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Introduction  
 
In this project we want to propose the study of a particular type of data, ​time series​. Our goal is to                     
predict data about the spread of the COVID-19 in Italy, and compare the predictions with the actual                 
numbers. We used data available about the COVID-19 and also other informations that we thought               
to be relevant with respect to the spread.  
Different solutions are developed using three main models specific for time series. 
Solutions are different about data sources, models and type of approach. 
The results from the different models are then compared to see which one could predict better                
among the others. 
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1. Time series 
Time series data are series indexed by a temporal order. A simple example can be the                
measurement of the temperatures during a certain period of time, for example a day or a month. A                  
complete definition is: 
 

An ordered sequence of values of a variable at equally spaced time intervals  1

 
These series can be represented by a line chart where on the y-axis we can find the value of the                    
entity that we are measuring that can be discrete or continuous, and on the x-axis we can find the                   
temporal interval, which is discrete. In this way we can see how the value changes during a                 
temporal period. The data can be visualized like in the following image . 2

 

 
Fig.1 Example of Temperature time serie 

 
A main application on this kind of data is to try to understand the model that drive the data to                    
forecast a specific value in a specific date or time period. The following image show the an                 
example of forecasting based on the previous history of the data. 

1 ​https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc41.htm  
2 ​https://medium.com/@llmkhoa511/time-series-analysis-and-weather-forecast-in-python-e80b664c7f71  
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Fig.2 Example of forecast based on data history 

 
When we analyse a time series we need to take care also of three main aspects: 

● stationary​: the statistical properties of a time series do not change over time, this means it                
have constant mean and variance during time. This aspect is very important because             
non-stationary data, as a rule, are unpredictable and cannot be modeled or forecasted. A              
prediction on a non stationary series could produce a relationship between two variables,             
but in reality they are not related together.  

● autocorrelation​: when a time series is linearly related to a lagged version of itself. An               
example could be that observed data in a specific time and the next 24h are related togher 

 

 
Fig. 3 Example of autocorrelation 

 
On the above image is showed how the first data is related to the data in the next 24h.                   
When we work with time series is important to be sure to not have autocorrelation between                
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data, for example because some models like LSTM basic assumption is that there is no               3

autocorrelation to avoid overfitting 
● seasonality​: refers to periodic fluctuations. This information can also be deducted from the             

autocorrelation. An example is the number of products sold by Amazon during the holidays.              
We can observe how during the christmas holiday the products sold increase, and this              
happen every year. Seasonal adjustment is the process of estimating and then removing             
from a time series influences that are systematic and calendar related. Observed data             
needs to be seasonally adjusted as seasonal effects can conceal both the true underlying              
movement in the series, as well as certain non-seasonal characteristics which may be of              
interest to analysts. 

 
A time series can be exploded in four main components: 

1. Trend​: The trend shows the general tendency of the data to increase or decrease during a                
long period of time. It can be linear or nonlinear. It is defined as long term movement in a                   
time serie. 

2. Seasonality​: The repeating short-term cycle in the series 
3. Noise​: The random variations in the series. These fluctuations are unforeseen,           

uncontrollable, unpredictable, and are erratic 

A mathematical model can be  

 f (t)yt =   

where t is the instat time that we are observing and y the value at that time. Considering the three                    
elements defined there are two models 

● Additive: . where is the trend, is the seasonality, and the random T  S Ryt =  t +  t +  t   T     S      R    
contribution of noise 

● Multiplicative: T S Ryt =  t *  t *  t  

Another distinction in time series could be in terms of number of variables that play a role in the                   
model that we want to train. For this reason, we can distinguish time series as: 

● univariate 
● multivariate 

 

  

3 ​https://medium.com/@dganais/autocorrelation-in-time-series-c870e87e8a65  
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1.1 Univariate time series 
The term "univariate time series" refers to a time series that consists of single (scalar) observations                
recorded sequentially over time increments. 
In other words, is a series with a single time-dependent variable. This time serie has just two                 
columns, one for the time series variables and the other one for the temporal index. An example is                  
shown below . 4

 
 
 

 
Fig. 4 Example of univariate time series 

 
In the previous example, the time serie is about advertising spend during a certain period of time.                 
The model try to use the previous history of this only column to try to forecast new values. 
 

1.2 Multivariate time series 
A multivariate time series has more than one time-dependent variables. Each variable depends             
both on its past values and on some dependencies with other variables: these dependencies are               
used for forecasting future values. The following table show an example of dataset about air               
pollution forecasting, with multiple columns for different values measured .  5

  
 

     ​date                                 pollution   dew    temp   press   wnd_dir   wnd_spd  snow  rain 
2010-01-02 00:00:00 129.0    -16   -4.0    1020.0 SE    1.79        0     0 
2010-01-02 01:00:00 148.0    -15   -4.0    1020.0 SE    2.68        0     0 
2010-01-02 02:00:00 159.0    -11   -5.0    1021.0 SE    3.57        0     0 
2010-01-02 03:00:00 181.0    -7     -5.0    1022.0 SE    5.36        1     0 
2010-01-02 04:00:00 138.0    -7     -5.0    1022.0 SE    6.25        2     0 

 
 
In this case the value of the variable that we want to forecast is based not only on his past values                     
but also on the past values of the other variables. We could predict the next value of pollution try to                    
looking for a pattern in the history data of all the variables in the table.  

