

A real-time system for facial expression recognition

Emanuele Alessi (1486470)

Nicole Colace (1646808)

Project of the Machine Learning course

Academic year 2018-2019

2

Summary

1. Introduction 3

2. Problem definition 4

3. Our objective 6

4. Literature study 7

5. FER2013 dataset 9

6. Project setup 11

6.1 TensorFlow 11

6.2 OpenCV 12

7. Data pre-processing 13

8. Data augmentation 15

9. Implementation of our model 17

10. Train and test results 23

11. Testing the model (instruction for the use) 27

12. Conclusions 28

13. References 29

3

1. Introduction

“2018 is the year when machines learn to grasp human emotions” (Andrew Moore,

the dean of computer science at Carnegie Mellon).

With the advent of modern technology our desires went high and it binds no bounds. In

the present era a huge research work is going on in the field of digital image and image

processing. The way of progression has been exponential and it is ever increasing. Image

Processing is a vast area of research in present day world and its applications are very

widespread.

Image processing is the field of signal processing where both the input and output signals

are images. One of the most important application of Image processing is Facial expression

recognition. Our emotion is revealed by the expressions in our face. Facial Expressions

plays an important role in interpersonal communication. Facial expression is a non-verbal

scientific gesture which gets expressed in our face as per our emotions. Automatic

recognition of facial expression plays an important role in artificial intelligence and robotics

and thus it is a need of the generation. Some application related to this include Personal

identification and Access control, Videophone and Teleconferencing, Forensic application,

Human-Computer Interaction, Automated Surveillance, Cosmetology and so on.

The objective of our project is to develop a real-time facial expression recognition system

which can take human facial images containing some expression as input and recognize

and classify it into seven different expression class such as:

Figure 1 - Sample of images from FER2013 dataset

4

2. Problem definition

Human facial expressions can be easily classified into 7 basic emotions: happy, sad,

surprise, fear, anger, disgust, and neutral. Our facial emotions are expressed through

activation of specific sets of facial muscles. These sometimes subtle, yet complex, signals in

an expression often contain an abundant amount of information about our state of mind.

Through facial emotion recognition, we are able to measure the effects that content and

services have on the audience/users through an easy and low-cost procedure. For example,

retailers may use these metrics to evaluate customer interest. Healthcare providers can

provide better service by using additional information about patients' emotional state

during treatment. Entertainment producers can monitor audience engagement in events to

consistently create desired content.

Humans are well-trained in reading the emotions of others, in fact, at just 14 months old,

babies can already tell the difference between happy and sad. But can computers do a

better job than us in accessing emotional states? To answer the question, we designed a

deep learning neural network that gives machines the ability to make inferences about our

emotional states. In other words, we give them eyes to see what we can see.

Figure 2 - Problem formulation of our project

5

Facial expression recognition is a process performed by humans or computers, which

consists of:

1. Locating faces in the scene (e.g., in an image; this step is also referred to as face

detection)

2. Extracting facial features from the detected face region (e.g., detecting the shape of

facial components or describing the texture of the skin in a facial area; this step is

referred to as facial feature extraction)

3. Analyzing the motion of facial features and/or the changes in the appearance of

facial features and classifying this information into some facial-expression

interpretative categories such as facial muscle activations like smile or frown,

emotion (affect) categories like happiness or anger, attitude categories like

(dis)liking or ambivalence, etc. (this step is also referred to as facial expression

interpretation).

6

3. Our objective

After several searches on the web regarding the papers dealing with the topic of face

detection and facial expression recognition, we have concluded that all the papers that we

found encourage to use deep learning neural networks in order to classify as good as

possible facial expressions.

Then our task will be focused on the design and development of a deep learning model

that is able to compute in real-time:

1. Face detection

2. Facial expression recognition

and possibly make the project easily portable not only on desktop but also on

smartphones and IoT.

