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Machine Learning:

Ensemble Methods

(bagging and boosting)



Ensemble Methods
• An ensemble is a set of classifiers/regressors (either different

algorithms or different settings of the same algorithm, or the 
same algorithm on different samples of the dataset) that learn
a target function, and their individual predictions are 
combined to classify new examples.

• Ensembles generally improve the generalization performance 
of a set of individual models on a domain.

• Based on the following idea: A large number of relatively 
uncorrelated models operating as a committee will 
outperform any of the individual constituent models.



Example:
Weather Forecast

GROUND 
TRUTH

PREDICTOR1

PREDICTOR2

PREDICTOR3

PREDICTOR4

PREDICTOR5

Combine

X
X

X

X X X
X X

X X

X

100% CORRECT!
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Why to use 
Ensemble Methods?

• Statistical reasons:
o A set of classifiers with similar training performances may

have different generalization performances
o Combining outputs of several classifiers reduces the risk

of selecting a poorly performing (weak) classifier.
• Too large volumes of data:

o If the amount of data to be analyzed is too large, a single 
classifier may not be able to handle it; train different
classifiers on different partitions of data.

• Too little data:
o Ensemble systems can also be used when there is too

little data by the use of  resampling techniques.



● The the error of a learning algorithm (will see later evaluation) has three components: the 

noise, the bias, and the variance:

Error(x) = Bias(x)2 + Variance(x) + Noise(X)

➢The noise is the irreducible error (random errors in the data that can’t be eliminated, for 

example due to corrupted input, data entering errors..) 

➢The bias is the systematic error that the learning algorithm is expected to make due to, 

e.g.,  architectural choices (e.g. if we use a Perceptron for data that are not lineraly

separable) or to insufficient/unrepresentative training data

➢The variance measures the sensitivity of the algorithm to the specific training set 

and/or hyper-parameters used (algorithms can be more or less robust to such

variations).  
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Why to use 
Ensemble Methods?

Ensembles may help reducing both bias and 
variance (except noise, which is irreducible error)



The relation between error, bias and 
variance

• X, Y, ෠𝑌 are random variables describing the distribution of values for instances x, and their ground

truth and predicted values f(x) and h(x)

• ℎ 𝑋 is and estimator (hypothesis) of the true (unknown) function 𝑓 𝑋 , generated by some 

model M
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𝑌 = 𝑓 𝑋 + 𝜀 y ∈ 𝑌 values are generated by the (unknown) 𝑓 𝑋 plus «some» random error 𝜀

𝑀𝑆𝐸 = 𝐸 ℎ 𝑋 − 𝑓 𝑋 2 = 𝐸 (ℎ 𝑋 + 𝐸 ℎ(𝑥) − 𝐸 ℎ 𝑋 − 𝑓(𝑋) )2 =….= 𝐸 ℎ 𝑋 − 𝑓 𝑋 2 + 𝐸 ℎ 𝑋 − 𝑓 𝑋 2 =

𝐸 ෠𝑌 − 𝑌 2+ E ෠𝑌 − 𝑌
2

+ 𝜀 =𝐵𝑖𝑎𝑠2 + Variance + irreducible error

Bias2(h,f)= 𝐸 ℎ 𝑋 − 𝑓 𝑋 2 = 𝐸2 ℎ(𝑋) + 𝑓 𝑋 2 − 2𝐸 ℎ 𝑋 𝑓 𝑋
Bias is the difference between the

mean predicted values of our model and the correct values which we are trying to predict

Var(h)=𝐸 ℎ 𝑋 − 𝐸 ℎ(𝑋) 2 variance is the expected variability of the model around its mean

𝑀𝑆𝐸 = 𝐸 ℎ 𝑋 − 𝑓 𝑋 2 = 𝐸 ෠𝑌 − 𝑓 𝑋 2 𝐦𝐞𝐚𝐧 𝐬𝐪𝐮𝐚𝐫𝐞 𝐞𝐫𝐫𝐨𝐫 is is the expected (mean)

value of the square error over the entire distribution



True function, model hypothesis, random 
error

● 𝑌 = 𝑓 𝑋 + 𝜀
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f(𝑋)

