
Deep Learning
a.k.a. Neural Network



Deep neural network

• Deep NN are NN where the number of layers is much
higher than in original NN (with just one or two hidden
layers)

• The basic idea of deep NN is gradually «compressing» the 
input to obtain a (hierarchically) higher level 
representations of the input

• The last layer performs the prediction based on the 
highest level representation



Example: 
Image 

Processing

Hierarchical Learning:

➢The natural 
progression from a low 
level to a higher level 
features as seen in 
many real problems



Deep learning
But, until recently, available weight-updating algorithms (e.g., 
backpropagation) simply did not work on multi-layer
architectures. Why?



Backpropagation 
Drawbacks 

• Based on iterative weight-updating

• NN work by making thousands and 
thousands of tiny adjustments to edge 
weights, each making the network do 
better at the most recent pattern, but 
perhaps a little worse on many others

• Gets stuck in local minima, especially 
since it starts with random initialization



Complexity 
in NNs

• The number of levels (depth) is only 
one of the sources of complexity. 
Others are the number of neurons, 
connections, and weights

• These impact both on the cost of 
forwarding and backpropagation

• The main problem as complexity 
grows is the vanishing/exploding 
gradient

• What is this?



The 
Vanishing 
Gradient 
Problem

As more layers using certain activation functions  (e.g. 
sigmoid) are added to neural networks, the gradients of the 
loss function approaches zero, making the network hard to 
train.

• In short, it is related to the fact that weights updating at 
each layer depends on the gradient (the delta function)

• Using the backpropagation, the gradient at the earlier 
layers is the product of many terms from all the 
subsequent layers. 

• When there are many layers, there is an intrinsically 
unstable situation (it turns out that earlier weights gets 
updates much slower than the later weights). 

• The mathematical motivation for instability lies in the 
used activation functions, like the sigmoid function, that 
squishes a large input space into a small input space 
between 0 and 1. For example, the sigmoid function, 
whose derivative has the shape of a gaussian 
distribution. (link, link) 

http://neuralnetworksanddeeplearning.com/chap5.html
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484


Vanishing
gradient: why?

• Vanishing gradients usually 
happen when using the Sigmoid 
(or Tanh) activation functions in 
the hidden layer units. 

• When inputs become very small 
or very large, the sigmoid function 
saturates at 0 and 1 and the tanh 
function saturates at -1 and 1. In 
both these cases, their derivatives 
are extremely close to 0 
(saturating regions).

• Thus, if the input (netj) to the 
activation function lies in any of 
the saturating regions, then it has 
almost no gradient to propagate 
back through the network.



Vanishing gradient visualized

• The “useful” gradient information (the “deltas”) from the end of the network fails 
to reach the beginning of the network
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● Where σ(x) is the sigmoid
function

● So, deltas at the initial layers are 
the results of repetitive
multiplications of derivatives of 
the sigmoid function and 
synaptic weights, which are all
between -1 and 1

Remember, the superscript here denotes the layer

and [ ]  are omitted for simplicity



Since weights are usually -1<w<1, and the derivative of a 
sigmoid σ’(x)  has the following gaussian-like shape:  

..the “deltas” at the initial layers become quickly very small 
as the number of layers increase (the product of many
derivatives all much lower than one) – causing very slow 
convergence of weights on stable values

Vanishing Gradient



How to 
avoid
the 
vanishing 
gradient 
problem

• Solutions:

• Simplest  method: use other activation 
functions which doesn’t cause a small 
derivative (e.g. ReLU).

• Batch Normalization layers (link) –will see 
later in this course (Data preprocessing and 
model fitting)

• Residual networks: they provide residual 
connections straight to earlier layers (skip 
connections). (link, link) – not discussed in 
this course

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-batch-normalization/
https://www.d2l.ai/chapter_convolutional-modern/resnet.html
https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec


Why ReLU?

It has a “bigger” and constant derivative



Batch 
normalization

(in short)

• Batch normalization normalizes the 
input and ensures that|x| lies 
within the “good range” (the green 
region) and doesn’t reach the outer 
edges of the sigmoid function.

• If the input is in the “good” range, 
then the activation does not 
saturate, and thus the derivative 
also stays in the good range, i.e-
the derivative value isn’t too small. 

• Thus, batch normalization prevents 
the gradients from becoming too 
small and makes sure that the 
gradient signal is heard.

• (details later in this course)



Residual networks 
(ResNet) in short

• Residual networks: they 

provide connections 

straight to earlier layers 

(skip connections).