4 ​https://towardsdatascience.com/a-quick-start-of-time-series-forecasting-with-a-practical-example-using-fb-prophet-31c4447a2274 
5 ​https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/  
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2. Dataset 
Data is built putting together informations about Coronavirus spread, people mobility and            
demographic data: we look for a correlation between these informations in order to get predictions               
about virus. 

2.1 COVID-19 dataset 
Data about COVID-19 is collected by “​Sito del Dipartimento della Protezione Civile - Emergenza              
Coronavirus​” and is uploaded into its github repository . 6

It represents time series, each analyzing a different trend in a national or regional context on daily                 
bases. 
Our focus is on the daily prediction of the amount of current positive cases in that day. 
 
We used both national and regional data, but their data format is the same. 

2.1.1 National data format 
This dataset contains 16 columns, each described in the following table: 
 
Column Name Description Format Example 

data Date of notification 
YYYY-MM-DD HH:MM:SS 
(ISO 8601) Ora italiana 

2020-03-05 
12:15:45 

stato Country of reference XYZ (ISO 3166-1 alpha-3) ITA 

ricoverati_con_sintomi Hospitalised patients with symptoms Number 3 

terapia_intensiva Intensive Care Number 3 

totale_ospedalizzati Total hospitalised patients Number 3 

isolamento_domiciliare Home confinement Number 3 

totale_positivi 

Total amount of current positive 
cases (Hospitalised patients + 
Home confinement) Number 3 

variazione_totale_positivi 

News amount of current positive 
cases (totale_positivi current day - 
totale_positivi previous day) Number 3 

nuovi_positivi 

News amount of current positive 
cases (totale_casi current day - 
totale_casi previous day) Number 3 

dimessi_guariti Recovered Number 3 

deceduti Death Number 3 

totale_casi Total amount of positive cases Number 3 

tamponi Tests performed Number 3 

casi_testati Total number of people tested Number 3 

6 ​https://github.com/pcm-dpc/COVID-19 
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note_it 
Notes in italian language (separated 
by ;) Text pd-IT-000 

note_en 
Notes in english language 
(separated by ;) Text pd-EN-000 

 
 
In the national case, our dataset contains  rows, where  is the number of days since the firstn n  
data acquisition, that is on 24-05-2020. Some rows are shown in this image: 
 

 
 
 

2.1.2 Regional data format 
This dataset contains 20 columns, the only addictions with respect to the national one are region 
identifiers: 
 
Column Name Description Format Example 

data Date of notification 
YYYY-MM-DDTHH:MM:SS 
(ISO 8601) Ora italiana 

2020-03-05 
12:15:45 

stato Country of reference XYZ (ISO 3166-1 alpha-3) ITA 

codice_regione Code of the Region (ISTAT 2019) Number 13 

denominazione_regione Name of the Region Text Abruzzo 

lat Latitude WGS84 109861.37.00 

long Longitude WGS84 1174012.31.00 

ricoverati_con_sintomi Hospitalised patients with symptoms Number 3 

terapia_intensiva Intensive Care Number 3 

totale_ospedalizzati Total hospitalised patients Number 3 

isolamento_domiciliare Home confinement Number 3 

totale_positivi 

Total amount of current positive 
cases (Hospitalised patients + 
Home confinement) Number 3 
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variazione_totale_positivi 

News amount of current positive 
cases (totale_positivi current day - 
totale_positivi previous day) Number 3 

nuovi_positivi 

News amount of current positive 
cases (totale_casi current day - 
totale_casi previous day) Number 3 

dimessi_guariti Recovered Number 3 

deceduti Death Number 3 

totale_casi Total amount of positive cases Number 3 

tamponi Tests performed Number 3 

casi_testati Total number of people tested Number 3 

note_it 
Notes in italian language (separated 
by ;) Text pd-IT-000 

note_en 
Notes in english language 
(separated by ;) Text pd-EN-000 

 
 
In this case, the dataset contains  rows, where  is the number of days since the first datan * R n  
acquisition, that is on 24-02-2020, and  is the number of regions. This means that in this0R = 2  
situation it has more rows for each day due to each single region informations. 
 

 
 

2.2 Mobility dataset 
Google  and Apple  make mobility data available to aid COVID-19 analysis. We thought this kind of 7 8

data could be related to the virus spread, so we decided to add these informations in our analysis. 
Although the two different datasets have different formats, they are both time series expressing              
changes in users mobility during these months. In particular, they reflect the effects of lockdown in                
different ways. 

7 ​https://www.google.com/covid19/mobility/ 
8 ​https://www.apple.com/covid19/mobility 
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2.2.1 Google Mobility data 
Each Country Mobility Report dataset is presented by location and highlights the percent change in               
visits to places like grocery stores and parks within a geographic area. In our case, we only used                  
dataset regarding Italy and its regions. 
 
