Applicazioni delle porte logiche

Le principali funzioni che possiamo realizzare con le reti combinatorie appartengono essenzialmente ad una delle seguenti classi:

· reti per l’elaborazione dell’informazione

· reti per il controllo del passaggio dell’informazione

Nella prima categoria ricadono circuiti quali codificatori, decodificatori, memorie e PLA; nella seconda, tra i più importanti, analizzeremo i multiplexer e i demultiplexer .

Codificatori :
Un codificatore è una rete con n linee d’ingresso ed m linee d’uscita (per questo vengono chiamati anche n-a-m). Il suo scopo è quello di associare un codice binario (parola binaria o sequenza generica di I e 0) in uscita per ogni singola attivazione di una linea d’ingresso. In altre parole, si può portare allo stato logico I solo una linea d’ingresso alla volta e per essa il codificatore dà un codice binario sulle linee d’uscita. Per avere un codice diverso per ogni linea d’ingresso, occorre che il numero di codici binari generabili (C) con le m linee d’uscita (C=2m) sia maggiore o uguale ad n (C(n). Quindi, sapendo di avere n linee d’ingresso, il minimo numero di linee d’uscita necessarie ad effettuare la codifica sarà m= (log2 n ((((significa considerare la parte intera superiore del risultato del logaritmo. Parte intera superiore di un numero decimale (x (è il numero intero k più vicino a x e tale che k(x. es (4,2 (=5, (4 (=4).

E’ possibile considerare un numero m>(log2 n (; in questo caso parliamo di codifica lasca in quanto le linee d’uscita ci permettono di generare un numero di codici maggiore di quello effettivamente necessario. Se invece m((log2 n (allora la codifica si dice stretta.

Studio e realizzazione di un codificatore

Supponiamo di voler realizzare un codificatore per n=16 linee d’ingresso. Per realizzare una codifica stretta avremo bisogno di log216=4=m linee d’uscita. Indicizziamo le linee d’ingresso con indici i0..i15 e quelle d’uscita con indici u0..u3.

A livello di “scatola nera” il nostro codificatore può essere rappresentato nel modo seguente:

[image: image9.bmp]
A questo punto è necessario definire un codice da assegnare ad ogni linea d’ingresso. E’ possibile fare ciò contestualmente alla realizzazione della tabella della verità che rappresenta il comportamento di ogni singola uscita in relazione agli ingrassi.

	i0
	i1
	i2
	i3
	i4
	i5
	i6
	i7
	i8
	i9
	i10
	i11
	i12
	i13
	i14
	i15
	u0
	u1
	u2
	u3

	I
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	I
	0
	0

	0
	I
	
	
	
	
	
	
	
	
	
	
	
	
	
	0
	I
	I
	I
	I

	0
	
	I
	
	
	
	[image: image1.wmf]COD

i

0

..15

u

0

..3

	
	
	
	
	
	
	
	
	0
	0
	0
	I
	I

	0
	
	
	I
	
	
	
	
	
	
	
	
	
	
	
	0
	I
	0
	0
	I

	0
	
	
	
	I
	
	
	
	
	
	
	
	
	
	
	0
	I
	0
	I
	0

	0
	
	
	
	
	I
	
	
	
	
	
	
	
	
	
	0
	0
	I
	0
	I

	0
	
	
	
	
	
	I
	
	
	
	
	
	
	
	
	0
	0
	0
	0
	0

	0
	
	
	
	
	
	
	I
	
	
	
	
	
	
	
	0
	0
	I
	I
	0

	0
	
	
	
	
	
	
	
	I
	
	
	
	
	
	
	0
	0
	0
	0
	I

	0
	
	
	
	
	
	
	
	
	I
	
	
	
	
	
	0
	I
	I
	I
	0

	0
	
	
	
	
	
	
	
	
	
	I
	
	
	
	
	0
	I
	0
	I
	I

	0
	
	
	
	
	
	
	
	
	
	
	I
	
	
	
	0
	0
	I
	I
	I

	0
	
	
	
	
	
	
	
	
	
	
	
	I
	
	
	0
	0
	0
	I
	0

	0
	
	
	
	
	
	
	
	
	
	
	
	
	I
	
	0
	I
	I
	0
	0

	0
	
	
	
	
	
	
	
	
	
	
	
	
	
	I
	0
	I
	I
	0
	I

	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	I
	I
	0
	0
	0

Notate che in ingresso può essere attiva (stato logico I) solo una linea alla volta!