Angry

Disgust

Fear

Happy

Sad

Surprise

Neutral

Figure 3 - A high-level idea of our deep learning model

7

4. Literature study

Before proceeding with the project description, we want to specify that our

implementation is based on the paper “Real-time Convolutional Neural Networks for

Emotion and Gender Classification” (2017) written by Octavio Arriaga, Paul G. Ploger and

Matias Valdenegro.

The authors proposed a state-of-the-art deep learning model known as mini-Xception to

perform facial expression recognition, the implementation have been validated in a real-

time facial expression system that provides face-detection, gender classification and that

achieves human-level performance when classifying emotions with an accuracy score of

66%.

More precisely, the proposed model is a Neural Network composed of a sequence of

hidden layers, where convolution operations, batch normalization and pooling, are

performed within them, while the output layer is represented by a softmax classifier.

Considering the complexity of our project we are forced to focus on a deep learning

oriented approach, considering, in this case, not very effective the use of machine learning

algorithms, as some surveys explained that they would not reach an acceptable accuracy

value, because of the difficulty in correctly distinguishing the expressions that may seem

similar to each other but that really are different (just to give an example, the disgusted

expression is very similar to the angry expression, or the frightened expression is often

mistaken for other expressions).

Regarding the choice of the dataset, nowadays we have a rather small number of datasets

for emotion recognition, however we have found that many of them are not available

online, therefore we have only taken into consideration the public datasets comparing

them from the viewpoints of the number of samples, of the variance of the images, of the

head poses and, above all, of the number of labels (emotions).

8

Figure 4 - List of all available dataset for emotion detection taken from the paper "Deep Facial Expression

Recognition: A Survey"

After a preliminary study we chose to use FER2013 as a dataset to train and test our model,

because we considered it the best compromise between the canons of choice just

mentioned.

Other details will be explained more accurately in the next paragraphs.

9

5. FER2013 dataset

The FER2013 is an open-source dataset which was introduced during the International

Conference on Machine Learning (ICML 2013), Challenges in Representation Learning.

FER2013 is a large-scale and unconstrained database collected automatically by the

Google image search API. All images have been registered and resized to 48*48 pixels after

rejecting wrongfully labeled frames and adjusting the cropped region.

Figure 5 - Example images from FER2013 dataset

This dataset was created for an ongoing project by Pierre-Luc Carrier and Aaron Courville,

then shared publicly for a Kaggle competition, shortly before ICML 2013.

FER2013 consists of about 35000 greyscale images, with seven expression labels (anger,

disgust, fear, happiness, sadness, surprise and neutral).

10

The emotions distribution is defined as following:

Labels # of images

Angry 4593

Disgust 547

Fear 5121

Happy 8989

Sad 6077

Surprise 4002

Neutral 6198

Figure 6 - Kaggle page where we can download FER2013

11

6. Project setup

Let us know enlist the technologies that we used while working on this project (in order of

importance):

• Python 3.6.x

• TensorFlow 1.13 (used to create, train and test our neural network)

• OpenCV (used to do face detection)

• NumPy (used for managing the dataset and for calculating metrics)

• Matplotlib (used to generate plots of training and test results)

• Scikit-learn (used only to divide the dataset into train set and test set)

• Tqdm (used for printing a progress bar of the neural network training process)

• PyCharm as our IDE

6.1 TensorFlow

TensorFlow is probably the most famous framework for working out any large-scale

Machine Learning: originally created by the Google Brain Team, it is an open-source library

which bundles mainly Deep Learning models and algorithms.

The library can train and run Deep Neural Networks for many tasks, ranging from digit

classification to image recognition.

But how does it work?

TensorFlow allows the creation of so-called

“dataflow graphs”; structures that describe how

data moves through a graph. Here:

• A node represents a mathematical

operation;

• An edge between two nodes symbolize a

“Tensor” (short for multidimensional

array).

The nodes, though, are not executed in Python:

to ensure a higher speed of computation, in fact, the library executes these operations in

C++, so that they can be worked out at low-level.

