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Problem Description 

The Forest Cover Type Prediction is a supervised multi-class classification problem 

addressing the prediction of the forest cover type using cartographic features. Each 

instance is sampled on 30 x30 m squares of the Roosevelt National Forest in northern 

Colorado. The forests in these areas have seen few human-caused disturbances; therefore 

existing forest cover types are not a result of forest management practices but ecological 

processes so it makes sense try to predict the cover type having given variables of sun 

shade, soil type and hydrological properties. 

 

Data Set & Tools Used 

The data set is composed of cartographical and geological data gathered from over 581,012 

30 x 30 meters square cells of undisturbed forest.  Each sample consists of 12 measures, 

broken into 54 distinct input variables.  Of these 54, 10 are quantitative measures while the 

remaining 44 are Boolean values representing soil conditions and area.   

The data was presented, without scaling, in a comma-delimited list, the last column of each 

row being the class designation.   

A sample row is presented below. 

2596,51,3,258,0,510,221,232,148,6279,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,5 

The dominant forest cover type associated to each sample is one of seven specific forest 

cover types:  

1. Spruce-Fir  
2. Lodgepole Pine  
3. Ponderosa Pine  
4. Cottonwood/Willow  
5. Aspen  
6. Douglas-Fir  
7. Krummholz   
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The csv-format raw data is approximately 74 Megabytes (MB) in size.  Any conversion or 

manipulation of data would be significantly time-consuming:  Minor changes on a record by 

record basis had incredible effects, as they were repeated over 580,000 times, once for 

each data point (row in the dataset).  

 

I used Python 2.7 embedded in Anaconda(which is a package management tool), 

documenting my experiments in Jupyter notebook, which contains both computer code 

(e.g. python) and rich text elements (paragraph, equations, figures, links, etc...). 

 Notebook documents are both human-readable documents containing the analysis 

description and the results (figures, tables, etc..) as well as executable documents which 

can be run to perform data analysis.  

Scikit-learn is an open source machine learning library for the Python programming 

language. It features various classification, regression and clustering algorithms and is 

designed to interoperate with the Python numerical and scientific libraries NumPy and 

SciPy. 

Pandas is a software library written for the Python programming language for data 

manipulation and analysis. 

It’s a good tool for reading and writing data between in-memory data structures and 

different formats: CSV and text files, Microsoft Excel and SQL databases. 

I use pandas to load data from CSV files in this project. 

Occasionally I used Seaborn library to better plot the graphs. 

 

 

 

Approach and Methodology 

I tried to complete the project in several rounds, each time a bit deeper into the tools and 

possibilities to improve the task: I spent much time in realizing how preprocessing would 

affect the final results, I came to the end by writing two little scripts to manipulate binary 

data and combine them into an integer value. 

Then I studied the differences between cross validation train_test_split and KFold and 

eventually used the former one provided that randomization is guaranteed. 
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I chose the classifiers based on a rough idea got from studying different resources upon 

their proper estimation on multi-classifiers. 

At the end sometime dedicated to tuning the parameters. 

In the jupyter notebook where ever I did any process I added the explanation of what is 

going on. 

 

 

 

Data Exploration 

On the first observation, the fact that four wilderness-area and forty soil_type features are 

mutually exclusive raised the idea to combine them to make out two features. 

In machine learning literature these raw features are called one-hot encoded and I looked 

to do a converse process to combine them back together and see if this might change the 

models: is it efficient to do such reduction?  

 

HINT: The histogram of target classes shows that the 

distribution is not uniform, so we must make sure while 

splitting the data set for training and testing the 

samples should be well-shuffled.  

 Fig.1 
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 Feature ranking 

Using feature_importance_ and a typical model on the training split of data, just to get a 

rough idea which features play a more important role (i.e. a bigger InfoGain) 

 

OUTPUT: 

Cover Type (Initial RF) Top 20 Important Features 

 

1. Elevation (0.234067) 

2. Horizontal_Distance_To_Roadways (0.101709) 

3. Horizontal_Distance_To_Fire_Points (0.094316) 

4. Horizontal_Distance_To_Hydrology (0.060900) 

5. Vertical_Distance_To_Hydrology (0.058190) 

6. Aspect (0.055521) 

7. Hillshade_Noon (0.051850) 

8. Hillshade_3pm (0.050252) 

9. Hillshade_9am (0.049478) 

10. slope (0.040792) 