Abbiamo assegnato casualmente i codici alle singole linee d’ingresso anche se molto spesso si usa dare un codice corrispondente alla codifica numerica binaria del suo indice cioè: i7 (LSD 0 I I I MSD
Consideriamo ora le linee d’uscita una alla volta e analizziamole come fatto in precedenza per una generica funzione di commutazione. Volendo realizzare l’uscita u0 allora dovremo scrivere la sua forma minterminale. Ogni mintermine, proprio per via della particolare costruzione della tabella (un solo I su ogni riga degli ingressi) sarà il prodotto delle n variabili d’ingresso, tutte negate, eccetto quella allo stato logico I. Questo percorso, pur corretto, richiederebbe poi un’operazione di semplificazione algebrica per limitare il numero delle porte utilizzate. Più rapidamente, si vede che l’uscita in esame deve “rispondere” con lo stato logico I solo quando una delle linee d’ingresso con indici 1,3,4,9,10,13,14,15 è allo stato logico I. Banalmente allora la rete che realizza l’uscita u0 sarà costituita da un OR i cui ingressi sono le linee sopra menzionate.

Analogo il discorso per tutte le altre uscite.

Graficamente, supponendo di rappresentare un OR logico ad n ingressi nel modo seguente:

[image: image2.wmf]Linee

d'ingresso

OR

delle

linee

d'ingresso

	i0
	i1
	i2
	i3
	i4
	i5
	i6
	i7
	i8
	i9
	i10
	i11
	i12
	i13
	i14
	i15
	

	
	○
	
	○
	○
	
	
	
	
	○
	○
	
	
	○
	○
	○
	u0

	○
	○
	
	
	
	○
	
	○
	
	○
	
	○
	
	○
	○
	
	u1

	
	○
	○
	
	○
	
	
	○
	
	○
	○
	○
	○
	
	
	
	u2

	
	○
	○
	○
	
	○
	
	
	○
	
	○
	○
	
	
	○
	
	u3

Codificatore 16-a-4

Decodificatori :

Un decodificatore è una rete combinatoria ad m linee d’ingresso e n linee d’uscita dove n=2m. Il suo compito è quello di associare ad un codice binario presente sugli ingressi una specifica linea d’uscita. L’associazione consiste nell’attivare (portare allo stato logico I) la linea d’interesse lasciando tutte le altre allo stato logico 0.

Ragionando in modo analogo a quanto fatto per i codificatori, supponiamo di voler realizzare un decodificatore 2-a-4; in sostanza vogliamo che per ogni codice binario presente sulle linee d’ingresso si attivi una delle 22=4 linee d’uscita.

Realizziamo allora la nostra tabella della verità:

	i0
	i1
	u0
	u1
	u2
	u3

	0
	0
	I
	0
	0
	0

	0
	I
	0
	I
	0
	0

	I
	0
	0
	0
	I
	0

	I
	I
	0
	0
	0
	I

Analizzando con attenzione questa tabella si nota che ogni linea d’uscita ha un solo I e tutti 0. Questo significa che la sua forma minterminale è molto semplice perchè costituita da un solo mintermine. Da ciò si evince che ogni uscita è realizzata da una rete combinatoria il cui scopo è quello di “riconoscere” la presenza di un determinato mintermine. In altre parole, l’uscita u0 deve passare al livello logico I solo quando sugli ingressi è posto il codice i0=0 i1=0. Tale rete è ovviamente una parta AND i cui ingressi sono negati (complementati).