ℎ(𝑋)
𝜀𝑖



Bias and variance, the intuition
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𝐸 ℎ(𝑋)

|𝑓 𝑥𝑖 − 𝐸[ℎ 𝑥𝑖 ]|

෍

𝑖

(ℎ𝑖 𝑥𝑘 − 𝐸[ℎ 𝑥𝑘 ])2

Variance: How much the model varies e.g.

with different runs (hyperparameters)

or data samples

Bias: How much the «mean» model

differs from the true function
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• When combining multiple independent and diverse decisions each of which is

at least more accurate than random guessing, the variance is reduced and so 

does the error rate. 

• Where ℎ𝑖(x,D) is the hypothesis generated by i-th learner of an ensamle. 

• In practice, the idea is the following:

If we use “simple” models trained on smaller samples, the individual variance 

of each hypothesis can be higher than for a more complex learner, but still in 

most cases the ensamble variance is lower than if we use one single complex 

learner (will discuss later about bias)

Why to use 
Ensemble Methods?

𝑉𝑎𝑟 𝐸𝑛𝑠𝑎𝑚𝑏𝑙𝑒 ℎ𝑖 𝑥, 𝐷 =
σ𝑚𝑉𝑎𝑟(ℎ𝑖 𝑥, 𝐷𝑖 )

𝑚



Example

• Suppose there are 25 “simple” classifiers

➢Each classifier has an average error rate, 𝜀 = 0.35 (which is a mid-high rate)

➢Assume classifiers-generated hypotheses hi(x) are statistically independent,  

and final class is predicted with majority voting

➢The probability that the ensemble classifier makes a wrong prediction (it is 

wrong if at least 13 out of 25 make the wrong prediction):

If classifiers are independent, the probability
that the ensemble makes an error is very low!

All possible ways, given a set  of 25

classifiers, of having i (with i>12)

classifiers that make an error, and

25-i producing a correct prediction

σ𝑖=13..25
25
𝑖

𝜀𝑖 1 − 𝜀 25-i=0,6
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Learning Ensembles
• Learn multiple alternative models using different training data or

different learning algorithms.

• Combine decisions of multiple definitions, e.g. using weighted voting.

Training Data

Data1 Data mData2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Learner1 Learner2 Learner m⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Model1 Model2 Model m⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Model Combiner Final Model
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Methods for 
Constructing Ensembles

• By manipulating the training set: Create multiple training sets by 
resampling the original data according to some sampling distribution.

• By manipulating the input features: Choose a subset of input features 
to form each training set.

• By manipulating the class labels: Transform the training data into a 
binary class problem by randomly partitioning the class labels into two
disjoint subsets (e.g. for 4 labels:  (AB)  (CD)).

• By manipulating the learning algorithm: Manipulate the learning 
algorithm to generate different models (e.g. different
hyperparameters)



Homogeneous Ensembles

• Use a single, arbitrary learning algorithm but manipulate
training data to make it learn multiple models h1(x) h2(x).. hm(x)
• Data1 ≠ Data2 ≠ … ≠ Data m
• Learner1 = Learner2 = … = Learner m

• Different methods for changing training data:
1. Bagging: Resample data (Useful to reduce the variance)
2. Boosting: Re-weight data (Useful to reduce the bias)



Bagging
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Random 
samples 
of dataset

A high variance for a model is not good, suggesting its performance is 
sensitive to the training data provided (low generalization power). So, 
even if more training data is provided, the model may still perform poorly. 
And, this may not even reduce the variance of our model.