• link

https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec


Deep 

Neural 

Network 

Advantages 

• High-performance computing (such as 
GPU, graphics processing units): we can 
train models with many layers, nodes and 
connections (often millions of parameters) 
thanks to high parallel computing like 
Hadoop, NoSQL, Spark, etc.

• Vanishing Gradient: This is greatly 
simplified by the use of ReLU function 
(rectifier linear unit, see later) and other 
activation functions with "good" properties, 
or other mechanisms such as batch norm. 
and ResNets.

• Versatile method: Deep Neural Network 
approaches can be used for supervised, 
semi-supervised, unsupervised problems 
and for reinforcement learning.



Many Deep Learning models
1. Feedforward “discriminative” models (semi-
supervised/supervised training, used especially for image processing):
• CNN Convolutional Neural Networks

2. Unsupervised training (“generative” models to re-build the input, select 
essential features, etc: used for a large set of applications and input data)
• Stacked Denoising Auto-Encoders
• Generative Adversarial Networks (GAN)

3. Recurrent models (used for sequential data, such as speech, natural
language, patients trajectories..)
• RNN Recurrent neural Networks
• LSTM Long Short-Term memory

4. Reinforcement learning (to learn behaviors and strategies)
• Deep Q-Learning



CONVOLUTIONAL 
NEURAL 

NETWORKS



CNN

• Explicitly designed for image processing (although 
extensible to data that can be represented in 
matrix/tensor form)

• Architecture: a hierarchy of “loosely” connected 
layers, except for the last layers which are usually 
fully connected

• The first layer is directly connected to “pixels”



Important concepts in 
CNN architectures
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Convolution: what 
is ?

• A digital filter (a small 2D weight mask, 
also called kernel) sliding over the 
different input positions;

• For each position, an output value is 
generated by replacing the source pixel 
with a weighted sum of itself and it 
nearby pixels (convolution). 

• This is the equivalent of the netj
computation in MPN neurons, but only 
applies to a subset of signals (depending 
upon the dimension of the filter)

• So here each neuron performs a 
convolution on a subset of input signals

• Note: input in CNN is a matrix (or a multi-
layer volume) rather than a vector



Neurons like convolutors
• Given an nxn filter (also called kernel), if we connect the n2 inputs 

that it "covers" at the previous level, and we use weights as
connection weights, we notice that a convolution computes a 
weighted sum of input (net) like a “classic” neuron.

• However, neurons here are less connected, each only takes a 
subset of inputs from previous layer

Only 3 
connections are 
shown for clarity

We ignore the bias w0



2-D convolution (3x3 kernel)

input

Output («feature map»)

1 0 1

0 1 0

1 0 1

kernel

Further note that the output is a COMPRESSED representation of input, called feature map (it

refers to the fact that convolutions learn automatically latent higer-level features of the image)



Convolutional layers, once trained, detect progressively more 
complex features of an image
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3D Volumes
• Input data to CNN are 3-dimensional: height, 

width, depth. The depth is, e.g., the number of 
color channels. For example, an RGB image 
would have a depth of 3, and 
the greyscale image would have a depth of 1.

• They can also be different representations of 
an image, like rotations, so the “meaning” of 
the third dimension really depends on 
applications

• A fourth dimension is the batch size, see later.

• In summary, input and output data of 
a convolutional layers have 3D (or 4D with 
batch) dimensions, called VOLUMES.

• Filters (kernels) on each slice of a volume can 
be the same but in general are different.



Example:
Convolution on 3-D input volumes with 

3 different filters

Here, there is a different kernel sliding on each slice of the input volume –
convolutions are then combined on a 2D output, called feature map



Dimension of 
input/output 

volumes

• Input has a volume (HxWxD)
• Each kernel/filter kj has a volume 

HjxWjxDj spanning either on a single 
slice (Dj=1) of the input volume, or 
over the entire input volume D

• And you can have multiple kernels n
over the same 3D volume

• The dimension of the output volume 
depends on the input volume,on
the dimension and number of filters, 
and on how they slide over each
slice of a volume (see later for exact
computation)



Convolutions on 3D volumes
compress the data

Input volume :
32x32x3 neurons

Output volume  i:
28x28x6 neurons (obtained by 
applying 6 5x5x3 kernels to the i-
1 volume) => Dout=6

Wout=Win-F+1 (F is size 
of kernel)
32-5+1=28

Kernel 
(5x5x3)

Example of two-layers 3D-volumes 

Each kernel is applied on the input 3D volume

of feature maps and creates a compressed

feature map



Here, each 
kernel slides 
on all slices, 
output is a 

compressed 
3D volume 

Illustration of the processing of a single volume using CNN. To clarify how a single convolution layer of the CNN processes a 3D input volume 

of size 150 × 150 × 24, each 3D volume has 24 images (depth is 24) and a 2D convolution is applied to each image using a kernel of size K ×