11. Wilderness_Area4 (0.033868) 

12. Soil_Type22 (0.015718) 

13. Soil_Type4 (0.011642) 

14. Wilderness_Area3 (0.011361) 

15. Soil_Type10 (0.011203) 

16. Wilderness_Area1 (0.010690) 

17. Soil_Type12 (0.010575) 

18. Soil_Type39 (0.010408) 

19. Soil_Type38 (0.009798) 

20. Soil_Type23 (0.009597) 

 

Mean Feature Importance 0.018519 
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Fig.2 

As we can see from histogram of ‘Elevation’, this feature alone can discriminate target 

classes 3and 7. Class 4 is really rare.  

Fig.3 
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Data Preprocessing 

Data preprocessing is a very critical step in any machine learning process, the accuracy of 

our models is directly dependent on how the raw data is prepared to be conducted to the 

classifier.  

The specific preprocessing needed on the data is decided by properties required for the 

learning algorithm used to solve the problem. 

Here I did some essential preprocessing experiments: 

 

 Missing values 

scikit-learn estimators assume that all values in an array(i.e. feature vector & target value) 

are numerical, and that all have and hold meaning; meanwhile many real world datasets 

contain missing values, often encoded as blanks, NaNs or other placeholders. 

A basic strategy to use incomplete datasets is to discard entire rows and/or columns 

containing missing values.  

A better strategy is to impute the missing values, i.e., to infer them from the known part of 

the data: like replacing the missing values for a feature by the mean value of that feature.  

 

 

 Correlations between features  

First tried to find out any correlation between features, in case of perfect correlation 

between a pair of features, one is actually redundant and can be dropped out of feature 

vector.  The correlation function applies on continuous input therefore we exempt 

wilderness area and soil type feature (i.e. categorical features) and consider the very first 

10 features.  

The correlation function output range is [-1,1] where -1 is perfect negative correlation and 

1 is perfect positive correlation. 
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OUTPUT: 

Aspect and Hillshade_9am = -0.58 

Aspect and Hillshade_3pm = 0.65 

slope and Hillshade_Noon = -0.53 

Horizontal_Distance_To_Hydrology and Vertical_Distance_To_Hydrology = 0.61 

Hillshade_9am and Hillshade_3pm = -0.78 

Hillshade_Noon and Hillshade_3pm = 0.59 

 

Strong correlation is observed between the above pairs of features. 

Looking at the list of features, intuitively we guess there must be some correlation between 

features; like the sunlight/shade depends to aspect (geographical direction) or shade at 

morning is exclusively mutual with shade in afternoon (only in case aspect is south then 

sunlight will be all day long otherwise sunlight/shade is mutually exclusive in the morning 

or in the afternoon)  

This represents an opportunity to reduce the feature set through transformations such as 

PCAAs 

 

Is there any constant features?  

If a feature is permanently constant it makes no discrimination so we can simply drop it 

out. 
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Count is 581012 for each column, so no data point is missing,  No constant feature to be 

deleted meanwhile there are some features with such insignificant role in the 

discrimination we can eliminate them. 

 

 Feature Engineering 

Feature engineering is an important pre-process for any machine learning task. I did some 

reasonable feature engineering and followings are the main choices: 

  

As observed in the output (referred to Jupyter notebook), some soil types are so rare that 

we can ignore their presence and shrink the dataset retaining those columns.  

 Dimensionality Reduction 
 

In general the more uncorrelated the features are, the better the classifier performance is 

going to be. Given a set of highly correlated features, it may be possible to use PCA 

techniques to make them as orthogonal as possible to improve classifier performance. 

We should note that PCA does not "discard" or "retain" any of our pre-defined. It mixes all 

of features (by weighted sums) to find orthogonal directions of maximum variance. 