➢ Solution: BAGGING, a shorthand for the combination of 
Bootstrapping and aggregating



The basic idea of bagging with bootstrap

15



16

Bootstrapping is a method to help decrease the variance of the classifier

and reduce overfitting, by resampling data from the training set. The 

ensamble model created should be less overfitted than a single individual

model. 

➢ How: Each individual classifiers randomly extracts a sample of m

instances over the training set of n instances with replacement 

(instances are put back in the urn, therefore they can be sampled more 

than one time). If the sample has the same cardinality as the original

set m=n, is called «the  0.632 bootstrap». 

➢ When: Effective method in limited data contexts (high variance, risk of 

overfitting). 

Bagging: Bootstrapping



Bootstrapping
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Example with n=12 and m=5 (note the effect of replacement) 
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➢ Instances that are not extracted during bagging, are used for 

testing

➢ Each instance x out of n has probability of (1/n)m of being

selected in a training sample of m instances, and (1 – 1/n)m of 

being left as test data, in each bagging round. 

Training DataData ID

Bagging: Bootstrapping

Original training dataset has n=10 instances. n=m in this example



Example (n=m)
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Each instance has a probability p=1/n of being extracted out of n 
instances at each extraction. Since extraction is “with replacement” (the 
instance is put back in the urn after having been extracted) the 
probability is always the same at each extraction.
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2
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3
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4
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5
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6
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Training set Test set

7



The 0.632 bootstrap

• Each example in the original dataset has a selection probability of 

1/n on n samples

• If n=m, on average, 36.8% of the data-points are left unselected

and can be used for testing

26

Why?
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The 0.632 bootstrap

This method is also called the 0.632 bootstrap

➢If we have n instances, each instance has a probability 1/n

of being picked and (1-1/n) of not being picked at each

extraction

➢If m=n, its probability of ending up in the test data (= not

being selected in any of n extractions) is:

➢This means the training data will contain approximately

63.2% of the instances
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Example of Bagging
We aim to learn a classifier C(x) in ℜ1 (x is a continuous variable). 
Assume that the “real” (unknown) classification function f(x) is:

0.3 0.8 x

+1 +1-1

Goal: find a collection of 10 simple thresholding (=linear) classifiers

that can collectively classify correctly the data.

i.e. , each classifier Ci learn a single threshold Ti such that:

IF  x<=Ti then C

else not(C)

• In this example data is not linearly separable, a classifier for this data 
must learn a decision region, e.g.:

IF T1<= x <=T2 then C 
else not(C) 

➢ In our example, the “true” (unknown) values for decision
boundaries are T1=0.3 and T2=0.8.



Training set
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x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y=C(x) 1 1 1 0 0 0 0 1 1 1

We now create 10 samples of this data with bootstrapping, and 
on any sample, we train a “simple” threshold classifier.

This is the training set: we have 10 pairs (x, C(x))

Remember: Each sample is one training set (bagging round) of size 10. 
This means that for 10 times (bagging rounds) we sample 10 instances
from the original dataset with replacement. The extracted instances in a 
round(i) are used to train the i-th learner hi, and the non-extracted
instances are used for testing.
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Note: In each round the 
same training example
can be extracted more 
than one time, and some 
examples are not
extracted. 

For each bagging, 
we show the 
threshold learned 
by each classifier

Note that each classifier is 
does not correctly
classifies some of the 
training data! 
E.g. classifier 1 is wrong on 
the last two items of the 
“sampled” training  set: 
c(0.9) = -1  (and is instead 1)



Bagging: Aggregation

• In the previous example, given an initial training set of 10 examples, we

bag the data 10 times and we learn 10 threshold classifiers Ci (i=1,..., 10), 

(each of our hi(x)) has an expected error rate E[ hi(x) - f(x)] = 𝜀i

• We then need to combine these results (ensemble method)

• There exists several methods to determine the final score, e.g.:

1. Majority voting

2. Combining (averaging) classification functions



Bagging: Aggregation
Majority voting

Majority voting (Hard voting): we just need a majority of 

classifiers to determine what the result could be.