These datasets show how visits and length of stay at different places change compared to a                
baseline. Google calculated these changes using the same kind of aggregated and anonymized             
data used to show popular times for places in Google Maps. 
Changes for each day since February 24th are compared to a baseline value for that day of the                  
week, and places are: 
 

● Grocery & pharmacy​: Mobility trends for places like grocery markets, food warehouses,            
farmers markets, specialty food shops, drug stores, and pharmacies. 
 

● Parks​: Mobility trends for places like local parks, national parks, public beaches, marinas,             

dog parks, plazas, and public gardens. 

 

● Transit stations​: Mobility trends for places like public transport hubs such as subway, bus,              

and train stations. 

 

● Retail & recreation​: Mobility trends for places like restaurants, cafes, shopping centers,            

theme parks, museums, libraries, and movie theaters. 

 

● Residential​: Mobility trends for places of residence. 

 

● Workplaces​: Mobility trends for places of work. 

 

2.2.2 Apple Mobility data 
This dataset represents percent change of the number of driving directions requests for each              
country, subregion or city with respect to January 13th informations. Also in this case we selected                
only the Italian data subset. 
 
Mobility data are encoded in 3 kind of transportation types: 
 

● Driving 
● Walking 
● Transit 
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2.3 Demographic dataset 
This dataset contains scalar information about population in each Italian region. It is built using               
data from ISTAT  and Ministero della Salute  websites. 9 10

This dataset contains 20 instances, one for each region, and 4 columns: 
 

● Name of region 
● Region population 
● Population density 
● Number of hospital beds 

 
We assumed these kind of information to be relevant in our case study. 
 

  

9 ​http://dati.istat.it/ 
10 ​http://www.dati.salute.gov.it/dati/homeDataset.jsp 
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3. Models 
In this section we will say which model we decided to use and why we chosen it.  
To reach our goal we focused our study on three models: 
 

● VAR, Vector autoregression 
● LSTM, Long Short Term Memory networks 
● ConvLSTM 

 
The presented models fit well on the kind of context we want to study. All the models allow us to                    
make a forecasting of the variable that we want to observe on a specific future period of time                  
based on the previous history of all the variables. There are differents other models to make time                 
series forecasting, but non all support multivariate forecasting, an example can be Prophet             
developed by Facebook, that allow to make predictions only on univariate case. This is another               
reason why we decided to work with this kind of models. 

3.1 VAR 
VAR, Vector AutoRegression, is a generalization of the AR (autoregression) model, that allow to              
work with multiple parallel time series, in our case a multivariate time series. The predictors are                
nothing but the lags (time delayed value) of the series. 
It can be used when each time series influence the other, to try to look for the relationship that                   
connect the variable togher. In our specific case, we start from the basic assumption that mobility                
data, number of new cases of positives and number of swabs are related together and they                
influence each other. 
To use this model we need: 
 

1. At least two time series 
2. The time series should influence each other. 

The relationship that occur is bi-direction this means that is not that only a variable influence                
another, but that they influence each other. 

In VAR each variable is a linear function of his values and the past value of the other variables. In                    
other words we can think variable with their history in past like follow. 
 

 
Fig. Tabular representation of two variable in VAR  11

11 ​https://www.analyticsvidhya.com/blog/2018/09/multivariate-time-series-guide-forecasting-modeling-python-codes/  
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In the previous example we can notice how in the first table, the variable y1 at time t is calculated                    
as the linear function of itself at time t-1 and the variable y2 at time t-1. The same is for the variable                      
y2. More in general we could thing to multiple columns, where for example another variable y3 can                 
be calculated as linear function of itself at time t-1, and also y2 and y1 at time t-1.  
When we express a variable w.r.t the other we have also to consider the constant terms for each                  
variables, the error associated at time t-1 and the coefficient related to each state of the variables                 
at time t-1. This values comes from the AR model, where instead of considering the single serie,                 
we consider multiple series. 
An important aspect of VAR is that it is able to figure out the relationship that occurs between the                   
different variables. 
When we work with this kind of model is important to check if each time series is stationary and if                    
not it need to be made stationary. We will see how we have ensured this propriety for VAR in the                    
next chapter. 
  

3.2 LSTM 
LSTM Neural Networks , which stand for Long Short-Term Memory, are a particular type of              12

Recurrent Neural Networks (RNN). 
 
Generally, RNNs’ connections between nodes form a directed graph along a temporal sequence.             
This allows it to exhibit temporal dynamic behavior, using their internal state (memory) to process               
variable length sequences of inputs. 
 
They are networks with loops in them, allowing information to persist. 
 
 

 
 
In the above diagram, a chunk of neural network, A, looks at some input and outputs a value              xi      

A loop allows information to be passed from one step of the network to the next..hi  
 
RRN can be thought of as multiple copies of the same network, each passing a message to a                  
successor. 
 
In standard RNNs, this repeating module have a very simple structure, such as a single tanh layer. 
 

12 ​https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
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The problem is that it’s possible that gap between the relevant information and the point where it is                  
needed becomes very large. 
 

 
 
Unfortunately, as that gap grows, RNNs become unable to learn to connect the information. 
This problem is known as “short-term memory”, and is caused by the infamous vanishing gradient               
problem: as the RNN processes more steps, it has troubles retaining information from previous              
steps. Short-Term memory and the vanishing gradient is due to the nature of back-propagation. 
 