K. The output of an individual kernel is then summed to create a 2D feature map (150-k+1 X 150-k+1). Usually, multiple kernels are used, and 

the above step is applied again for those kernels, and different feature maps are produced for respective kernels. The final result is a volume 

of feature maps. (https://www.researchgate.net/figure/Illustration-of-the-processing-of-a-single-volume-using-CNN-To-clarify-how-a-

single_fig1_332349176 )

Vin=150x150x24 (Win Hin Din)

Kernelj=kxkx24 but the 24 output are summed on a 

single slice (feature map)

And we have n kernels, so Dout=n

Concerning Wout and Hout, see later how to compute

https://www.researchgate.net/figure/Illustration-of-the-processing-of-a-single-volume-using-CNN-To-clarify-how-a-single_fig1_332349176


The 
network is 

now a 
sequence 

of “3D-
Volumes” 

layers

• Each layer of the NN receive and output a 3D volume 
(except the last)

• Width and height surfaces preserve the spatial 
organization of the original input (although progressively 
compressed in highr-level features), the depth identifies 
the “salient features” captured from the image by each 
kernel, arranged in slices (every slice is the result of the 
application of a kernel). Note that # of slices may vary in 
any layer



MLP vs 3D volumes



Ok but..

Q1: What exactly are these 
kernels/filters?

Q2: How do we compute the 
kernel/filters weight?

Q3: How do we select the size of a 
kernel/filter?



Q1: Kernels and Features

• Each filter/kernel can be thought of as a feature (pattern, trait) identifier.

• Captured features in the first layer can be (for images) straight edges, simple 
colors, and curves. The simplest characteristics that all images have in common 
with each other. 

• In the subsequent layers, patterns can be more complex (e.g., eyes, nose, for a 
face classifier). Note however that there is no explicit semantics here. 

• We can therefore see kernels as a “set of learnable weights to capture relevant 
features in data”.  (parameters)

• For this reason, the slices of output volumes after each convolutional+activation
layer are called “feature maps”



Example:
line detector

kernel



Application of a kernel to a
pixel map

Visualization of 
an image detail Pixel representation Pixel representation of filer 

Examples from: link

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/


Another example
source link

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/


Example 2: 
Effect of different «edge» filters/kernels

• In this example: kernels
are edge detectors, each
slice results from 
applying a specific type
of edge filter to the input 
image

• The upper image is the initial one. The 
subsequent 3 images are the result of 
applying 3 filters/kernels (in 3 slices).

• Note that each kernel is capturing a 
different edge of the original image



How many filters in each layer?

• For example, the following 96 filters are used in the first 
layer of a CNN to measure left-right mirror symmetry in 
images (see paper)

https://www.researchgate.net/publication/311368457_Using_Convolutional_Neural_Network_Filters_to_Measure_Left-Right_Mirror_Symmetry_in_Images


Remember: kernel weights
are the PARAMETERS of a 

CNN

• During the training phase, kernels (=the weights 
of each kernel) must be learned using a process 
similar to backpropagation

• Number and dimension of kernels are 
hyperparameters

• During the prediction phase,  kernels layers 
convolve around the input image and “activate” 
(like neurons) when the specific learned patterns  
they  are looking for (a line, a texture) is found in 
the input.



Q2: How to learn 
filter weights?

• This is easy: start with random selection of 
weights and use backpropagation with 
gradient descent,  like for multi-layer 
perceptron

• The only difference is with the neuron 
activation function (ReLu, see later)

• In the  final fully connected layer uses a 
different approach (Softmax, see later) 

• Since neurons are only locally connected, a 
lower number of weights must be computed 
in each slice (but we have many layers and 
many filters). 

• Note: especially in the first layer, we can also 
use pre-defined kernels (e.g., Gabor filters in 
the first layer)

𝛿

https://www.sciencedirect.com/topics/engineering/gabor-filter


Let’s consider the backpropagation step only on filters: this 
is the forward step to cpmpute convolutions



Backword step

Credits: https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199



Q3: How do we establish
the size of kernels?

Size of the kernels is an hyperparameter and plays an 
important role in finding the key patterns in data:

➢A larger size kernel can overlook at the features 
and could skip the essential details in the input

➢A smaller size kernel could provide more 
information leading to more confusion. Thus there
is a need to determine the most suitable size of 
the kernel (given the type of images, and the 
purpose of computation, e.g., face recognition, 
symmetry detection, semantic labeling of images 
….)