Figure 7 - TensorFlow logo

12

Another great advantage is that the developer can choose to execute calculations either on

the CPU or the GPU, to ensure more computational power to the program.

As of 2019, TensorFlow is accredited as one of the most used libraries for Deep Learning

and it keeps growing, even with a recent release for JavaScript.

As we felt that TensorFlow was what we needed for this task (since it is more powerful than

other machine learning frameworks, such as Keras, PyTorch, Caffe etc…), we decided to

abandon the advantage of having less and more concise code lines in favor of more

computational power.

The main reason why we chose TensorFlow is, in addition to the one already mentioned,

that the deep learning model is easily exportable for use on desktops, smartphones and

IoT (using TensorFlow Lite).

For this reason, we will not list a code example here as our project was entirely made with

TensorFlow.

6.2 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision and

machine learning software library. OpenCV was built to provide a common infrastructure

for computer vision applications.

The library has more than 2500 optimized algorithms, which

includes a comprehensive set of both classic and state-of-

the-art computer vision and machine learning algorithms.

These algorithms can be used to detect and recognize faces,

identify objects, classify human actions in videos, track

camera movements, track moving objects, etc…

OpenCV is a cross-platform library using which we can

develop real-time computer vision applications. It mainly

focuses on image processing, video capture and analysis

including features like face detection and object detection

and it has more than 47 thousand people of user community

and estimated number of downloads exceeding 18 milion.

The library is used extensively in companies, research groups

and by governmental bodies.

Figure 8 - OpenCV logo

13

7. Data pre-processing

Before we can work on the dataset, we must load it in memory and apply some pre-

processing techniques.

Our procedure consists of initializing two empty lists (one used for training the model, and

the other one will be used for testing purposes) that will contain all the images in the

dataset.

We decided to use 80% of the images for training the model, while keeping the remaining

20% for the testing phase. Images used for training and testing are randomly picked from

the available images of FER2013, using the train_test_split function of scikit-learn library.

After several attempts we decided to apply a procedure by which we normalize the images

(represented as matrices) so as to transform them into matrices whose values are in the

range [-1, 1]. Once all the images are pre-processed, as stated above, many of them will be

picked for the training phase, while the others will be used for testing the model.

The pre-processing algorithm can be summarized with the following pseudocode:

1. dataset = empty list

2. for each image i of FER2013 do:

3. load i in memory as a matrix with shape 48*48

4. normalize i dividing each value of the matrix by 255

5. subtract each value of the normalized matrix i with 0.5

6. multiply each value of the resulting matrix i by 2

7. dataset.append(i)

8. train_set, test_set = train_test_split(dataset, test_size=20%)

this technique with which we transform images has allowed us to increase the accuracy of

our final model by 4%.

After the splitting phase we generated the following plots for the samples distribution of

both train set and test set.

14

Figure 9 – Samples distribution of train set

Figure 10 – Samples distribution of test set

15

8. Data augmentation

The performance of deep learning neural networks often improves with the amount of

data available.

Data augmentation is a technique to artificially create new training data from existing

training data. This is done by applying domain-specific techniques to examples from the

training data that create new and different training examples.

Image data augmentation is perhaps the most well-known type of data augmentation and

involves creating transformed versions of images in the training dataset that belong to the

same class as the original image.

Transforms include a range of operations from the field of image manipulation, such as

shifts, flips, zooms, and much more.

The intent is to expand the training dataset with new, plausible examples. This means,

variations of the training set images that are likely to be seen by the model.

As such, it is clear that the choice of the specific data augmentation techniques used for a

training dataset must be chosen carefully and within the context of the training dataset

and knowledge of the problem domain. In addition, it can be useful to experiment with

data augmentation methods in isolation and in concert to see if they result in a measurable

improvement to model performance, perhaps with a small prototype dataset, model, and

training run.