The gradient is the value used to adjust the networks internal weights, allowing the network to                
learn: the bigger the gradient, the bigger the adjustments and vice versa.  
Here is where the problem lies. When doing back propagation, each node in a layer calculates it’s                 
gradient with respect to the effects of the gradients in the layer before it: if the adjustments to the                   
layers before it is small, then adjustments to the current layer will be even smaller. 
 
That causes gradients to exponentially shrink as it back propagates down. The earlier layers fail to                
do any learning as the internal weights are barely being adjusted due to extremely small gradients.                
And that’s the vanishing gradient problem. 
 
You can think of each time step in a recurrent neural network as a layer. To train a recurrent neural                    
network, you use an application of back-propagation called back-propagation through time. The            
gradient values will exponentially shrink as it propagates through each time step. 
 

13 



LSTMs, a special kind of RNN, solve this problem thanks to their ability of learning long-term                
dependencies. 
All recurrent neural networks have the form of a chain of repeating modules of neural network. The                 
only difference between classic RNNs is the structure of the repeating module: instead of having a                
single neural network layer, there are four, interacting in a very special way. 

 

 
 
In the above diagram, each line carries an entire vector, from the output of one node to the inputs                   
of others. The pink circles represent pointwise operations, like vector addition, while the yellow              
boxes are learned neural network layers.  
Lines merging denote vector concatenation, while a line forking denote its content being copied              
and the copies going to different locations. 

 
 
The core behind LSTM is the cell state​, the         
horizontal line running through the top of the        
diagram. It runs straight down the entire chain,        
with only some minor linear interactions. It’s       
very easy for information to just flow along it         
unchanged. 
 
 
 

The LSTM have the ability to remove or add information to the cell state, carefully regulated by                 
structures called gates. 
 
Gates are a way to optionally let information through. They are composed out of a sigmoid neural                 
net layer and a pointwise multiplication operation; sigmoid layer outputs numbers between zero             
and one, describing how much of each component should be let through. A value of zero means                 
“do not transmit”, while a value of one means “transmit everything!”. 
 
Instead, to overcome the vanishing gradient problem, we need a function whose second derivative              
can sustain for a long range before going to zero. ​tanh ​is a suitable function with the above                  
property. 

14 



 
An LSTM has three of these gates, to protect and control the cell state (in the following equations,                  

 and  are weights and biases for layer ):W k bk k  
 

1. Forget Gate​: this gate decides what information should be thrown away or kept.             
Information from the previous hidden state and information from the current input is      ht−1       xt   
passed through the sigmoid function. 

values (one for each number in cell state ) come out between 0 and 1: the closer to f t         C t−1           
0 means to forget, and the closer to 1 means to keep.           

 
The next step is to decide what new information we’re going to store in the cell state .C t  
 

2. Input Gate​: to update the cell state, it requires two steps. First, we pass the previous                
hidden state and current input into a sigmoid layer. The result decides which  ht−1     xt        it    
values will be updated by transforming the values to be between 0 and 1 (0 means not                 
important, and 1 means important).  
Next, we also pass the hidden state and current input into the tanh layer to squish       ht−1     xt        
values between -1 and 1, creating a vector of new candidate values, , that could be             C˜ t      
added to the state.  
Then we multiply the sigmoid output with the tanh output ( ): the first will decide which          it *  C˜ t       
information is important to keep from the second.       

 
 
Now we should have enough information to calculate the new cell state .C t   
First, the old cell state gets pointwise multiplied by the forget vector , forgetting the     C t−1         f t     
things we decided to forget earlier ( ).f t * C t−1   
Then we take the output from the input gate  and do a pointwise additionit *  C˜ t   
( ) which updates the cell state to new values that the neural network findsf t * C t−1 + it *  C˜ t               
relevant, giving us our new cell state .C t  

15 



 
 
Finally, we need to decide what we’re going to output. 
 

3. Output Gate​: the output of the cell will be based on our cell state , but will be a filtered              C t       
version. First, we pass the previous hidden state and current input into a sigmoid        ht−1     xt     
layer which decides what parts of the cell state we’re going to output ( ). Then, we put the             ot      
cell state through tanh (to push the values to be between −1 and 1) and multiply it by  C t                  
the output of the sigmoid gate , so that we only output the parts we decided to. So      ot             

.anh(C )ht = ot * t t  
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3.3 ConvLSTM 
This model represents a combination of LSTM model and the CNN. The main difference between               
this model and an LSTM model is that even if the layers are recurrent layers, internal matrix                 
multiplications are done using convolution, directly as part of reading input into the LSTM units               
themselves. 
 
Like for LSTMs, ConvLSTM supports multiple parallel input sequences for multivariate inputs. 
In the model structure the CNN is as an encoder to learn features from sub-sequences of input                 
data which are provided as time steps to an LSTM. 
This is how the cell of a layer is made: 

 
Fig. Cell of ConvLSTM  13

  

13 ​https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7  
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4. Data preprocessing 
In this section we are going to discuss all the data pre-processing and manipulation that we have                 
to do to work with this kind of time series. 
Mainly we will discuss three different manipulation for the three different model that we have               
developed. This is because, for example the VAR model requires some analysis that the other               
model doesn’t require.  
For this reason this chapter will be divided in: 
 

● General data preprocessing 
● VAR data preprocessing 
● LSTM and ConvLSTM data preprocessing 
● LSTM with demographic data preprocessing 

 
To develop our solution we have decided to use Google Colab, which has helped us to work                 
sharing easily all code and comments on the solution proposed. 