How do we establish
the size of kernels?

• Local kernels: In one extreme case where we have 
1x1 kernels, we are essentially saying low-level 
features are per-pixel, and they don't affect 
neighboring pixels at all, and that we should apply 
the same operation to all pixels.

• Global kernel: In the other extreme, we have kernels 
with the size of the entire image. In this case, the 
CNN essentially becomes fully connected and stops 
being a CNN, and we are no longer making any 
assumption on low-level feature locality.



Gaussian 
Pyramid

• Approaches like gaussian 
pyramids (set of different 
sized kernels) are generally 
used to test the efficiency of 
the feature extraction and 
appropriate size of the filter is 
determined.



Summary so far

• CNNs are multi-layered loosely connected neural
networks

• At each layer, a (2)-3D convolution operation is 
applied on the current layer using a (2) 3D kernels

• Key elements of the convolution are the kernel 
values and size

• Values (connection weights) are the CNN 
parameters,  learned using backpropagation

• Size is a hyperparameter to be tuned

• Kernel values are learned through backpropagation
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Strides:

• kernels slide on input with a 1-unit step (moves 1 
neuron to the left). We can use higher 
increment, or stride. This further reduces the 
number of connections  to be learned.

• A stride of 2 or 4 may imply a high-efficiency 
gain on first layers

• The increment of strides s are another 
hyperparameter



Example of 
Stride=1



Example of 
Stride=2



Why strides?

• They reduce the size (width, length) of the next
layer, and lets you decide how much overlap you
want between two output values in a layer.

• Let’s say you have a 5x5 input to a layer, and the 
kernel is 3x3. This is the first thing it sees:



Why strides?
• With a stride of 1, this will be the second

thing:

• With a stride of two, instead:

W’=(W-F)/S +1

=(5-3)/2 +1=2

F dim of filter, S dim of slide 

Formula to compute the dimension W’

of the output (same applies to H)



• With a stride of 3:

• We exceed the boundary of the input! So, 
how can we avoid this problem? 

Problem with strides
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Padding
• To solve the problem of «extremes edges» (kernels

that either don’t reach an edge of the input or 
exceed its boundaries) we use 0-valued borders
around the input volume. This is called padding

• Around the entire input, we add padding data with a 
width equal to the kernel/filter width minus one (or 
height equal to kernel height minus one) P=F-1 
(larger paddings can be used)

• The hyperparameter
“padding” P defines the 
thickness of such
borders. 



Computing output feature-map
dimensions with strides and padding

• Let Wout be the (horizontal) size of the output of a layer i
and Win the corresponding input dimension. Also, let 𝐹 be 
the horizontal size of the kernel/filter. The following 
relationship applies:

𝑊𝑜𝑢𝑡 = ((𝑊𝑖𝑛-𝐹 + 2 ∙ 𝑃𝑎𝑑𝑑𝑖𝑛𝑔)/Stride) + 1 
• A similar relationship links the vertical parameters.
• In previous example, padding=2, F=3, Win=5; stride=3,  
𝑊𝑜𝑢𝑡 =((5-3+2x2)/3)+1)= 3 

• Larger strides, larger compression
• The depth of the output volume instead depends on the 

depth of each kernel d and on the number of kernels k 
Dout= (kxd) 
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Activation function

• So far we introduced the steps to compute a 
convolution of input data (the analogous of netj(x) 
function in standard neural networks). The convolutions
are then fed into neurons nj that compute an activation 
function, to finally produce an output oj.

• In the Multilayer Perceptron (MLP) networks the 
(historically) most popular activation function is the 
sigmoid function.

• In deep networks, the use of sigmoid is problematic for 
the vanishing gradient problem, as we have seen.



ReLU
To solve this problem, the Rectified Linear (ReLU) 
activation function has been introduced

1. The derivative is 0 for negative or null
values of the net(x)

2. No saturation for positive values: the range 
of activations is [0, ∞)

3. It causes sparse activation of neurons
which are shown to add robustness (all the 

activations of negative input 
are zero). Note that ReLU is NOT linear: it
is linear in [-∞ 0)[0 + ∞) but not in the full 
interval

4. Issue: output of layers is no longer
normalized in [0 1] (➔ need batch norm. for 

inner layes, not just input)

Note that 2 and 3 are also drawback, please

read more on ReLU



Relu derivative

𝜕ሺ𝑅𝐸𝐿𝑈ሺ𝑥ሻሻ

𝜕𝑥
=ቊ

1 𝑥 > 0
0 𝑥 < 0



Types of Activation Functions
(many are used in literature)

To learn more on CNN activation functions: link

https://arxiv.org/pdf/1811.03378.pdf


ELU, ReLU, LReLU
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Pooling 
Layer

• Pooling is to aggregate data in input volume, to generate lower 
dimension feature maps (it is an additional way to compress 
data).