A simple version of Majority voting for binary classifiers (with 

values +1, -1):

IF sign(ΣiCi(xj)) = +, then C(xj) = 1

➢This means: if majority says “1” (if σ(+1)> σ(-1) )  then, 

predicted class is 1  (the sign of the sum of prediction is 

positive)
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Bagging with Majority Voting
IF applied to training data

Accuracy of ensemble classifier: 100% ☺



Bagging with weighted 
Aggregation

Weighted voting (Soft voting): Every classifier i output a class 

based on the learned model hi(x) for each instance x, and these

predictions are multiplied by each classifier’s weight 

(relevance), and finally averaged by the number of classifiers. 

The final class label is then derived from the class label with the 

highest average probability.

Tip: In reality, weights are hard to find using intuition. To counter this 

subjective process, a linear optimization equation or a neural network 

could be used to learn the optimal weighting for each of the models to 

optimize the accuracy of the ensemble.

https://www.analyticsvidhya.com/blog/2015/08/optimal-weights-ensemble-learner-neural-network/


Bagging with aggregation by averaging
different learned functions

Example: creating a non-linear classifier out of many
linear classifiers (e.g perceptrons)
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3
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4
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5
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By averaging all the lines
we may obtain a perfect
classifier

6
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• Robust to overfitting
• Main goal is to reduce variance of combined models
• Improves ability to ignore irrelevant features 
• Works well if all instances have an equal probability p of being

classified correctly or wrongly (means: Pr(f(x)≠h(x))=p for all x in 
X)  (this means that, more or less, all instances have the same
complexity)

Bagging: 
Notable Benefits
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Bagging:
Issues

• Does not focus on any particular instance of the 
training data - assumption is that all instances
have the same probability of misclassification
(often wrong assumption, e.g. image recognition) 

• What if we want to focus on a particular instance of 
training data?
➢ E.g. some instance can be more difficult to 

classify than others (and on these difficult
instances most “simple” classifiers may be all
wrong, so majority voting won’t work)



Example 1: 
Handwriting Recognition
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Some signs are more difficult than others,
even for humans



Example 2: 
Face Recognition
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Not all faces are easily recognized here..



Idea: The main idea of boosting is to add models to the overall

ensemble sequentially. At each iteration, a new model is 

created and the new base-learner model is forced to «pay

attention» to the errors of the previous learners. 

As for bagging, the algorithm creates multiple weak models

whose output is finally combined to get an overall prediction. 

➢ The main goal of boosting is to reduce the bias (errors due 

to the model  itself, not to its sensitivity to data variations)

Boosting
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How: An iterative procedure to adaptively change the 

distribution of training data by focusing (in each iteration) on 

previously misclassified examples.

1. Get a dataset

2. Take a bootstrap  (as for bagging), and train a model on it

3. See on which examples the model is wrong

4. Upweight those ‘hard ‘ examples, downweight the ‘easy’ 

ones,

5. Go back to step 2, but with a weighted bootstrap, so that

in next iteration harder examples have a higher probability

of being extracted

Boosting

Each new member of the ensemble «focuses» on 
the instances that the previous ones got wrong!



• Instances xi in the training set D are sampled with a probability

that depends on their weight 𝑤𝑖
𝑗
(P(X=xi)=wi in iteration j). 

Initially, instances are equally weighted (P(X=xi)=1/n) .

• In iteration (round) j, instances that are wrongly classified by 

current learner will have their weights increased (so that their

probability of being sampled in next boosting round will grow)

• Those that are classified correctly will have their weights

decreased

Boosting



The workflow of boosting algorithms

49



• Suppose example 4 is hard to classify (round 1 classifier is wrong on 
example 4)

• Its weight is increased, therefore it is more likely to be extracted again in 
subsequent weighted sampling rounds (2)

• Therefore, in the subsequent round, the learner is forced to pay more 
attention to the misclassified example (in the attempt of reducing the 
error on the learning set)

• If round 2 classifier is again wrong on example 4, it probability of being
extracted increases again

Boosting Example



Boosting flow diagram
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Adaboost
Adaptive Boost

• Input:

➢Training set D containing n instances

➢A classification algorithm (e.g., NN or a Tree-based

algorithm)

➢T iterations (i.e. rounds) (i=1,…,T). A classifier Ci is learned

at each round.