4.1 General preprocessing 

4.1.1 Merge 
The general structure of dataframe that we used to make forecasting was built merging together               
the datasets previously described.  
The first operation we did was a merge between datasets based on date, as reported in this code: 
 

 

 
where ​national_covid ​is the dataset about COVID-19 daily and total cases for recovered, swabs,              
deaths and positives; ​national_mobility_google ​is ​the dataset with mobility data provided by            
Google and ​national_mobility_apple ​is the dataset with mobility provided by Apple.  

4.1.2 Features selection and null values drop 
From this dataframe we dropped some columns and saved just the one that we wanted to analyse,                 
that are: 
 

[​'nuovi_positivi'​, ​'tamponi'​, ​'grocery_and_pharmacy'​, 
'retail_and_recreation'​, ​'parks'​, ​'transit_stations'​, ​'workplaces'​, 

'residential'​, ​'driving'​, ​'transit'​, ​'walking'​] 
 

Then we created a new column, ​‘nuovi_tamponi’​, that represents the daily number of swabs. This               
is important because the daily number of swabs strongly affects the daily number of positive cases                
detected. This column was created thanks to the ​diff()​ function: 
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After this, we handled null-values calling ​fillna() ​method and using as parameter ​method='ffill'​:             
forward-fill propagates the last observed non-null value forward until another non-null value is             
encountered​. 

 
 
After these operations, our time series are: 
 

 

4.1.3 Bias 
We realized that our time series were affected by a bias found every 7 days, probably due to the                   
weekend data, when people stay at home and movements are less than during the week.  
To get rid of this bias, we used the method of moving average. This is used to analyze time-series                   
by calculating averages of different subsets of the complete dataset. This allow us to get smoothed                
data and reduce the anomalies.  
Smoothing was computed for each time series taking the mean over a window using the ​rolling()                
function, with ​window​ ​parameter equals to ​7 days​. 
After this operation, our time series are: 

19 
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In our work, we compared predictions for both smoothed and non-smoothed time series. 
 

4.1.4 Normalization 
Another important step was to normalize data. This is a necessary operation because when we               
have to work with multiple series and each one has its own range of values is necessary to                  
normalize in a common way so that all the values are in a generic range, useful for the model to try                     
to figure out the pattern that create the relationship between all the variables. We used a                
MaxMinScaler ​in [0,1] to scale the values as follows: 
 

 
 
This scaler takes each time series and scale all the values between 0 and 1 based on the the min                    
and max of the series itself. 
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4.2 VAR data pre-processing 
As we said before, the VAR model tries to figure out which is the pattern between all the variables                   
that we are considering; but to make VAR works properly, we need all series to be stationary. 
The first data analysis we have to do is to check if the main basis of ​Vector AutoRegression is                   
satisfied: checking if there is a relationship between the different time series.  
 
To do that we can use the ​Granger’s Causality Test​: this test verifies the null hypothesis that the                  
past values of time series do not cause the other series. The result of this test is the p-value. If it is                      
less than 0.05 we can reject the null hypothesis for which a series does not cause on other.  
 
We need to do this test for all the series to see the relationship between them all. 
The code below allowed us to check this property : 14

 

 
 
The result that we got is: 
 

 
 

As we can see each time series is compared with all the other, like in the above tabular notation.                   
We can notice that p-value of ​transit_station_y ​and ​retail_and_recreation_x​, is higher than 0.05:             
this means that for this two series there is no correlation. But for us this doesn’t create any problem                   
because we are sure that all the time series influence the ‘nuovi_positivi’, as we can see from the                  
table where all the p-values are less than 0.05. 
 
Now the last check to do is about stationarity, an important aspect for time series forecasting. If                 
there a series is not stationary we cannot make any future assumption.  
To check the stationarity we used ​ADF Test​: this test was suggested better than the others on all                  
the references that we found, so we decided to use it too. 

14 ​https://www.machinelearningplus.com/time-series/vector-autoregression-examples-python/  
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This operation tests that the null hypothesis that a unit root is present, where unit root is a feature                   
of some stochastic process that can cause problems in statistical inference . 15

The null hypothesis of the test is that the time series can be represented by a unit root, that it is not                      
stationary. In Python this test can be done by importing ​adfuller ​from ​statsmodel package​. 
 

  
  
Here we are performing the ADF test and getting back the p-value: if this value is less than the                   
significance standard of 0.05, we reject the null-hypothesis otherwise we accept it, meaning that              
the series is non stationary. 
  
It turns out that some series are not stationary, and to make them so we use the ​differencing                  
method​: differencing can help stabilize the mean of the time series by removing changes in the                
level of a time series, and so eliminating (or reducing) trend and seasonality . 16

Differencing is performed by subtracting the previous observation from the current observation. 
 

difference(t) = observation(t) - observation(t-1) 
 
We could apply this operation thanks to ​diff()​ ​function. 
 