• A pooling layer is a new layer added after the 
convolutional layer and after nonlinearity (e.g. ReLU) has been 
applied;

• A Pooling layer is frequently used in convolutional neural 
networks, with the purpose to progressively reduce the spatial 
size of the representation, to reduce the number of features 
and the computational complexity of the network.

• The main reason for the pooling layer is to prevent the model 
from overfitting. The idea is to reduce the number of 
unnecessary details, keeping the “invariants”.

• “Reasonably” invariant operators for small translations are the 
average and max pooling

• The pooling layer operates upon each feature map separately, 
to create a new set of the same number of pooled feature maps

• It makes sense for images (not always reasonable for other 
types of input) to reduce variability due to rotation and scaling



Pooling operations: Max pooling

Output slice j of layer i



Example of effect of max pooling





Pooling with different kernels and  stride 
dimensions

What numbers do you have

on paddig layers?



Pooling methods

More on: link

https://arxiv.org/pdf/1606.02228v2.pdf


Advantages of pooling

• The idea is that pooling creates "summaries" of each
sub-region.

• Dimension Reduction: In deep learning when we train
a model, because of excessive data size the model can 
take a huge amount of time for training. 

• Consider e.g., the use of max-pooling of size 5x5 with 
stride 1, applied after the convolution operation. It
reduces each successive region of size 5x5 of a slice
to a 1x1 region with a max value of the 5x5 region. 



Advantages of pooling

• Rotational/Position Invariance Feature Extraction: 
Pooling can also be used for extracting rotational
and position invariant feature. 

• Consider the same example of using pooling of size
5x5. Pooling extracts the max value from the given
5x5 region. Extract the dominant feature value (max
value) from the given region, irrespective of the 
position of the feature value. 

• The max value would be the same from any position 
inside the region. Pooling thus provides
rotational/positional invariant feature extraction.



Pooling 
Caveat

• It is important to be careful in the use of 
the pooling layer since you are actually
reducing the “context” of elements within
a given input (e.g., pixels surrounding a 
pixel; words to the left and right of a word; 
etc)

• While it would help at significantly
reducing the complexity of the model, it
might cause to lose the «location 
sensitivity» in the model.

• This is particularly problematic e.g., for 
videos, where context might be very
important (e.g., detecting trajectories)



Pooling Drawbacks
example

Only background survives

Contrast is excessively reduced



What about backpropagation of the pooling 
layers?

• Intuitively a non-max value 
will not affect the output, 
since the output is only 
concerned about the max 
value in the filter. Therefore 
the non-max values have a 
gradient of 0.

• (note the gradients flowing 
from subsequent layers are 
set here to “some” value 
just to provide an example)
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The last layer is
a fully

connected layer

• Therfore the first 
operation to connect the 
output volume of the last 
CNN layer before the FC 
layers is FLATTENING 
(maps are converted into
vectors)



Softmax Function
• In the FC layer, the activation level 𝑛𝑒𝑡𝑘 of individual 

neurons is calculated in the usual way , but the activation 
function for the last output layer is (instead of Sigmoid or 
ReLU) the Softmax:

where the yk can be interpreted as probabilities since 
they are in the [0,1] range 

𝑦𝑘=f(𝑛𝑒𝑡𝑘)=
𝑒𝑛𝑒𝑡𝑘

σ𝑗 𝑒
𝑛𝑒𝑡𝑗



Softmax VS Sigmoid

Fully connected
NN layer with 
softmax

Note: b here is the 
bias/threshold, as usual



Example (1)



Example (2)



Example (3)
in matrix form



The effect of 
the Softmax 
function

From scores to probabilities. 
Highest probabilities are 

assigned to highest values

X
xj

xj
xyj



Computing 
the Loss in 
the softmax

layer

Gradient descent of a loss function, as for NN:

• However: 

➢Commonly, we use Cross-Entropy in the final layer of a 
convolutional net

➢The cross-entropy between two discrete distributions 𝑝 and 𝑞
(measuring how far 𝑞 differs from 𝑝 for fixed 𝑝) is defined by:



Computing the error (e.g., for multi-
class classifiers)

• Let Th=[0,0..1,0..0] be the ground truth multi-class 
classification (n classes) for input instance inh∈ D h=1..|D| (a 1 
value in position k of Th indicates that the correct 
classification for inh is the k-th class label), 

