
Sapienza

Università di Roma

Machine Learning Course

Prof: Paola Velardi

Deep Q-Learning with a multilayer Neural Network

Alfonso Alfaro Rojas - 1759167

 Oriola Gjetaj - 1740479

 February 2017

Contents

1. Motivation

2. Q-Learning and Deep Neural Networks

3. Lunar Lander Model Construction

4. Code Documentation – Software Dependencies

5. Experiments and Evaluation

6. References

7. Links

1. Motivation

Automatic game playing brings machine learning techniques into the gaming arena. The goal is

to program computers to learn how to get good at playing and even challenge humans.

Our biggest motivation to experiment with neural network architectures in games comes from

recent advances in the deep reinforcement learning domain. These include DeepMind’s

breakthrough in using convolutional neural networks. Current developments in this specific area

look promising and being able to understand it, seems challenging and exciting.

2. Q-Learning and Deep Neural Networks

Teaching a computer to play a game without providing training examples. Just by receiving a

delayed feedback on performed actions is a task that can be solved using reinforcement learning

method.

 Reinforcement Learning

Reinforcement Learning does not make use of examples or initial models of the environment.

The agent has to learn the mapping of possible paths towards the desired state based only on

rewards outputted as part of the target function. Agent learns by performing certain actions in the

environment. Each action performed from a specific state results in a reward that can be positive

or negative. By performing enough many actions, system learns to pick the path that will

maximize future rewards. These rules create the policy by which agent operates in the future.

Each episode of the process in the figure generates a sequence of states, actions and rewards

gained after performing a particular action while being on a certain state.

Discount factor (γ) defines the emphasis we put on rewards from future actions compared to

immediate rewards. A good strategy is to set a small value in the beginning and then increase

gradually; this way we make sure the algorithm will pick an action that maximizes future

rewards.

 Q-Learning

Q-Learning algorithm, a reinforcement learning technique, works by learning an action-value

function which utilizes immediate reward value and future expected rewards for possible states

and corresponding actions.

The output of Q-function received in each iteration represents the value of that action for a given

state making use of known information.

At first, values for all state-action pairs are initialized to zero and starting from the initial state,

successive actions are taken considering Q-function output for each iteration.

For one transition, we can express Q-value of initial state and action in terms of

immediate reward and maximum future reward.

The maximum reward for the next state is an approximation used to update Q-value of initial

state; it can be wrong in the early stages but it gradually improves with each iteration.

Q-learning allows for the system to iteratively converge and represent accurate Q-values for each

state-action combination.

 Introducing Neural Nets.

Employing Q-learning into a game model is very specific to a particular game. The problem with

Q-tables is their extremely large scale when applied to grid inputs; the number of states is

extremely large. To be able to apply Q-learning using screen pixels, we use neural networks; this

way the Q-function can be represented by the neural net as an approximation of what the Q-table

would have outputted. The benefit of Network in this case will be the generation of all Q-values

for an individual state with one forward pass.

Neural networks improve the learning noticeably , nevertheless their architecture is not feasible

enough since the number of input nodes is as large as all possible states or alternatively all state-

action pairs there are. That is why deep neural networks need to be used.

The advantage of deep neural networks is the ability to analyze large amount of pixel data input

and map this information into more suitable patterns for later evaluation. This construction

technique, known as convolutional neural network, analyzes pixel grids of the input state,

condenses the information into fewer neurons and forwards the information to the next layer.

Having a number of convolutional layers allows for data simplification and faster input analysis.

The training technique in a game model is by building the target function as a deep neural

network in which the input nodes take state-action pairs and output a calculated value, or

alternatively input nodes are possible states and output nodes are Q-values for all actions.

The difference between these two options resides in neural net weight update. Calculating a

single output and changing weights after each step positions our system into immediate reward

procedure which does not perform well in long term; in case there might be an instance which

can cause a drastic change in the network. On the other hand, an offline reinforcement learning

method, takes a decision for next state relying on maximum output value for each action.

Fig1 is the basic Deep Q-network. Using that architecture we are able to run pairs of state-action

and get the corresponding value by performing one forward pass to underlying network. Q-value

we receive is immediate reward and system updates weights accordingly.

Fig2 is Deep Q-network used by DeepMind in their 2014 paper. Network receives only a state

vector and outputs all possible Q-values in one forward pass. Proposed architecture is highly

optimized and it is the one we will be using in our implementation.

 Experience Replay

An important part of training the network are the transitions provided for the learning process to

occur. If our learning procedure is always using the latest one, then the system may run into

problems like falling into a local minima.

