

// enable and asynchronous reset

always_ff @(posedge clk, posedge reset)

if (reset) q <= 4'b0;

else if (en) q <= d;

endmodule

D Flip-Flop with Enable
• Enabled

registers
respond to the
clock only
when the
enable is
asserted

• Asynchronously
resettable
enabled
registers retain
their old value
if both reset
and en are
FALSE

Chapter 4 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

module latch(input logic clk,

input logic [3:0] d,

output logic [3:0] q);

always_latch

if (clk) q <= d;

endmodule

lat

q[3:0]

q[3:0]
[3:0]d[3:0]

[3:0]

clk

[3:0]
D[3:0] [3:0]

Q[3:0]
C

Latch
always_latch is
equivalent to
always@(clk,d):
if clk is HIGH, d flows
through to q (positive
level sensitive)
otherwise, q keeps its
old value

It is the preferred
idiom for describing a
SystemVerilog latch:
a warning is
generated if the
always_latch block is
not a latch

Chapter 4 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

More combinational logic

• SystemVerilog always statements are used to describe
sequential circuits, because they remember the old state
when no new state is prescribed

• We used assignment statements to describe combinational
logic behaviorally

• always statements can also be used to describe
combinational logic behaviorally, but:
• the sensitivity list MUST respond to changes in all of

the inputs
• all outputs should have default values or must be

assigned for every input combination, otherwise a
latch will be generated to hold the current value

Chapter 4 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

• SystemVerilog supports blocking and nonblocking assignments
in an always statement

• = is blocking assignment:

– A group of blocking assignments are evaluated in the order
in which they appear in the code, just as one would expect
in a standard programming language

• <= is nonblocking assignment:

– A group of nonblocking assignments are evaluated
concurrently

– all of the statements are evaluated before any of the
signals on the left hand sides are updated

Blocking vs. Nonblocking Assignment

Chapter 4 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

module inv(input logic [3:0] a,

output logic [3:0] y);

always_comb

y = ~a;

endmodule

• always_comb reevaluates the statements inside the
always statement any time any of the signals on the right
hand side of <= or = in the always statement change

• In this case, it is equivalent to always @(a), but is better
because it avoids mistakes if signals in the always statement
are renamed or added

• If the code inside the always block is not combinational logic,
SystemVerilog will report a warning

Blocking vs. Nonblocking Assignment

Chapter 4 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

module fulladder(input logic a, b, cin,

output logic s, cout);

logic p, g;

always_comb

begin

p = a ^ b; // blocking

g = a & b; // blocking

s = p ^ cin; // blocking

cout = g | (p & cin); // blocking

end

endmodule

• In this case, always@(a,b,cin) would have been
equivalent to always_comb but always_comb is better
because it avoids missing signals in the sensitivity list

• this example uses blocking assignments, first computing p,
then g, then s, and finally cout, that are better for
combinational logic

Blocking vs. Nonblocking Assignment

Chapter 4 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

• case and if statements are convenient for modeling more
complicated combinational logic

• case and if statements MUST appear within always
statements

• case statement

• performs different actions depending on the value of its input

• implies combinational logic only if all possible input

combinations described

• need to use default statement, otherwise it implies

sequential logic, because the output will keep its old value in

the undefined cases

Other Behavioral Statements

Chapter 4 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

module sevenseg(input logic [3:0] data,

output logic [6:0] segments);

always_comb

case (data)

// abc_defg

0: segments = 7'b111_1110;

1: segments = 7'b011_0000;

2: segments = 7'b110_1101;

3: segments = 7'b111_1001;

4: segments = 7'b011_0011;

5: segments = 7'b101_1011;

6: segments = 7'b101_1111;

7: segments = 7'b111_0000;

8: segments = 7'b111_1111;

9: segments = 7'b111_0011;

default: segments = 7'b000_0000; //required

endcase

endmodule

Combinational Logic using case
• The case

statement checks
the value of data
and performs the
action after the
colon

• The default
clause is used to
define the output
for all cases not
explicitly listed,
guaranteeing
combinational logic

Chapter 4 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

• always statements may also contain if statements
• The if statement may be followed by an else statement
• If all possible input combinations are handled, the

statement implies combinational logic; otherwise, it
produces sequential logic

module priorityckt(input logic [3:0] a,

output logic [3:0] y);

always_comb

if (a[3]) y = 4'b1000;

else if (a[2]) y = 4'b0100;

else if (a[1]) y = 4'b0010;

else if (a[0]) y = 4'b0001;

else y = 4'b0000;

endmodule

Other Behavioral Statements

priority circuit:
N-input priority
circuit sets the
output bit TRUE
that corresponds
to the most
significant input
that is TRUE

Chapter 4 <30> Digital Design and Computer Architecture: ARM® Edition © 2015

• Truth tables may include don’t care’s to allow simplification
• A priority circuit can be defined using don’t cares
• The casez statement acts like a case statement but it also

recognizes ? as don’t care

module priority_casez(input logic [3:0] a,

output logic [3:0] y);

always_comb

casez(a)

4'b1???: y = 4'b1000; // ?=don’t care

4'b01??: y = 4'b0100;

4'b001?: y = 4'b0010;

4'b0001: y = 4'b0001;

default: y = 4'b0000;

endcase

endmodule

Combinational Logic using casez