Forma minterminale di u0 (u0 = (i0 · (i1
La rete combinatoria relativa è :

[image: image3.wmf]i

0

i

1

u

0

Analogo sarà il discorso per le altre uscite. Se ora decidiamo di rappresentare graficamente una porta AND ad n ingressi nel modo seguente:

[image: image4.wmf]Linee

d'ingresso

AND

delle

linee

d'ingresso

allora la rete combinatoria che realizza la tabella della verità appena mostrata sarà:

	(i0
	i0
	(i1
	i1
	

	(
	
	(
	
	u0

	(
	
	
	(
	u1

	
	(
	(
	
	u2

	
	(
	
	(
	u3

Decodificatore 2-a-4

(si consideri che le linee (i0 e (i1 sono ricavate internamente complementando le due linee d’ingresso)

Transcodificatori e memorie ROM

Prima di tutto, per semplificare le rappresentazioni grafiche, d’ora in avanti rappresenteremo generici codificatori e decodificatori nel modo seguente:

[image: image5.wmf]C

O

D

[image: image6.wmf]D

E

C

Le frecce con la barra traversa indicano la presenza di più linee di segnalazione.

Consideriamo di avere a disposizione un dec. D n-a-m e un cod. C m-a-k. Notate il fatto che il numero delle linee d’uscita di D sono pari a quelle d’entrata di C. Se allora un decodificatore attiva una sola, ben determinata, linea d’uscita per ogni distinto codice che si presenti in ingresso e il codificatore restituisce un codice distinto per ogni singola linea d’ingresso attivata singolarmente, è facile pensare che concatenando le uscite di D con gli ingressi di C si ottiene un transcodificatore cioè una rete in grado di convertire dalle “parole” di un codice a quelle di un altro codice.

Vediamo un esempio di applicazione.

Esiste un componente elettronico chiamato display a 7 segmenti.

[image: image7.wmf]S

0

S

5

S

1

S

4

S

2

S

3

S

6

Punto

Alimentando correttamente gruppi di led Si (un led è un dispositivo luminoso) è possibile vedere rappresentate le cifre da 0 a 9 ed alcune lettere dell’alfabeto. Per esempio, volendo vedere raffigurato un tre basterà far illuminare i segmenti S0, S1, S2 ed S3.

Il dispositivo ha in ingresso sette linee una per ciascun segmento che può essere acceso.

La tabella di verità per comandare questo componente è la seguente:

	
	s6
	S5
	S4
	S3
	S2
	S1
	S0

	0
	0
	1
	1
	1
	1
	1
	1

	1
	0
	0
	0
	0
	1
	1
	0

	2
	1
	0
	1
	1
	0
	1
	1

	3
	1
	0
	0
	1
	1
	1
	1

	4
	1
	1
	0
	0
	1
	1
	0

	5
	1
	1
	0
	1
	1
	0
	1

	6
	1
	1
	1
	1
	1
	0
	1

	7
	0
	0
	0
	0
	1
	1
	1

	8
	1
	1
	1
	1
	1
	1
	1

	9
	1
	1
	0
	1
	1
	1
	1

	A
	1
	1
	1
	0
	1
	1
	1

	b
	1
	1
	1
	1
	1
	0
	0

	c
	1
	0
	1
	1
	0
	0
	0

	d
	1
	0
	1
	1
	1
	1
	0

	E
	1
	1
	1
	1
	0
	0
	1

	F
	1
	1
	1
	0
	0
	0
	1

Supponiamo di voler visualizzare il valore esadecimale rappresentato in binario dai livelli logici presenti su quattro linee di segnalazione, avendo preventivamente stabilito un ordinamento con peso tra queste ultime (linea LSD e MSD). Basterà allora costruire un decodificatore da codifica binaria a 4 linee d’ingresso e conseguentemente 16 linee d’uscita tale che si attivi la linea con indice pari al valore decimale del codice posto in ingresso. Per esempio supponiamo di avere in ingresso la segnalazione i0= 0 i1= 1 i2= 1 i3= 1 che equivale a 14(10). Ora il decodificatore porterà a livello logico I la linea d’uscita u14. Consideriamo ora un codificatore a 7 linee d’uscita 16 d’ingresso da collegare a quelle d’uscita del dec. Stabiliamo che esso realizzi la funzionalità della tabella qui accanto esposta. Il suo compito è “sentire” quale linea d’ingresso è attiva e porre in uscita, sulle sue 7 linee, il codice ad essa associato. Per esempio, se viene attivata la linea con indice 14 desidero avere in uscita il codice 1111001 così che, collegando un visualizzatore a sette segmenti sulle linee d’uscita del codificatore, potremo leggere la cifra “E” sul display corrispondente esadecimale di 14(10).