Modern deep learning algorithms, such as the convolutional neural network, or CNN, can

learn features that are invariant to their location in the image. Nevertheless, augmentation

can further aid in this transform invariant approach to learning and can aid the model in

learning features that are also invariant to transforms such as left-to-right to top-to-

bottom ordering, light levels in photographs, and more.

We applied data augmentation, through the TensorFlow function ImageDataGenerator,

only to the training dataset, and not to the test dataset.

For our purposes we decided to augment the train set with:

• Rotation

• Width shift

• Height shift

• Zoom

• Horizontal flip

16

Figure 11 - An example of how data augmentation is applied on a given image

With the data augmentation technique, our final model improved its predictive ability

gaining about 4%-5% more accuracy.

17

9. Implementation of our model

Deep learning is a popular technique used in computer vision. We chose Convolutional

Neural Network (CNN) layers as building blocks to create our model architecture. CNNs are

known to imitate how the human brain works when analyzing visuals.

For our purposes we propose a mini-Xception neural network, which is a state-of-the-art

model for the real-time facial expression recognition.

Figure 12 - mini-Xception architecture for emotion classification

Our model was implemented totally from scratch with TensorFlow library. This architecture

is different from the most common CNN architectures, since they use fully connected

layers at the end where most of parameters resides. Also, they use standard convolutions.

Modern CNN architectures such as Xception (proposed by Francois Chollet in the paper

“Xception: Deep Learning with Depthwise Separable Convolutions”) leverage from the

combination of two of the most successful experimental assumptions in CNNs: the use of

residual modules and depth-wise separable convolutions.

18

There are various techniques that can be kept in mind while building a deep neural

network and is applicable in most of the computer vision problems. Below are few of those

techniques which are used while training the mini-Xception model below.

1. Data augmentation: as mentioned in paragraph 8.

2. Kernel regularization: it allows to apply penalties on layer parameters during

optimization. These penalties are incorporated in the loss function that the network

optimizes. Argument in convolution layer is nothing but L2 regularization of the

weights. This penalizes peaky weights and makes sure that all the inputs are

considered.

Figure 13 - Regularization term (in red box) with lambda fixed to 0.01

3. Batch normalization: it normalizes the activation of the previous layer at each batch,

i.e. applies a transformation that maintains the mean activation close to 0 and the

activation standard deviation close to 1. It addresses the problem of internal

covariate shift. It also acts as a regularizer, in some cases eliminating the need for

Dropout. It helps in speeding up the training process.

4. ReLU (Rectified Linear Unit) activation function: it is the most used activation

function in the world right now. Since, it is used in almost all the convolutional

neural networks or deep learning, thanks also to its derivative that is effective for

the vanishing gradient problem

Figure 14 - Graphic representation of the ReLU activation function

19

5. Global Average Pooling: it reduces each feature map into a scalar value by taking

the average over all elements in the feature map. The average operation forces the

network to extract global features from the input image.

Figure 15 - An example of how global average pooling is performed

6. Depthwise Separable Convolution: these convolutions are composed of two

different layers: depth-wise convolutions and point-wise convolutions. Depth-wise

separable convolutions reduce the computation with respect to the standard

convolutions by reducing the number of parameters.

Figure 16 - Difference between simple convolution and separable convolution

20

7. Learning rate decay: the learning rate is a hyperparameter that controls how much

to change the model in response to the estimated error each time the model

weights are updated. The learning rate may be the most important hyperparameter

when configuring the neural network. Therefore it is vital to know how to

investigate the effects of the learning rate on model performance and to build an

intuition about the dynamics of the learning rate on model behavior. During the

training phase, we noticed that after some epochs, it was necessary to decrease the

learning rate in proportion to the number of epochs. For this reason, considering

that our learning rate is initially set to 0.001, we used the exponential decay

technique, with which, after each epoch, the learning is updated with the following

formula (given 𝜂(𝑡) that is the learning rate at epoch t.):

𝜂(𝑡+1) = 𝜂(𝑡) ∗ 0.95

Figure 17 - Exponential decay formula

8. Adam Optimizer: deep learning neural networks are trained using the stochastic

gradient descent optimization algorithm. Adam is an adaptive learning rate

optimization algorithm that’s been designed specifically for training deep neural

networks and a lot of research has been done to address the problems of Adam.