Since some correlations were found between various features, we applied a dimensionality 

reduction technique named Principal Component Analysis on the original dataset and did 

some of the modeling, eventually:  

It was observed that on reducing the dimensions, the accuracy decreases as the new set of 

features are independent. Thus, I decided to take the entire feature set and based on the 

experiments did some manual dimensionality reduction as follows: 

 

Firstly I dropped the rare soil type features: 
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Then as already mentioned soil_type and wilderness_areas are one-hot encoded categorical 
features, so I wrote a piece of code to combine wilderness_areas into one feature {1,2,3,4} 
and the same approach also for the remaining soil_types :  
  

 
 

I wrote above function to create new integer features out of current Booleans; I did it as a 
function to be able to feed it by splits of original dataset otherwise my computer halted in 
attempts to convert the whole dataset in one go. 
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Models & Methods 

Once the data cleaning done, training and testing was simply a matter of deciding what ML 
algorithms to be chosen, which configurations to try and determining how many trials of 
each configuration should be run. At this point, training and testing went through three 
phases. 
The purpose of this phase was to ascertain which configurations would best classify the 
data. 
 

 Random Forest classifier: 

Random forest uses an ensemble method by combining a multitude of decision trees. 
Random forest uses a bagging method, which averages the predictions of multiple models 
trained on different samples to reduce the variance and achieve higher accuracy. 
For a classification task, an instance from a dataset is classified according to each single 
tree, the trees will vote for their classification and the class having the most votes will be 
chosen as the final result.  
 

 
 
 

 K nearest neighbors  

The k nearest neighbors is a clustering technique in which we use the Euclidean distance to 
find the k nearest neighbors to every vector.  Then, we find the k nearest neighbors for 
every test vector during prediction and we use  the  majority  vote  to  classify  the  test  
vector  suitably.   Extremely high dimensional data may lead to issues with knn as the 
Euclidean distance becomes almost same for all vectors and hence dimensionality 
reduction plays an important role in it.   
We tried PCA but it was futile.  As we reduce the dimensions, the accuracy during validation 
and testing decreases.   
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 SVM 

A support vector machine (SVM) constructs a hyper-plane or set of hyper-planes in a high- 
or infinite-dimensional space, which can be used for classification, regression, or other 
tasks. It selects a maximum margin classifier as in general the larger the margin the lower 
the generalization error of the classifier. 
C is called the regular factor. If C is set to be very large, the regularization would be very 
low, lower C would result in a higher regularization penalty. Thus tweaking the C 
parameter could give us a better performance in the new data. 

 
 

 Naive Bayes 

 

Naive Bayes classifier is a probabilistic classifier based on Bayes’ theorem under the 
assumption of independence between the features. This naïve assumption of independence 
of features makes it an improper candidate for our project since we already observed a 
strong correlation between some major features. 
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Parameter Tuning  

Hyper-parameters are parameters that are not directly learnt within estimators which 
mean they are passed as arguments to the constructor of the estimator classes.  
A traditional method of performing parameter tuning is grid search, which is simply an 
exhaustive searching over manually specified parameter values for a model. Grid search 
will evaluate a model for each combination of parameter values specified in a grid.  
The goal of running this grid is to find the ranges that the optimum values of the 
parameters lie in.  
For example, to tune the parameters of a Random Forest model, two parameters need to be 
tuned: number of trees and number of randomly selected features used to look for the best 
split. The two parameters are denoted as n_estimators and max_features. I tried to 
manually apply this method to some of the classifiers I modeled: 

 
I didn’t engage the parameter max_features since we have only 12 and it is ok to use all of 
them. 
 
As the output the plot shows the best value for number of estimators:  

 
The other parameter tuning and their plots can be referred to in Jupyter inotebook 
attached as an appendix. 
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Evaluation 

 Precision & Recall 

In binary classification, the precision for a class is the number of true positives divided by 
the total number of elements labeled as belonging to the positive class: 

P=TP/(TP+FP) 
Recall in this context is defined as the number of true positives divided by the total number 
of elements that actually belong to the positive class:  

R=TP/(TP+FN) 
A precision score of 1.0 for a class C means that every item labeled as belonging to class C 
does indeed belong to class C (but says nothing about the number of items from class C that 
were not labeled correctly) whereas a recall of 1.0 means that every item from class C was 
labeled as belonging to class C (but says nothing about how many other items were 
incorrectly also labeled as belonging to class C). 
Often, there is an inverse relationship between precision and recall, where it is possible to 
increase one at the cost of reducing the other. 
Usually, precision and recall scores are not discussed in isolation. Instead, either values for 
one measure are compared for a fixed level at the other measure or both are combined into 
a single measure.  
F-measure is a combination of precision and recall, which is the weighted harmonic mean 
of precision and recall. (Also called F1 measure since R and P are equally weighted.) 