• Output: 

➢A composite classifier C*
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Adaboost: 
Training Phase

• Training data D contains n labeled data 
➢ (x1,y1), (x2,y2 ), (x3,y3),….(xn,yn)  
➢ where yi are the correct classifications

• Initially assign equal weight 1/n to each example
• To generate T “base” classifiers, we need T rounds
• Round i:

➢ instances from D are sampled with replacement, to 
generate the dataset Di (|Di| = n)

• Each instance’s chance of being selected in the next rounds
depends on its weight
➢the new sample is generated directly from the training 

data D with different sampling probability according to 
the weights; 



AdaBoost:
Testing Phase

● Testing occurs on individual classifiers Ci at the end of 

each round. 

● The performance of each classifier on training set is

used to assess the “importance” or authority of Ci

● Final testing is performed on unseen data (i.e. a 

validation set). To combine individual classifications by 

each Ci, the decision of each classifier is taken into

consideration proportionally to its importance
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Training phase of Ci depends on previous testing phase

on Ci-1

• Base classifier Ci, is learned from training data of set 

Di

• Error of Ci is tested always using Di (test set = training 

set)

• Weights of training data are adjusted depending on 

how they were classified

AdaBoost:
Testing Phase



• “Base” learned classifiers: C1, C2, …, CT

• Loss Function (Error rate of Ci on  sample Di): 

• i = index of boosting round

• j=index of instance in training data

• 𝛿(𝑐) 𝑖𝑠 1 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑐 𝑖𝑠 𝑡𝑟𝑢𝑒, else is zero

• wj = current weight of xj (1/n in round 1)

• Importance of a classifier: the weight of a classifier C i in 

final vote is: 

AdaBoost:
Testing Phases for individual classifier
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➢ Weight updating rule on all training data:

If classification of xj is correct, decrease weight (divide by expαi )

else increase (multiply by expαi )

αi is the “importance” of classifier Ci, as previously computed

Zi is used to obtain that weights wj are sampling probabilities for xj

AdaBoost:
Weight updating rule (before (i+1)th round)
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• The lower a classifier’s Ci error estimate     is, the more accurate it is, and 

therefore, the higher its importance 𝜶𝒊 when final voting is performed

• Final Testing (on unseen data, validation set): 

• For each class value yj, sum the weights of each classifier that assigned class yj to 

the instance xtest.  

• The class with the highest sum is the WINNER, the one the model will predict

• ẟ(x) = 1 if C(x)=y . For any possible classification value y  of xtest, the weighted sum of 

classifiers with output y is computed.  The y value that maximised this sum is taken as

the predicted vale.

AdaBoost:
Final Testing Phase



Example

Example:

• 3 class values: A, B and C

• 6 classifiers C1..C6

• C1,C2 and C6 classify xtest =A  ; C3 and C4 classify xtest =B; C5 classifies xtest =C

• weight of classifiers: C1, C2, C3 =0,1; C4=0,35; C5= 0,15 C6=0,2 (total is 1)

• 𝛿(∗) =1  iff * is true, else is 0

C(xtest)=A➔ 0,1 +0,1+0,2=0,4

C(xtest)=B➔ 0,1 +0,35=0,45

C(xtest)=C➔ 0,15

Argmax(A,B,C) =A
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Given D:<xi,yi> |D|=n