In order to minimize the possibility of such an event, Experience replay technique is used. The

approach is to store all obtained experiences into a memory space, and then generate random

batches and provide them to the underlying network for learning process.

 ε -greedy exploration (Exploration vs Exploitation)

With time, Q-learning function will have built some part of Q-table and it will return more

consistent values. Exploitation approach will have the search focused on the particular region

that will improve the solution we already have.

However, we want our Q-learning algorithm to probe at a large portion of state vectors in order

to gather more information and discover other solution that might be more efficient, thus having

a high exploration rate. This rate corresponds to extending the search to avoid getting into a local

optimum. For exploration rate not to decrease by time, we need to allow some randomness for

the undertaken action, which can be handled by setting a pre-defined probability ε.

The modified Q-learning algorithm exploits experience replay and greedy exploration as follows:

 When the environment is reset we are given an initial state. Then, we choose the

maximum action according to Q-function output or a random one with probability ε. We

execute the action and receive a reward and new state and store it into memory space. For

each state, we execute a forward pass in the NN and collect experiences as tuples of

<s,a’,r’,s’> . Each experience is inserted into the memory space.

 During learning phase, a batch of experiences is generated from memory space and then

two forward passes on the neural network are performed for each of the tuples to receive

target values.

 Determine target Q-values.

Target value of action a0 :

For all other actions, target Q-value is what was produced by the first pass.

 Train the network using as a loss function:

For all other actions, error is defined as 0. Then backpropagation is used to update

weights.

Each epoch is finished when the last state is of the form:

<Initial state: s, action: a, reward: +100, new state: ground coordinates (0, 0)>

We implemented this algorithm in developing Lunar Lander automatic game playing system.

3. Lunar Lander Model Construction

Gym library is used to set up the environment on top of which the algorithm is implemented. We

have inherited game model construction from Gym and have adjusted the parameters

conveniently.

The position of lunar lander at a particular moment is defined by the first two numbers of the

state vector. Landing pad is at coordinates (0, 0). For each episode, the lander leaves its space

craft and follows a sequence of state vectors until it comes to rest at the landing pad. This

trajectory of state vectors is collected into replay memory space and used later for the learning

process.

Lunar Lander Game

A state vector consists of four numbers; height of lander above landing surface, downward

velocity, amount of fuel, reinforcement signal value which adapts to lander’s performance over

time.

There are four possible actions: do nothing, fire left orientation engine, fire main engine, fire

right orientation engine.

An episode is over at the end of each trajectory if there is a safe landing or lander crashes

receiving +100 or -100 respectively. If lander drifts away from landing pad it loses reward. For

each contact performed with landing surface reward value is +10.

Game is solved if an average of 200 points are collected over 100 sequential trails.

4. Code Documentation – Software Dependencies

Q-learning algorithm was implemented in Python.

 Neural network model implementation

The neural network model we have used to implement Q- function has 8 input neurons, two

hidden layers with 40 nodes each and 4 output nodes – for each possible action. Graph is fully

connected and it outputs Q-values which are generated using mean squared error function.

Code implementation for building the deep neural net

The activation function defined as an input to activation for each layer:

Cost function to estimate the error: defined as loss function – mean_squared_error

Printed summary of the model

 Greedy exploration implementation

Epsilon value we have chosen to permit random selection of an action is 0.1

Given an input state, choose_action function will generate an action which will be either random,

or best action based on highest Q(s,a) value. This value will be determined by get_best_action

function.

Get_best_action function will run a forward pass to receive all Q-values for each action, and then

choose the maximum action.

Greedy exploration implementation in choosing actions

 Experience replay implementation

Experience replay is implemented as a function that makes use of memory space and a fixed

batch size to learn from past experiences.

We have determined memory space size to be 25 and batch size to 5 experiences. Get_targets

function called for each experience returns the set of target Q-values.

For action a0 the target value is calculated as whereas for other

actions, target it is the output of the first forward pass.

Gamma value is initialized to 0.1 and it is gradually increased to improve the performance of

future rewards.

Experience replay implementation

 Training the network – gist of the algorithm

The important part of the algorithm is performed in two steps:

- Experience generation

- Train model on experiences.

Variables max_epochs is initialized to 5000 and max_steps_per_epoch to 1000. After each epoch

is done, the environment is reset to its initial state.

For each epoch, an action is chosen using greedy approach. That action is inputted to the

environment using step function and a new state and reward is outputted. These data altogether

create a new experience which is inserted to the memory space.