F=2.P.R/(P+R) 
The sklearn.metrics module implements several loss, score, and utility functions to 

measure classification performance. 

Some metrics are essentially defined for binary classification tasks (e.g. f1_score). 

In extending a binary metric to multiclass problems, the data is treated as a collection of 
binary problems, one for each class. There are then a number of ways to average binary 
metric calculations across the set of classes, each of which may be useful in some scenario. 
How we select the average parameter determines the presentation of the measure, for 
example: 

On our RandomForestClassifier (i.e. rfc_model) the four measures are as follows given that 
we set average=’weighted’ which obligates the metric method to calculate metrics for each 

class, and find their average, weighted by support (the number of true instances for each class); I 

assume that these results are more reliable because the distribution of our classes is not uniform 

and this setting considers the class imbalance. 

https://en.wikipedia.org/wiki/Classification_%28machine_learning%29
https://en.wikipedia.org/wiki/Precision_and_recall#F-measure
https://en.wikipedia.org/wiki/Harmonic_mean
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
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The outcome indicates that my RandomForestclassifier has P=0.8639, R=0.8636, 

Fmeasure=0.8613. (The value shown for Support in NA since we are in multiclass extension of 

this method meanwhile if I set average=None, the support for each class will be shown.) 

As another experiment let’s assign average=None, which obligates the metric to calculate 

measures separately for each class: 

 

Here we can present a better outlook on how well RFC model distinguishes between classes: 

Class4 Recall is relatively poor. Why?  

My hypothesis is that since class4 is so rare, most probably associated soil_type features were 

among those we deleted; therefore the learning capacity of classifier is affected. Meanwhile from 

the values of Precision and Recall we realize that we have difficulty distinguishing Class4 from 

others (R=0.40) means there have been many instances truly class4 that we missed out)  

 (FN>>FP)    

Precision of Class7 is maximum, why? 

It coincides with Fig.3 page 7: Class7’ instances can be well-separated only by the feature of 

Elevation. (Of course other features are also used, but this ‘Elevation’ feature makes it precise to 

pick out positive instances for Class7) 

I plotted Precision-recall curves since they are efficient in highlighting differences between 

models for highly imbalanced data sets (as in our case). 

In order to compare different models in imbalanced settings, area under the PR curve will likely 

exhibit larger differences than area under the ROC curve. 
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For each classifier I plotted the PR curves for which details refer to the Jupyter notebook, here I 

try to analyze the observations by the comparison between different models: 

 

Typically, Precision and Recall are inversely related (ie. as Precision increases, recall falls and 

vice-versa.) This trade-off between precision and recall can be observed using the precision-

recall curve, and an appropriate balance between the two obtained. 

Even a hasty look on the three plots proves that RandomForestClassifer works better even on 

tricky Class4 and Class5. 

Among all the models I elaborated, KKN and RandomForest have performed a more robust.    
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Prediction 

Now with the remaining split of dataset (about 400,000 samples) and applying the tuned 
parameters (k=300 for the Random Forest Classifier) we go through prediction phase 
which means fitting the tuned classifiers on the (X_test,y_test) 
 

 
Conclusion: in this project we divided the dataset into three splits; trained and valuated the 

models on these shuffled separated blocks of dataset, tuned the parameters of the 

classifiers and finally did the prediction on the third partition of data with accuracy 0.86 

Further information and explanation can be addressed in the appendix I.    

Further steps 

The scope of what can be investigated on this problem is so vast that one can dig deep into 

many other possible machine learning approaches: I am personally psyched to 

comprehend some facts:  

1-Try to realize why SVM proved no satisfactory results although always is suggested as a 

good candidate classifier in multiclass problems. 

I played around with parameter tuning for SVM but never got a proper enhancement in the 

performance. 

2-Investigation of learning curves, in fact how big the training split can be enough given 

that the distribution is not uniform? 

 I started out with 15000 samples for training split but then doubled the size, keeping in 

mind the proper ratio between training and test (33% vs 66%)  

 

 