1. Set weights wj=1/n

2. For i=1..T

a. Bootstrap Di from D using P(X=xj)=wj, and train Ci

b. Test Ci and compute error rate on Di,  εi

3. IF εi>1/2 then T=t-1 abort loop

a. Compute αi

b. Update wj

4. Test: for any unseen xtest
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AdaBoost:
Pseudo-code
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Boosting

Round 1 + + + -- - - - - -
0.0094 0.0094 0.4623

B1

 = 1.9459

Illustrating AdaBoost

Initial weights for each of 10 sampled data points

Original

Data + + + -- - - - + +

0.1 0.1 0.1

C1 is wrong on these 2 examples, hence

their weight is increased

α

α=1.9459

Train C1 on these data points
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α

α

α

AdaBoost
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AdaBoost (another example):
Example Round 1
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AdaBoost:
Example Round 2 2
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AdaBoost:
Example Round 3 3



● The 3 learned classifiers
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AdaBoost:
Example 4
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AdaBoost:
The Final Hypothesis 5



Random Forest

69
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Random Forests

• Ensemble method designed for decision/regression tree

classifiers:

• Combines predictions made by many unpruned d-trees.

• Each tree is generated based on a bootstrap sample of training 

data and a vector of randomly chosen attributes (i.e. random 

vector)

• The random vectors are generated from a fixed probability

distribution.

• Final classification is chosen with a  voting method like Majority

Voting (Forest chooses the classification result having the majority of 

votes over all the trees in the forest)



Introduce two sources of randomness:

➢ Bagging method: each tree is grown using a 

bootstrap sample of training data (as in Bagging and 

Boosting)

➢ Random vector method: At each decision node, 

the best feature to test is chosen from a random 

sample of m attributes out of the total numer of 

features  d rather than from all features

➢ So, if we have a dataset of dimension |D|xd=nxd, we

randomly choose a subset Dk of D for training, and, 

at each split,  a subset m of the d features

Random Forests
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Random Forests:
Random Vector Method

The random vector method add the following rule to the D-tree

(same for both regression and categorical trees) training 

algorithm.

For each node of the tree:

a. Choose m features randomly (out of d) on which to 

base the decision at that node. 

b. Calculate the best split based on these m variables in 

the training set (e.g.,  test on best attribute in m based

on Infogain).

Why random vectors? if one or a few features are very strong predictors for the output class (or value 

for regressors), these features will be selected in many nodes of the trees, causing them to become 

correlated. Instead, the idea is to generate as much as possible independent models! Accordingly, the 

set of features from which to find the best split are selected randomly at each iteration.



1. Divide training examples into multiple training sets Dk using Bootstrap 

(i.e. choosing p times with replacement from all n available training 

cases)

2. For each training set Dk :

a. Train a decision tree with the random vector method

b. Estimate the error of the decision tree using the rest of the examples.

3. Aggregate the predictions of each tree to make classification decisions

using a voting methods (usually Majority Voting)

Random Forests:
Algorithm
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Random Forests:
Visual Explanation



Why use Random Vectors?

▪ Because in an ensemble, we want independent base learner

▪ Averaging over trees with different training samples reduces

the dependence of the predictions on a particular training 

sample (variance). 

▪ Using random vectors of features further reduce this

dependency. Typically, for a classification problem with d 

features, m=√d (rounded down) features are used in each split.

▪ Increasing the number of trees does not increase the risk of 

overfitting the data . 

▪ In fact the main advantage of RF is that they are very robust to 

overfitting
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Advantage of Random Forest

• Since each tree only handles a subset of features, this

can be considered a good choice when instances are 

described by very many features

• It is also considered a  good “dimensionality reduction” 

method (since it concentrates on subsets of features)
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Other Popular (and 
more recent) 

Ensambles
GRADIENT BOOSTING MACHINES



A hybrid between 
Adaboost and 
Random forest

• Every Decision Tree DTi

(either categorical or 
regression tree) tries to 
improve over the previous 
model by “paying  more 
attention” on instances 
where the previous model 
fails



How do we 
«pay more 
attention» to 
errors? 