System learns from a random batch of experiences by a call to learn_from_replay_memories

function.

Two Step System Training Implementation

 Software Dependencies:
(Python Code was run on Windows 10 platform)

System dependencies necessary for correct execution are:

* Python 2.7 [https://www.python.org/download/releases/2.7/]

* Numpy [http://www.numpy.org/]

* Scipy [https://www.scipy.org/]

* Keras [https://keras.io/]

* OpenAI Gym [https://github.com/openai/gym]

https://www.python.org/download/releases/2.7/
http://www.numpy.org/
https://www.scipy.org/
https://keras.io/
https://github.com/openai/gym

5. Experiments and Evaluation

We ran several experiments in order to find the most efficient parameters. Given that the

algorithm took at least 2 hours to converge after every individual change of the parameters, we

tried to come up with the specific combinations that would maximize the performance in general.

We ran the algorithm on 5 different combinations of parameters as shown below. Each version

was run for 2500 epochs.

Parameters – A Parameters - B

Parameters - C Parameters - D

Parameters - E

Below we can observe the performance of the learning algorithm corresponding to 5 different

learning runs (A ,B, C, D, E) of 2500 episodes each:

Every unit on the X-axis corresponds to 10 episodes.

As it can be observed from the graph, there are continuous fluctuations during the first 1250

episodes. That is because initially, the underlying model returns quasi-random estimations of the

Q values; but as it gains experience and learns from the training memories, the Q-values begin to

approach a more precise and consistent state.

Each learning run tends to average toward a positive mean and gradually converges. However,

there might still be occasional sharp changes of reward values. This can be attributed to the

randomness inherent to the ε-greedy approach we have used.

Detailed output data for each run can be found in attached excel file: test_bed_results.xlsx

Some of the conclusions that we were able to achieve by running partial learning trials, using

various combination of parameters are:

- Diminishing memory size improves accuracy of the system. That is because

experiences tend to be more accurate with time and keeping the latest ones in memory

space assures the mini batch will contain consistent tuples.

- Gradually increasing decay factor (gamma) from 0.1 to 0.975 improved the learning

rate performance. This is consistent with the fact that the network trust on its future

rewards estimate increases over time as it learns.

-1.5

-1

-0.5

0

0.5

0 25 50 75 100 125 150 175 200 225 250

av
g

e
rr

o
r

p
e

r
st

e
p

 (
%

)

Test Runs - Avg-Step Reward vs Episode #

Avg step-error A

Avg step-error B

Avg step-error C

Avg step-error D

Avg step-error E

We also determined the following possible improvements to increase the performance rate:

- Gradual decay of epsilon factor

- Testing with more configurations of memory size and mini batch size.

 Error rate and confidence intervals:

In order to determine the performance of the trained model, we devised a bed test with 300

random episodes. For testing purposes we defined “winning” the episode as a Boolean value that

represents the event of obtaining an overall score of 100 or more in addition to safely landing the

aircraft.

Below we can observe the obtained results.

6. References

[1] Michael Nielson, Neural Network and Deep Learning

http://neuralnetworksanddeeplearning.com/

[2] Nervanasys.com, Demystifying Deep Reinforcement Learning

https://www.nervanasys.com/demystifying-deep-reinforcement-learning/

[3] Keras Documentation: https://keras.io/

[4] Learningmachines101.com, How to build a lunar lander autopilot learning machine

http://www.learningmachines101.com/lm101-025-how-to-build-a-lunar-lander-autopilot-

learning-machine/

[5] Gym.openai.com, LunarLander-v2 https://gym.openai.com/envs/LunarLander-v2

7. Links

Python Code – Github : https://github.com/raskolnnikov/deep_q_learning

Youtube Videos:

Untrained network: https://www.youtube.com/watch?v=T72fQgUWD90

Trained network: https://www.youtube.com/watch?v=kTpkaOgMBEM

http://neuralnetworksanddeeplearning.com/
https://www.nervanasys.com/demystifying-deep-reinforcement-learning/
https://keras.io/
http://www.learningmachines101.com/lm101-025-how-to-build-a-lunar-lander-autopilot-learning-machine/
http://www.learningmachines101.com/lm101-025-how-to-build-a-lunar-lander-autopilot-learning-machine/
https://gym.openai.com/envs/LunarLander-v2
https://github.com/raskolnnikov/deep_q_learning
https://www.youtube.com/watch?v=T72fQgUWD90
https://www.youtube.com/watch?v=kTpkaOgMBEM