• let Yh be the output (softmax) vector , assigning
probabilities to each possible class value;

• The cross-entropy H(Th, Yh) is given by (for n  classes):

𝐻ሺ𝑻𝒉,𝒀ℎ)=σ𝑗=1..𝑛 𝑡𝑗
ℎ log 𝑦𝑗

ℎ = σ𝑗=1..𝑛 𝑡𝑗
ℎ log 𝑠𝑗

ℎሺ𝑥ℎ𝑗ሻ



Backpropagation on softmax layer

• First of all, note that the ground truth vector T: [t1,t2,…tk] is a «one-hot» vector, only one 
element (say, tm) is =1, and all the others are zero  (the softmax is used for classifiers!)

• Therefore,
𝜕𝐿

𝜕𝑦𝑖
=

𝜕𝐿

𝜕𝑠𝑖
=0 𝑖𝑓 𝑖 ≠ 𝑚 𝑎𝑛𝑑 −

1

𝑠𝑚
𝑖𝑓 𝑖 = 𝑚

• 𝑤ℎ𝑒𝑟𝑒 𝑠𝑖 is the softmax of 𝑧𝑖

s1

s3

s2



Backpropagation of softmax layer

𝜕𝐿

𝜕𝑥𝑖
=
𝜕𝑠𝑚

𝜕𝑥𝑖
×

𝜕𝐿

𝜕𝑠𝑚

𝑥𝑖

𝜕𝐿

𝜕𝑠𝑚
=

Softmax Cross entropy

We can write
𝜕𝑠𝑚

𝜕𝑥𝑖
= 𝑠𝑚(1- 𝑠𝑚) if i=m else −𝑠𝑖𝑠𝑚 (see al the derivation steps here)

This means that the backward gradient is -𝑠𝑚(1- 𝑠𝑚)
1

𝑠𝑚
= (𝑠𝑚-1)  at position m, and −𝑠𝑖𝑠𝑚(-

1

𝑠𝑚
)= 𝑠𝑖 for𝑖 ≠ 𝑚

https://towardsdatascience.com/backpropagation-in-rnn-explained-bdf853b4e1c2#:~:text=You%20see%2C%20a%20RNN%20essentially,where%20they%20are%20summed%20up.


Backpropagation of the softmax layer (general 
formulation)

𝜕𝐿/𝜕𝑤𝑖𝑗 =
𝜕𝐿

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑤𝑖𝑗

𝐿ሺ𝐻 𝑇, 𝑌 = −෍

𝑗

𝑡𝑗𝑙𝑜𝑔𝑦𝑗

𝑦𝑗 = 𝑠𝑗 =
𝑒𝑧𝑗

σ𝑖 𝑒
𝑧𝑖

𝑧𝑗 =෍

𝑖

𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗

𝜕𝐿

𝜕𝑠𝑗
= −

𝑡𝑗

𝑦𝑗
𝜕𝑦𝑗

𝜕𝑧𝑗
= 𝑠𝑗ሺ1 − 𝑠𝑗ሻ

𝜕𝑧𝑗

𝜕𝑤𝑖𝑗
= 𝑥𝑖

𝜕𝐿

𝜕𝑤𝑖𝑗
=

𝜕𝐿

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑤𝑖𝑗
= −𝑡𝑗ሺ1 − 𝑠𝑗ሻ𝑥𝑖

L(T,Y)

t1  t2  t3

Superscript h is omitted here

𝜕𝐿

𝜕𝑦𝑗

𝜕𝐿

𝜕𝑦𝑗

𝜕𝑦𝑗
𝜕𝑧𝑗

𝜕𝐿

𝜕𝑦𝑗

𝜕𝑦𝑗
𝜕𝑧𝑗

𝜕𝑧𝑗
𝜕𝑥𝑖

Cross 

entropy
softmaxconvolution

X z y
tw

But, remember that 𝑡𝑗 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≠ 𝑚 𝑎𝑛𝑑 𝑡𝑚 = 1

Therefore, only 𝑤𝑖𝑚 (i=1…K) are updated!