• Every DTi (either categorical or regression
tree) tries to improve over the previous
model by paying more attention on 
instances where the previous model fails

• Adaboost does this by increasing the weight 
of misclassified instances

• GBM applies to regression trees, and does so 
using gradient descent

• How? 



Gradient 
boosting (1)

• Let’s say we start with a very simple model h0(x)

• We have set of training instances D: (x1,y1)..(xn,yn)  and 
for any xi we define the residual as follows: 

• 𝑟𝑗
0= yj – h0(xj)  (=the error of h0 on instance xj)

• We want to improve h0(x)  (reduce its residuals) by 
adding a new model h1(x)  such that:

h0(x)+h1(x)=y for any (x,y) in D

• Or equivalently:

h1(x)=y-h0(x)

Two questions:

1. How does this relate with gradient descent????

2. What if h1(x) does not achieve its task perfectly?



How do residuals relate with gradient?

• Let’s consider regressors. As we have seen, a common loss function is the  
Square Loss function (note: MSE is the mean of square losses), defined as: 

L=σ𝐿(𝑥𝑖 , ℎ 𝑥𝑖 )= σ(𝑦𝑖 − h(𝑥𝑖))
2/2 = σ(𝑦𝑖 − ෝ𝑦𝑖)

2/2

(also called squared sum of errors)

• To fit a model using this loss, we must optimize h(x) by changing its 
parameters in a way that h(x) “moves” in the opposite direction  of the Loss
gradient:

ℎ 𝑥𝑖 = ℎ 𝑥𝑖 −
𝜕𝐿

𝜕ℎ(𝑥𝑖)

But 
𝜕𝐿

𝜕ℎ(𝑥𝑖)
=
𝜕(σ(𝑦𝑖−h(𝑥𝑖))

2/2)

𝜕ℎ(𝑥𝑖)
= 𝑦𝑖-ℎ 𝑥𝑖 = 𝑦𝑖 - ො𝑦𝑖 = −𝑟𝑖=𝑔(𝑥𝑖)

The gradient is the opposite of the residual of h(x) on xi  !



Residuals can be interpreted as gradients!

• Back to GBM, let h0 (x) be an initial weak model (a regression tree) in the 
pipeline

• The residuals 𝑟𝑗
0of h0(x) on the dataset D are: (y1 – h0(x1))..(yn – h0(xn))

• Our aim is to «augment» h0(x) with h1(x)  such that h1(x) is a new model 
«fitted» on the residuals of the previous model. 

• The role of h1(x)  is to «compensate» the shortcomings of the previous
model (to generate an output that, added to previous function h0(x), cancel
or at least reduces the difference between the ground truth output and the 
generated output 

• If the new model (h0(x) + h1(x)) still performs poorly (=has high residuals), 
we can add another model h2(x) fitted on the residuals of h1(x) and iterate



How do we «fit a new model» hi+1(x) on the 
residuals of the previous model hi(x)?
• Just grow a model hi+1(x) (e.g., a tree) with the following training set:

• D: 𝑥𝑗 , 𝑦𝑗 − ℎ𝑖(𝑥𝑗) = 𝑥𝑗 , 𝑟𝑗
𝑖

• We train with current residuals (those of previous model) rather than with 
the «ground truth» output!

• The current model learns to output a quantity Ƹ𝑟 which «compensates» the 
residual of the previous model

• Let’s say that model «0» predicts h0(x)=1 for some x in D, but ground truth 
is 1.5; we would like model «1» to output a quantity that, if summed with 
the prediction of model «0», produces the exact value 1.5 (or at least
«closer» to the ground truth value 1.5)!!



The intuition 
behing GBM

• What does it means «fit a regression tree with negative gradients»?