 
 

After two differencing operations we got not all the time series stationary so, we decided to apply                 
the ​MinMaxScaler​. 
 

 
 

We applied the ​MinMaxScaler ​only on the training set because predictions returned by the model 
are converted back to original range and compared with the test set, not scaled. 
 

15 ​https://en.wikipedia.org/wiki/Augmented_Dickey%E2%80%93Fuller_test  
16 ​https://machinelearningmastery.com/remove-trends-seasonality-difference-transform-python/  
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In this case, repeating the same operations described before provides all series to be stationary               
except for ​'parks​', ​'driving'​, ​'transit' and ​'walking' features, still non-stationary: we decided to drop              
them. 
 
 
 
This is the result of stationarity test at start and at the end: 
 

  

Stationarity before differencing Stationarity after 2 differentiations 
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4.3 LSTM and ConvLSTM data preprocessing 
 
The first step is to prepare our dataset for the LSTM; in this case our dataset is built on a                    
national-basis. 
This involves framing the dataset as a supervised learning problem, modeled as predicting number              
of infected people in future days given measurements and mobility data at previous days. 
 
The dataset is transformed in order to have ​N input variables (input series) and ​one ​output variable                 
(number of infections). The input variables are represented by mobility data and infected people in               
the previous ​k days, and the output variable represents the number of infected people in the                
following day. 
 
 

 var1(t-1) var2(t-1) var3(t-1) var4(t-1) var5(t-1) var6(t-1) var7(t-1) var8(t-1) var1(t) 

0 0.12977 0.35294 0.24590 0.52727 0.66666 0.00229 0.0 0.0 0.14889 

1 0.14889 0.36764 0.24590 0.52727 0.66666 0.00381 0.0 0.0 0.15996 

2 0.15996 0.42647 0.22950 0.54545 0.66666 0.00533 0.0 0.0 0.18209 

3 0.18209 0.48529 0.22950 0.56363 0.66666 0.00839 0.03703 0.0 0.13883 

4 0.13883 0.48529 0.22950 0.56363 0.66666 0.00991 0.07407 0.0 0.10965 

 
 
In this example we want to predict the future (t) value of ​var1 given its previous (t-1) ​values and                   
other variables ​(var2, ... , var8)​. 
This means we have 8 input features ​(var1(t-1)​, …, ​var8(t-1)​) and one output feature (​var1(t)​). In                
this case the number of previous days (temporal window ​k​) to analyze is just one ​(t-1)​. 
 
Each row of this new dataset is a ​sample​, composed by one ​timestep ​in the past and 8 ​features​,                   
giving one value as output for the next timestep. 
As you can notice, the ​var1(t) value for the first row corresponds to ​var1(t-1) value of the following                  
row: samples follow a sequential ordering. 
 
At this point, we must split the prepared dataset into train and test sets, and then split again the                   
train and test sets into input (​var1(t-1), …, var8(t-1)​) and output variables (​var1(t)​). 
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Train input: 

 var1(t-1) var2(t-1) var3(t-1) var4(t-1) var5(t-1) var6(t-1) var7(t-1) var8(t-1) 

0 0.12977 0.35294 0.24590 0.52727 0.66666 0.00229 0.0 0.0 

1 0.14889 0.36764 0.24590 0.52727 0.66666 0.00381 0.0 0.0 

2 0.15996 0.42647 0.22950 0.54545 0.66666 0.00533 0.0 0.0 

 
Train output: 

 var1(t) 

0 0.14889 

1 0.15996 

2 0.18209 

 
Test input: 

 var1(t-1) var2(t-1) var3(t-1) var4(t-1) var5(t-1) var6(t-1) var7(t-1) var8(t-1) 

3 0.18209 0.48529 0.22950 0.56363 0.66666 0.00839 0.03703 0.0 

4 0.13883 0.48529 0.22950 0.56363 0.66666 0.00991 0.07407 0.0 

 
Test output (groundtruth): 

 var1(t) 

3 0.13883 

4 0.10965 

 
 
Finally, the inputs are reshaped into the 3D format expected by LSTM, namely  
[samples, timesteps, features]​. 
 
For ConvLSTM, input shape must be 5D: 
[samples, subsequences, channels, timesteps, features] 
 
In this case, we used the complete dataframe: 
 

[​'nuovi_positivi'​, ​'nuovi_tamponi'​, ​'grocery_and_pharmacy'​, 
'retail_and_recreation'​, ​'parks'​, ​'transit_stations'​, ​'workplaces'​, 

'residential'​, ​'driving'​, ​'transit'​, ​'walking'​] 

 
In both LSTM and ConvLSTM we compared results from the smoothed time series (without the               
7-days bias) and the raw ones (no smooth). 
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4.4 LSTM data with demographic info preprocessing 
In this solution the time series dataset is built on a region-based approach, so that we have time                  
series specific for each Italian region.  
Time series is processed in the same way before, but now we have demographic data in addition:                 
this data encodes population, density of population and number of hospital beds for each specific               
region. 
 