Adam can be looked at as a combination of RMSprop and Stochastic Gradient

Descent with momentum. It uses the squared gradients to scale the learning rate

like RMSprop and it takes advantage of momentum by using moving average of the

gradient instead of gradient itself like SGD with momentum. In this optimization

algorithm, running averages of both the gradients and the second moments of the

gradients are used. Given parameters w(t) and a loss function L(t), where t (initially set

to 0) is the current training iteration, Adam’s parameter update is given by:

1. 𝑚𝑤
(𝑡+1)

= 𝛽1𝑚𝑤
(𝑡)

+ (1 − 𝛽1)∇𝑤𝐿(𝑡)

2. 𝑣𝑤
(𝑡+1)

= 𝛽2𝑣𝑤
(𝑡)

+ (1 − 𝛽2)(∇𝑤𝐿(𝑡))2

3. �̂�𝑤 =
𝑚𝑤

(𝑡+1)

1 − (𝛽1)𝑡+1

4. �̂�𝑤 =
𝑣𝑤

(𝑡+1)

1 − (𝛽2)𝑡+1

5. 𝑤(𝑡+1) = 𝑤(𝑡) − 𝜂
�̂�𝑤

√�̂�𝑤 + 𝜀

Figure 18 - Adam optimization algorithm

21

In our case, 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜀 = 10−8.

For the training process we decided to choose a batch size parameter, fixed to 32, to

determine how many images go through the neural network at a time and then to

calculate the loss function that will be used to update the weights.

Given a batch of greyscale images, with shape 48*48, as shown in figure 12, our mini-

Xception computes the forward step in the following way:

1. input = tensor of images with shape (32,48,48,1)

2. forward_tensor(0) = input -> [CONV.(8 filters) -> BATCH NORM. ->
RELU]*2

3. for t=1 to 4 do:

3.1 residual_tensor = forward_tensor(t-1) -> [CONV.(16*2t-1
filters) -> BATCH NORM. -> RELU]

3.2 forward_tensor(t) = forward_tensor(t-1) -> [SEP.CONV.(16*2t-1

filters) -> BATCH NORM. -> RELU]*2 -> MAX-POOL

3.3 forward_tensor(t) = residual_tensor + forward_tensor(t)

4. output_tensor = forward_tensor(4) -> CONV.(7 filters) ->
GLOB.AVG.POOL -> SOFTMAX

Through the softmax layer, our neural network will give a probability tensor in output, in

other words, for each image in the batch, will be returned a probability vector of length 7

(7 is the number of labels).

𝑠𝑜𝑓𝑚𝑎𝑥(𝑦𝑖) =
𝑒𝑦𝑖

∑ 𝑒𝑗𝑛
𝑗=1

Figure 19 - Softmax formula

With the probability vectors, we can return, for each image in the batch, the class with the

highest probability score using the argmax function.

argmax
𝑥

𝑓(𝑥) = {𝑥 | ∀𝑦 ∶ 𝑓(𝑦) ≤ 𝑓(𝑥)}

Figure 20 - Argmax formula

22

For what regards the loss function, softmax cross entropy (also known as categorical cross

entropy) was used to train the mini-Xception. We calculate the sum (for each image in the

batch) of the cross entropies comparing the predicted classes with the effective classes;

then the final result will be divided by the batch size and changed sign.

