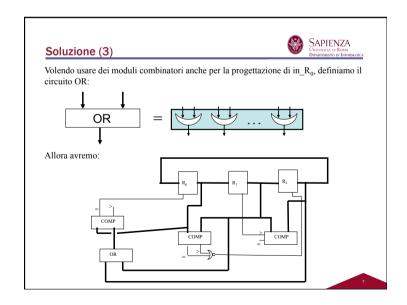


Si progetti un sistema di trasferimento fra i registri R₀, R₁ ed R₂ tale che:


- R_0 viene portato in R_1 se $R_1 > R_2$;
- R_1 viene portato in R_2 se $R_0 < R_1$;
- R_2 viene portato in R_0 se $R_0=R_1\mid R_2$ (dove \mid indica l'OR bit a bit). Si utilizzino nel progetto moduli combinatori noti (per esempio, ADD, CMP, ...)

SOLUZIONE:

La rete di interconnessione si realizza mettendo insieme tre schemi di trasferimento 1-a-1:

Soluzione (1) Bisogna poi progettate la parte circuitale che permette di ottenere i valori dei segnali di controllo in R_0 , in R_1 e in R_2 . Le condizioni poste per ottenere i primi due trasferimenti suggeriscono di utilizzare le uscite di due comparatori:

Soluzione (2)

Per progettare la parte combinatoria che permette di ottenere in_ R_0 seguiamo il metodo di sintesi visto per le reti combinatorie. Siano $x_1, \dots x_k, y_1, \dots y_k$ e $z_1, \dots z_k$ i bit contenuti in R_0 , R_1 ed R_2 rispettivamente. Ovviamente, l'uguaglianza at a R_0 e l'OR bit a bit tra R_1 ed R_2 si ottiene verificando l'uguaglianza bit a bit; pertanto, stendiamo la tabella di verità che ci permette di trovare la funzione c_1 tale che c_1 = 1 se e solo se x_1 = y_1 OR z_1 :

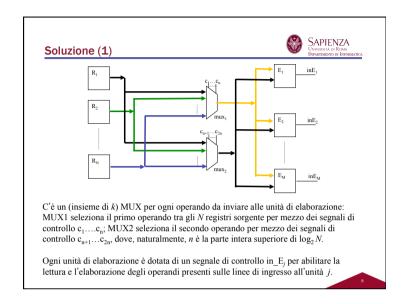
\mathbf{x}_{i}	\mathbf{y}_{i}	\mathbf{z}_{i}	c _i
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

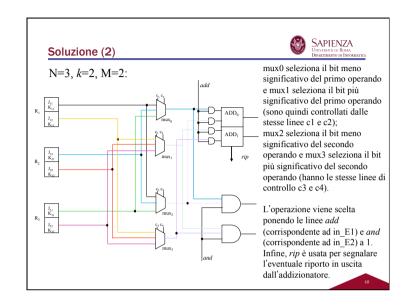
Dalla mappa di Karnaugh si ottiene la seguente espressione per c_i :

$$c_i = \overline{x}_i \overline{y}_i \overline{z}_i + x_i (y_i + z_i)$$

Mettendo in AND tutte le condizioni c_i ottenute con il metodo appena illustrato, si ottiene la condizione in R_0 .

Esempio 3


Progettare una rete di interconnessione "molti-molti" che consenta di caricare il contenuto di 2 fra N registri $R_1...R_N$ da k bit su 1 fra M dispositivi di elaborazione $E_1....E_M$ a due ingressi (la comunicazione avviene fra 2 su N sorgenti ed 1 su M destinazioni).


Disegnare lo schema a blocchi evidenziando tutti i segnali di controllo necessari per:

- selezionare 2 fra gli N registri sorgente (ovvero i due operandi);
- convogliare i 2 operandi in ingresso ad uno fra gli *M* dispositivi di elaborazione

Disegnare poi lo schema circuitale (quindi con tutti i dettagli fino al livello di FF, porte logiche, numero e ruolo dei segnali di controllo necessari) per il caso di:

- 3 registri sorgente a due bit (N=3, k=2), con FF di tipo JK;
- 2 dispositivi destinazione (M=2), di cui uno sia un sommatore aritmetico e l'altro un circuito logico che esegua l'AND bit a bit fra i due registri sorgente selezionati.