To represent these information, we added a column to our previous transformed dataset containing              
the list of demographic features of the region to which time series data corresponds to. 
 

 var1(t-1) var2(t-1) var3(t-1) var4(t-1) var5(t-1) ... demo_info var1(t) 

0 0.12977 0.35294 0.24590 0.52727 0.66666 ... [pop, dens, hosp] 0.14889 

1 0.14889 0.36764 0.24590 0.52727 0.66666 ... [pop, dens, hosp] 0.15996 

2 0.15996 0.42647 0.22950 0.54545 0.66666 ... [pop, dens, hosp] 0.18209 

3 0.18209 0.48529 0.22950 0.56363 0.66666 ... [pop, dens, hosp] 0.13883 

4 0.13883 0.48529 0.22950 0.56363 0.66666 ... [pop, dens, hosp] 0.10965 

 
These scalar informations are passed through the network from a different input layer with respect               
to time series, then are analyzed and concatenated together in order to predict the future target                
value. 
 
In this scenario, our dataframe is: 
 

['nuovi_positivi'​, ​'nuovi_tamponi'​, ​'retail_and_recreation'​, 
'grocery_and_pharmacy'​, ​'parks'​, ​'transit_stations'​, ​'workplaces'​, 

'residential'​, ​'abitanti'​, ​'densità'​, ​'posti_letto'​] 
 

Also in this case we used both non smoothed and smoothed time series. 
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5. Train and predict 

5.1 VAR 
After we processed and analysed the data in the previous step, now we can fit the model. The VAR                   
model can be imported from the statsmodels in python: 
 

 
 
After that, we need to pass the data to the VAR model: 
 

 
 
The next step is the lag order selection and to fit the model. 
Lag selection methods allows us to find the best lag order to minimize the (out-of-sample) forecast                
error, where for lag we mean the number of past timesteps of the series the model must consider                  
during the fitting process. In our case we find out that the best value was 2. 
 
In fit operation we can set based on which criterion it has to select the best value of the lag. In this                      
case we fixed the maxlangs equals to four, and the criterion used is the ​Akaike information                
criterion ​(AIC) . “​Given a collection of models for the data, AIC estimates the quality of each                17

model, relative to each of the other models”​. It is used in model selection. 
 

fitted = model.fit(maxlags=​4​, ic=​'aic'​) 
 
This function returns as selected lag value 2. 
At this point we can forecast. We need to specify the value from which it has to start to predict and                     
the number of step in future to forecast. 
 

 
 
Now that we have our prediction, we must convert them to original format of our data, before the                  
application of differentiation and scaling operations. 
To invert the differentiating operation we need to consider how many times we have applied it. In                 
our case is two and using this method brings correctly-scaled data back. 

17 ​https://en.wikipedia.org/wiki/Akaike_information_criterion  
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This method renames all the time series with a suffix equals to “​_forecast​”: this is useful in the                  
plotting operation and evaluation phase. 
 
To invert the scaling, we can use the inverse operation available on the ​MinMaxScaler ​as follow: 
 

 
 
Here we are redefining a new dataframe with the structure of the original one and the value of the 
new data inverted. 
 
The last operation is just to plot data: 
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The curve of the ​nuovi_positivi​ is smoother because of the operation on moving average that we 
have done in preprocessing.  
Differently, if we had not performed that smoothing, the result was pretty worst. 
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5.2 LSTM 
We developed different kind of network architecture to check which returns the best predictions. 
 
As said before, our first scenario consists in the forecast of national-based time series, instead the                
second is focused on the regional time series. 
 
We used 2 different models: a simple one (​model6​) and one more complex (​model2​) 
 
 

● model6

 
 
 

● model2 

 
 
 
We also split our National and Regional analysis based on the smoothness of our time series:                
smoothed ​and ​non-smoothed​. 
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5.2.1 LSTM - National predictions 
 

SMOOTHED TIME SERIES 

MODEL6 ​(simpler) MODEL2 ​(more complex) 

Loss over epochs

 
 

Loss over epochs

 

 

Test RMSE: 181.655 Test RMSE: 615.956 

Forecast:

 

Forecast:
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NON-SMOOTHED TIME SERIES 

MODEL6 ​(simpler) MODEL2 ​(more complex) 

Loss over epochs

 

Loss over epochs

 

Test RMSE: 663.861 Test RMSE: 422.578 
Forecast: 

 

Forecast: 
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5.2.2 LSTM - Regional prediction 
In this case we tried to train a model on more data with respect to the National scenario: this                   
because we have more peculiar data, one dataset for each region. 
The idea is to develop a model that takes also in account demographic informations about  
one region and use them to forecast more precisely. 
 
Also in this case we used 2 different models: ​model6 ​(simpler) and ​model1 ​(more complex). 
Both models have 2 input branches, one for time series and one for scalar data (demographic                
info). Then we added a Concatenation layer to put together both scalar and temporal data in order                 
to make predictions. 
 