• Remember: error= variance+bias2+noise  (slide 5)

• A basic assumption of regression is that sum of its residuals should 
ideally be 0, i.e. the residuals should be spread randomly  (which means 
that the residual error is only  “noise”, the random error 𝜀 that cannot be 
eliminated)

• If, instead,  we are able to see some “pattern of residuals” around 0, we 
can leverage those pattern to fit a model. (pattern of residuals mean 
that errors are somehow correlated, they are not random)

• GBM therefore reduce both variance and bias!

Each tree is the «sum» of previous trees with the current one



Gradient Boosting with Regression

Algorithm  (link):

Start with an initial weak learner, say: ℎ0 𝑥 =
σ 𝑦𝑗

𝑛
(𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑠𝑒𝑡)

Iterate until convergence: 

1. Calculate negative gradients: - 𝑔𝑗
𝑖 (residuals) of current model hi(x)

2. Fit a regression tree ℎ𝑟𝑖 (𝑥) to negative gradients - 𝑔𝑗
𝑖 of ℎ𝑖 𝑥 (i.e., train on pairs (𝑥𝑗 , 𝑟𝑗

𝑖) )

3. ℎ𝑖+1 𝑥 = ℎ𝑖 𝑥 + ℎ𝑟𝑖(𝑥)

Note that the role of ℎ𝑟𝑖(𝑥) is to COMPENSATE the shortcomings of ℎ𝑖 𝑥 . 

Final prediction is: ො𝑦 = σℎ𝑖 𝑥 = 𝑦0 + 𝑟𝑥
1 + 𝑟𝑥

2 +⋯𝑟𝑥
𝑘 since all subsequent predictors ℎ𝑟𝑖(𝑥) after h0 are trained

to predict residuals of their previous model. 

Residuals can be weighted in some implementation of the «basic» algorithm ℎ𝑖+1 𝑥 = ℎ𝑖 𝑥 + 𝛾ℎ𝑟𝑖(𝑥) . 

https://www.ccs.neu.edu/home/vip/teach/MLcourse/4_boosting/slides/gradient_boosting.pdf


Flowchart of GB



Example 
(1)

y



Example: 
first 

iteration 

https://blog.mlreview.com/gradient-boosting-from-scratch-
1e317ae4587d



Two more 
iterations 



After several
iterations



This visually 
shows what 

happens 
during 

gradient 
discent

https://morioh.com/p/e108a4521555



Popular variants
of GBM: LGBM

• Remember: «base» model in GBM is a 
regression tree (see lesson of regression
trees and splitting method)

• LightGBM: rather than sorting all possible
splits as in classic regression trees, LGBM 
uses Histogram based algorithm which 
buckets continuous features into discrete 
bins to construct feature histograms
during training

• First, continuous data are discretized into 
k bins (e.g., 256), next, statistics are 
accumulated for each bin (frequency 
histogram of bins)

• Best split is built exploiting k bins statistics

• Obvious reduction of memory 
consumption, LGBM is advantageous with 
large datasets



Other variants of GBM 

• XGB link

• CATBoost (for categorical features) link

https://arxiv.org/pdf/1603.02754.pdf
https://arxiv.org/pdf/1706.09516.pdf




Other Suggested Lectures

• General Overview: LINK and LINK

• Boosting and Bagging: LINK, LINK

• Random Trees and Extra Trees: LINK

• And the heterogeneous ensemble?

• Stacking and Bleeding: LINK
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https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
https://www.sciencedirect.com/science/article/pii/S1319157823000228
https://www3.nd.edu/~rjohns15/cse40647.sp14/www/content/lectures/31%20-%20Decision%20Tree%20Ensembles.pdf
https://becominghuman.ai/ensemble-learning-bagging-and-boosting-d20f38be9b1e
https://www3.nd.edu/~rjohns15/cse40647.sp14/www/content/lectures/31%20-%20Decision%20Tree%20Ensembles.pdf
https://www3.nd.edu/~rjohns15/cse40647.sp14/www/content/lectures/32%20-%20Stacking.pdf