[image: image8.wmf]D

E

C

C

O

D

S

0

S

5

S

1

S

4

S

2

S

3

S

6

Punto

4

16

7

Qui di seguito è riportata la tabella della verità di questo dispositivo (comando per un visualizzatore a 7 segmenti).

INGRESSI

USCITE

	
	i0
	i1
	i2
	i3
	s6
	S5
	S4
	S3
	S2
	S1
	S0

	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1

	1
	1
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0

	2
	0
	1
	0
	0
	1
	0
	1
	1
	0
	1
	1

	3
	1
	1
	0
	0
	1
	0
	0
	1
	1
	1
	1

	4
	0
	0
	1
	0
	1
	1
	0
	0
	1
	1
	0

	5
	1
	0
	1
	0
	1
	1
	0
	1
	1
	0
	1

	6
	0
	1
	1
	0
	1
	1
	1
	1
	1
	0
	1

	7
	1
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1

	8
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1

	9
	1
	0
	0
	1
	1
	1
	0
	1
	1
	1
	1

	A
	0
	1
	0
	1
	1
	1
	1
	0
	1
	1
	1

	b
	1
	1
	0
	1
	1
	1
	1
	1
	1
	0
	0

	c
	0
	0
	1
	1
	1
	0
	1
	1
	0
	0
	0

	d
	1
	0
	1
	1
	1
	0
	1
	1
	1
	1
	0

	E
	0
	1
	1
	1
	1
	1
	1
	1
	0
	0
	1

	F
	1
	1
	1
	1
	1
	1
	1
	0
	0
	0
	1

Memorie ROM e PLA:

Collegando un decodificatore ad un codificatore otteniamo anche un interessante dispositivo. La funzionalità che otteniamo è quella di dare un codice in ingresso ed ottenere un’altro codice in uscita. La lunghezza di questi ultimi non è in alcuna realazione con quella dei codici in ingresso. Allora possiamo interpretare tale funzionamento in questo modo: ponendo un indirizzo binario in ingresso ottengo una parola binaria in uscita permanentemente associata a quell’indirizzo. Questo tipo di dispositivo è detto memoria ROM (Read Only Memory- memoria a sola lettura) una volta definite le reti interne del cod. e del dec. è possibile solo leggere i valori associati agli indirizzi e non modificarli. E’ interessante notare anche come una ROM possa essere vista come un modulo combinatorio universale ad uscita multipla. Infatti le uscite del dec. rappresentano ciascuna un particolare mintermine delle linee d’ingresso (rivedere la realizzazione interna del dec.) e il cod. esegue l’OR tra gruppi di queste (realizza una funzione in forma canonica SOP!).

Noi sappiamo che, in generale, la forma canonica SOP di una funzione impiega più porte logiche rispetto alla relativa forma SOP minimale. Per realizzare quindi dei moduli combinatori universali ad uscita multipla (cioè che realizzano più funzioni di commutazione contemporaneamente, una su ogni singola uscita) si può utilizzare un altro dispositivo detto PLA. La sua caratteristica fondamentale, che lo distingue da una ROM, è che il suo primo stadio (che nella ROM è un dec. completo generante mintermini delle linee d’ingresso) effettua tutti e soli i termini prodotto (non necessariamente mintermini) necessari alla realizzazione delle funzioni desiderate (due o più funzioni posso condividere lo stesso termine prodotto!).

Tutti zero nelle caselle vuote

Tutti zero nelle caselle vuote

PAGE

_1070720402.bin

_1070780829.bin

_1070784621.bin

_1070873149.bin

_1070780797.bin

_1070702641.bin

_1070719833.bin

_1070699652.bin