Supposing that each instance of the batch is x, p(x) is the class predicted by the model, and

y(x) is the ground-truth label, the loss function is defined as following:

𝐿 = 𝐻(𝑦, 𝑝) = −
1

|𝑏𝑎𝑡𝑐ℎ|
∑ 𝑦(𝑥) ∗ log (𝑝(𝑥))

𝑥 ∈ 𝑏𝑎𝑡𝑐ℎ

Figure 21 - Loss function used

23

10. Train and test results

In this paragraph we will show the results obtained after the training phase. We trained the

model until its convergence (for 80 epochs) using, obviously, the train set (80% of the

dataset size). The accuracy is computed at the end of each epoch, evaluating the neural

network performance on the test set (20% of the dataset size), while the loss is calculated

instead on the training set.

Figure 22 - Accuracy plot

24

Figure 23 - Loss plot

After that, we wrote a script to print the confusion matrix in order to give the counts of

emotion predictions and some insights to the performance of the multi-class classification

model:

25

Figure 24 - Confusion matrix

The model performs really well on classifying positive emotions resulting in relatively high

precision scores for happy and surprised. Happy has a precision of 81.3% which could be

explained by having the most examples (~7000) in the training set. Interestingly, surprise

has a precision of 68.6% having the least examples in the training set. There must be very

strong signals in the surprise expressions.

For what regards negative emotions, model performance seems weaker on average. In

particularly, the emotion sad has a quite low precision of only 45.7%, same speech for the

angry emotion, with a precision of 48.1%, and for fear emotion, whose precision is 43.5%.

In addition, an interesting aspect, is that the model is not able to classify disgust

expressions, in fact most of those samples are mistaken for angry, but considering the

overall performances, however, we are satisfied with the results obtained.

Finally, also for the neutral expression the model performance is acceptable, obtaining a

precision of 49.7%.

26

Figure 25 - Normalized confusion matrix

27

11. Testing the model (instruction for the use)

After completing the model train and test phase, we implemented also the face detection

algorithm, with OpenCV library, which exploits the well-known algorithm proposed by Paul

Viola and Michael Jones to detecting faces in the wild.

We tested our project on some image downloaded from google doing both face detection

and emotion recognition together and these are the results:

Figure 26 - Face detection + Emotion recognition

As a last thing, our final implementation performs face detection and emotion recognition

in real time exploiting the computer webcam.

To run the real-time test, you need to open the command line, go to the project folder and

launch the demo file, main.py.

The following are commands to be executed:

1. cd <project directory>

2. python main.py

28

12. Conclusions

With our work, we managed to create from scratch a deep learning model that is capable

of performing a real-time classification task.

As for future work, it might be interesting to try to tweak the network in order to reach an

accuracy value of 60%-65% or more.

An interesting method that we can apply to our project, in order to achieve better results,

is to retrain the mini-Xception merging two or more dataset with the already used

FER2013. Another solution that could allow us to increase the accuracy of a few points is to

do more hyperparameter tuning, such as increasing or decreasing the convolutive layers of

the network and evaluating any changes.

29

13. References

[1] Real-time Convolutional Neural Networks for Emotion and Gender Classification by

Octavio Arriaga, Paul G. Ploger and Matias Valdenegro

https://arxiv.org/pdf/1710.07557.pdf

[2] Xception: Deep Learning with Depthwise Separable Convolutions by Francois Chollet

https://arxiv.org/pdf/1610.02357.pdf

[3] Deep Facial Expression Recognition: A Survey by Shan Li and Weihong Deng

https://arxiv.org/pdf/1804.08348.pdf

[4] ADAM: A method for stochastic optimization by Diederik P. Kingma and Jimmy Lei

Ba

https://arxiv.org/pdf/1412.6980.pdf

[5] FER2013 dataset by Pierre-Luc Carrier and Aaron Courville

https://www.kaggle.com/c/challenges-in-representation-learning-facial-

expression-recognition-challenge/data

https://arxiv.org/pdf/1710.07557.pdf
https://arxiv.org/pdf/1610.02357.pdf
https://arxiv.org/pdf/1804.08348.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data