Putting it all
together

• The network is a sequence of convolution, 
activation and pooling layers with a final fully 
connected layer with Softmax

• Hyper-Parameters are: pooling and strides, padding, 
the number and type of kernels/filters and their 
dimension, activation function, number of hidden 
layers;

• Parameters to be estimated: all weights (kernels 
and final MLP connection weights)

• Clearly also the shape of input and input features is 
relevant: this is part of data pre-processing. For 
images, RGB pixels are often sufficient (no pre-
processing)

• Method to estimate weights: backpropagation



More mathematical details

• Backpropagation in convolutional layers: link

• Softmax: link

• Much more in next semester (Prof. Rodolà)

http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/


STACKED DENOISING 
AUTOENCODERS

(untrained deep NN)



Stacked 
Denoising 

Auto-
encoders

• They are basically a «minimally 
trained» (or untrained) 
generalization of Backpropagation, 
with multiple layers, such as for 
CNN

• Purpose is to learn in an untrained 
manner the “latent” (essential) 
features of an input (images or any 
other type of non-sequential input)

• Main application is anomaly 
detection



Basic idea of autoencoders

• Learn a «compressed» representation of input data, one that
preserves its essential features

• To learn this representation, 
– first compress the input (encoder), 
– then try to reconstruct it (decoder),
– Finally, measure the reconstruction error (loss) and update the 

parameters to minimize it

• Once trained, the model is able to identify instances that
subtantially deviate from normality (➔ high reconstruction
error)



Auto-Encoders: Encoder+Decoder
• Encoder: The deterministic (= non-stochastic) mapping fθ that

transforms an input x into a «hidden» compressed representation  
y=fθ(x)

➢θ= (W,b) are the parameters of the encoder (convolutional
layers in CNN are encoders)

• Decoder: The resulting hidden representation y=f(x) is then
mapped back to a «reconstructed» d dimensional vector z via a 
«reverse» decoding function g(y)



Auto-Encoders

• In general, z is not to be interpreted as an exact
reconstruction of x, but rather, in probabilistic
terms, as the parameters 𝜽 (typically the mean) of a 
distribution p(X=x|Z = z) that «may generate x with 
high probability»  where p(x|z) denotes the 
conditional probability of  x given z.

• Autoencoder training objective consists of 
minimizing the reconstruction error (the difference
between x and z=gθ’(y))

• Intuitively, if a representation f(x) allows a good
reconstruction of its original input x, it means that it
has retained much of the information that was
present in that input (=identifying the «essential» 
features).



Auto-encoders Implementation
NN with backpropagation 

• They can be implemented as a neural 
network with one (or more) hidden 
layer(s) and an equal number of nodes 
in input and output

• Can be trained without supervision, 
since we don’t need to know the class 
of an instance: the task is simply to 
learn the weights in order for the 
output to be similar to the input (or 
better: to learn the “essential” features 
of the input instances)

• Often used an as anomaly detector: if 
an instance is very different from 
“normality”, the learnd network is 
unable to reconstruct it (reconstruction 
error is high). 



Denoising 
Auto-

encoders 
a better 
method

• The reconstruction criterion alone is unable to 
guarantee the extraction of useful features as it can 
lead to the obvious («trivial») solution “simply copy 
the input on output”

• Denoising criterion: 

“A good representation is one that can be 
obtained robustly from a corrupted input and that 
will be useful for recovering the corresponding 
clean input”

• This means that we add some random noise to 
(=we corrupt) the input when training, to avoid 
trivial learning and detect the relevant features 
of the input in a “robust” way



Denoising autoencoders



Denoising Auto-encoders Architecture

Denoising autoencoders can still be learned using 
backpropagation with gradient descent. What is the advantage?  
As in the figure, y is a “compact” representation of x, one that 
only retains only its essential features.



Stacked Denoising Auto-encoder 
Architecture

• After training a first level denoising autoencoder, its learned
encoding function fθ is used on “clean” input (no noise) 

• The resulting representation is used to train a second level
denoising autoencoder (middle) to learn a second level encoding
function f. 

• From there, the procedure can be repeated with more layers (for 
details, see this paper)

https://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf


Staked vrs Deep autoencoders.. What’s the 
difference?

• The difference is in the way they are trained

• Deep autoencoders are trained with standard 
backpropagation, staked autoencoders are 
trained «layer by layer» as explained in the 
already indicated paper

https://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf


SAE can also be used to learn a classifier with 
minimal supervision, the final layer training can be 

supervised

• After training a stack of encoders , an 
output layer is added on top of the 
stack (with softmax, as for convnets).

• The parameters of the whole system
are fine-tuned to minimize the error
in predicting the supervised target 
(e.g., class), by performing gradient
descent.

• Everything here just like convnets



Anomaly 
detection is 
untrained

Large reconstruction errors imply anomaly



Advantages of deep methods over 
«traditional» ML algorithms

• Traditionally input features to a machine learning algorithm have
to be hand-crafted, and the result often depends on 
practitioners’ expertise and domain knowledge to determine
patterns of prior interest. 