● Simple model (​model6​):

 
 

● More complex model (​model1​):
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SMOOTHED TIME SERIES 

MODEL6 ​(simpler) MODEL1 ​(more complex) 

Loss over epochs

 

Loss over epochs

 

Test RMSE (mean over 20 regions): 67.574 Test RMSE (mean over 20 regions): 26.937 

Forecast Lombardia:

 

Forecast Lombardia:

 

Forecast Umbria:

 

Forecast Umbria:

 

34 



Forecast Liguria:

 

Forecast Liguria:

 

Forecast Lazio:

 

Forecast Lazio:

 

Forecast Puglia:

 

Forecast Puglia:
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Forecast Veneto:

 

Forecast Veneto:

 

Forecast Emilia-Romagna:

 

Forecast Emilia-Romagna:

 

Forecast Piemonte:

 

Forecast Piemonte:
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Forecast Campania:

 

Forecast Campania:

 

Forecast Toscana:

 

Forecast Toscana:

 

Forecast Sicilia:

 

Forecast Sicilia:
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NON-SMOOTHED TIME SERIES 

MODEL6 ​(simpler) MODEL1 ​(more complex) 

Loss over epochs

 

Loss over epochs

 

Test RMSE: 132.694 Test RMSE: 97.850 

Forecast Lombardia:

 

Forecast Lombardia:

 

Forecast Umbria:

 

Forecast Umbria:
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Forecast Liguria:

 

Forecast Liguria:

 

Forecast Lazio:

 

Forecast Lazio:

 

Forecast Puglia:

 

Forecast Puglia:
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Forecast Veneto:

 

Forecast Veneto:

 

Forecast Emilia-Romagna:

 

Forecast Emilia-Romagna:

 

Forecast Piemonte:

 

Forecast Piemonte:
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Forecast Campania:

 

Forecast Campania:

 

Forecast Toscana:

 

Forecast Toscana:

 

Forecast Sicilia:

 

Forecast Sicilia:
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5.3 ConvLSTM 
With ConvLSTM, data are pre-processed in the same way as LSTM. Also model architecture is               
quite similar, with the only difference of using a ConvLSTM2D layer instead of a classic LSTM one. 
 
We used ConvLSTM in our National scenario, and after several trials with different architectures,              
we decided to present this one (​model6​): 
 

 
 

SMOOTHED TIME SERIES NON-SMOOTHED TIME SERIES 

Loss over epochs

 

Loss over epochs

Test RMSE: 197.863 Test RMSE: 406.724 

Forecast:

 

Forecast:
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6. Evaluation 
Differently from others cases of study, where for evaluating results of a model we can use methods                 
like ​k-fold​ to improve results generalization, in time series model this cannot be done.  
This because time series must follow a temporal order and splitting or mixing data will change the                 
meaning of the entire series. 
 
In this case, to evaluate the model we splitted the dataset in training and test, where test data are                   
compared to the forecasted values from the model on the same time interval, to see how much the                  
model was able to create a pattern based on the history of the time series defined in the training                   
set. 
 
The evaluation method is the same for all the models, and we used the ​Root Mean Squared Error                  
metric. 
 

 
 
We compute the ​MSE ​using the ​y_test​ set and ​y_forecast​ set. The result of this operation is 
passed to the ​sqrt ​function and it returns the ​RMSE​. 
 
These are the RMSEs for each model we trained. 

 

Model Context RMSE 
VAR  National 284,491 

ConvLSTM National 197,863 

LSTM National 181,655 

LSTM Regional with demographic 26,937 
(mean over 20 regions) 
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7. Conclusions 
In our analysis, we decided to check whether mobility data can be used in addition to COVID-19                 
time series to forecast the epidemic. 
We compared different algorithms and different kind of data in order to make predictions about the                
epidemic and evaluate which model returns the best ones. 
 
As seen, working with ​smoothed ​time series improves a lot the accuracy of predictions: in this way                 
our models avoid learning a bias. Moreover, using smoothed data made simpler models perform              
better than complex ones. 
 
For the national case​, we realized that ConvLSTM and a simple LSTM model performs better than                
VAR. 
 

LSTM 

 

ConvLSTM 
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VAR 

 

 
 
In the ​regional analysis​, it’s difficult to develop a unique model that can well describe regional                
situations. In fact there are regions whose predictions are quite acceptable, but others for which               
predictions are widely wrong. 
For example, when number of infected people is low, predictions do not meet groundtruth really               
well. Forecast for Umbria depicts this situation: 

 
Instead, for those regions where number of infected people is higher, results are better. Forecast 
for Marche is an example: 
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For what concerns VAR and LSTM , one important difference is their parametric form: LSTM 18

is made of layers applying non-linear transformations, instead VAR is based on a linear 
system of equations, highly parameterized. 
 
Another difference between the two is that VAR could only perform well on stationary time 
series (where there is no seasonality, trend and etc.), instead for LSTM this is not a 
requirement. 
 
LSTM works better if we are dealing with huge amount of data and enough training data is 
available, while VAR is better for smaller datasets. 
 
VAR data processing and model specification are in general simpler than LSTM, and training 
time is shorter; instead LSTM involves more data preprocessing and requires much more 
efforts in the network architecture design, model training and hyperparameter tuning.  
 
A common neural network’s drawback is that they use black boxes. This is a big problem if we 
have to explain how the model works. 
 
Usually a perfect compromise is to form an ensemble estimator combining two or more 
models.  

18 
https://databricks.com/session/time-series-forecasting-using-recurrent-neural-network-and-vector-autoregressive-model-when-and-how 
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