• Conversely, Deep Learning techniques learn optimal features 
(the slices, or feature maps) directly from the data without any
guidance, allowing for the automatic discovery of latent
relationships that might otherwise be not found

• Caveat: this is true for images, not for many other types of data, 
especially human-enterd that still require a lot of effor for feature 
extraction and engineering

• The most essential idea of Deep Learning is that of 
representation. Algorithms rely on complex, «dense» data 
representations that are often expressed as compositions of 
other, simpler representations



Other deep Learning issues

1. Highly parametric: like (and perhaps more than) 
for “surface” learners, parameter and feature 
tuning is a complex task (can easily have more 
than 100 million parameters (weights)!!)  GTP-4 
has 1.76 trillion parameters!!!

2. Poor interpretability: machine learning algorithms
like decision trees (or itemset mining) give us
crisp rules as to why it chose what it chose, while
deep learners produce scores and not reveal why
they have given that score. In many industrial 
applications, this is an issue. 

3. Need lots of training data. For simpler and 
sparse input data «off the shelf» ML methods can 
still be better (e.g. regression/decision forests and 
matrix factorization methods)



How to cope with high number of parameters

• Dropout: consists of «turning off» neurons with a predetermined
probability (e.g. 40% in the fully connected layers). 

• Turning off a neuron means temporarily removing it from the 
network, along with all its incoming and outgoing connections

• This means that every iteration uses a different sample of the 
model's parameters, which forces each neuron to have more robust
features that can be used with other random neurons. 

• It is also a way to prevent overfitting
• However, dropout also increases the training time needed for the 

model's convergence.
• More here

https://jmlr.org/papers/v15/srivastava14a.html


How to cope with high number of hyper-
parameters

• Random Search uses random combinations of 
hyperparameters. This means that not all of the h-parameter
values are tried, and instead, they are sampled with fixed (k) 
numbers of iterations

• Grid Search looks through each combination of 
hyperparameters. This means that every combination of 
specified hyperparameter values will be tried (often
unfeasible).

• Both implemented in sckit learn and other ML platforms. Use 
Random Search when number of h-parameters is very high. 



3. Needs big datasets

In general, with so many parameters to 
learn, it may perform poorly with small 
datasets
• However, in some case, it is possible to 

“expand” the representation of 
instances with data extracted from 
larger datasets

• See «few shot learning» as a battery of 
methods to «make the best» out of few
examples

• Transfer learning (train on a large 
dataset, fine-tune on the one for which
we have few examples) is also used

How to cope with limited data 

https://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf
https://www.mdpi.com/2227-7390/10/19/3619


How to select the right 
Loss and Final Activation Functions

Usually, the selection of the Loss and Activation function
depends on the problem type (LINK):

https://towardsdatascience.com/deep-learning-which-loss-and-activation-functions-should-i-use-ac02f1c56aa8


Additional and  «HOT TOPICS» 
in Deep Learning

• NN Architectures LINK, LINK, LINK
• How to choose the right activation and loss functions: LINK
• About the optimizers: LINK
• Overfitting: Dropout and Regularization LINK, LINK, LINK
• NN weight initialization LINK, LINK
• Curse of dimensionality LINK
• Interpretability/Explainability LINK, LINK, LINK
• Novel LOSS functions LINK
• Meta-learning LINK
• Transfer Learning LINK
• Few-shot learning LINK
• Attention Mechanisms LINK
• Other useful links LINK , LINK

Some will be expanded during lessons on ML workfolw

(data engineering and model fitting)

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo-prequel-cells-layers/
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/deep-learning-which-loss-and-activation-functions-should-i-use-ac02f1c56aa8
https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://towardsdatascience.com/simplified-math-behind-dropout-in-deep-learning-6d50f3f47275
https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79
https://www.deeplearning.ai/ai-notes/initialization/
https://medium.com/free-code-camp/the-curse-of-dimensionality-how-we-can-save-big-data-from-itself-d9fa0f872335
https://towardsdatascience.com/interpretable-machine-learning-1dec0f2f3e6b
https://christophm.github.io/interpretable-ml-book/
https://towardsdatascience.com/interpretability-of-deep-learning-models-9f52e54d72ab
https://www.researchgate.net/publication/340594267_A_Comprehensive_Survey_of_Loss_Functions_in_Machine_Learning
https://arxiv.org/abs/2004.05439
https://arxiv.org/abs/1911.02685?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529
https://arxiv.org/pdf/1904.05046.pdf
http://akosiorek.github.io/ml/2017/10/14/visual-attention.html
https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-science-pdf-f22dc900d2d7
https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-science-pdf-f22dc900d2d7
https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463

