
Deep Learning
a.k.a. Neural Network

Deep neural network

• Deep NN are NN where the number of layers is much
higher than in original NN (with just one or two hidden
layers)

• The basic idea of deep NN is gradually «compressing» the
input to obtain a (hierarchically) higher level
representations of the input

• The last layer performs the prediction based on the
highest level representation

Example:
Image

Processing

Hierarchical Learning:

➢The natural
progression from a low
level to a higher level
features as seen in
many real problems

Deep learning
But, until recently, available weight-updating algorithms (e.g.,
backpropagation) simply did not work on multi-layer
architectures. Why?

Backpropagation
Drawbacks

• Based on iterative weight-updating

• NN work by making thousands and
thousands of tiny adjustments to edge
weights, each making the network do
better at the most recent pattern, but
perhaps a little worse on many others

• Gets stuck in local minima, especially
since it starts with random initialization

Complexity
in NNs

• The number of levels (depth) is only
one of the sources of complexity.
Others are the number of neurons,
connections, and weights

• These impact both on the cost of
forwarding and backpropagation

• The main problem as complexity
grows is the vanishing/exploding
gradient

• What is this?

The
Vanishing
Gradient
Problem

As more layers using certain activation functions (e.g.
sigmoid) are added to neural networks, the gradients of the
loss function approaches zero, making the network hard to
train.

• In short, it is related to the fact that weights updating at
each layer depends on the gradient (the delta function)

• Using the backpropagation, the gradient at the earlier
layers is the product of many terms from all the
subsequent layers.

• When there are many layers, there is an intrinsically
unstable situation (it turns out that earlier weights gets
updates much slower than the later weights).

• The mathematical motivation for instability lies in the
used activation functions, like the sigmoid function, that
squishes a large input space into a small input space
between 0 and 1. For example, the sigmoid function,
whose derivative has the shape of a gaussian
distribution. (link, link)

http://neuralnetworksanddeeplearning.com/chap5.html
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484

Vanishing
gradient: why?

• Vanishing gradients usually
happen when using the Sigmoid
(or Tanh) activation functions in
the hidden layer units.

• When inputs become very small
or very large, the sigmoid function
saturates at 0 and 1 and the tanh
function saturates at -1 and 1. In
both these cases, their derivatives
are extremely close to 0
(saturating regions).

• Thus, if the input (netj) to the
activation function lies in any of
the saturating regions, then it has
almost no gradient to propagate
back through the network.

Vanishing gradient visualized

• The “useful” gradient information (the “deltas”) from the end of the network fails
to reach the beginning of the network

Vanishing gradient (math)
𝛿𝑗
1 = 𝑜𝑗

1 1 − 𝑜𝑗
1 ෍

𝑗→𝑘

𝜹𝒌
2 𝑤𝑗𝑘

δj1

δk2 δi3

𝛿𝑗
1 = 𝑜𝑗

1 1 − 𝑜𝑗
1 ෍

𝑗→𝑘

𝜹𝒌
2 𝑤𝑗𝑘

= 𝑜𝑗
1 1 − 𝑜𝑗

1 ෍

𝑗→𝑘

ሺ𝑜𝑘
2
1 − 𝑜𝑘

2 ෍

𝑘→𝑖

𝜹𝒊
3𝑤𝑘𝑖 ሻ 𝑤𝑗𝑘

𝛿𝑗
1 = 𝑜𝑗

1 1 − 𝑜𝑗
1 ෍

𝑗→𝑘

𝜹𝒌
2 𝑤𝑗𝑘 = 𝑜𝑗

1 1 − 𝑜𝑗
1 ෍

𝑗→𝑘

ሺ𝑜𝑘
2
1 − 𝑜𝑘

2 ෍

𝑘→𝑖

𝜹𝒊
3𝑤𝑘𝑖 ሻ 𝑤𝑗𝑘

= 𝑜𝑗
1 1 − 𝑜𝑗

1 ෍

𝑗→𝑘

ሺ𝑜𝑘
2
1 − 𝑜𝑘

2 ෍

𝑘→𝑖

൱ሺ𝑜𝑖
3
1 − 𝑜𝑖

3 ෍

𝑖→𝑛

𝜹𝒏
4 𝑤𝑖𝑛 𝑤𝑘𝑖 ሻ 𝑤𝑗𝑘 =

● Where σ(x) is the sigmoid
function

● So, deltas at the initial layers are
the results of repetitive
multiplications of derivatives of
the sigmoid function and
synaptic weights, which are all
between -1 and 1

Remember, the superscript here denotes the layer

and [] are omitted for simplicity

Since weights are usually -1<w<1, and the derivative of a
sigmoid σ’(x) has the following gaussian-like shape:

..the “deltas” at the initial layers become quickly very small
as the number of layers increase (the product of many
derivatives all much lower than one) – causing very slow
convergence of weights on stable values

Vanishing Gradient

How to
avoid
the
vanishing
gradient
problem

• Solutions:

• Simplest method: use other activation
functions which doesn’t cause a small
derivative (e.g. ReLU).

• Batch Normalization layers (link) –will see
later in this course (Data preprocessing and
model fitting)

• Residual networks: they provide residual
connections straight to earlier layers (skip
connections). (link, link) – not discussed in
this course

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-batch-normalization/
https://www.d2l.ai/chapter_convolutional-modern/resnet.html
https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec

Why ReLU?

It has a “bigger” and constant derivative

Batch
normalization

(in short)

• Batch normalization normalizes the
input and ensures that|x| lies
within the “good range” (the green
region) and doesn’t reach the outer
edges of the sigmoid function.

• If the input is in the “good” range,
then the activation does not
saturate, and thus the derivative
also stays in the good range, i.e-
the derivative value isn’t too small.

• Thus, batch normalization prevents
the gradients from becoming too
small and makes sure that the
gradient signal is heard.

• (details later in this course)

Residual networks
(ResNet) in short

• Residual networks: they

provide connections

straight to earlier layers

(skip connections).

• link

https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec

Deep

Neural

Network

Advantages

• High-performance computing (such as
GPU, graphics processing units): we can
train models with many layers, nodes and
connections (often millions of parameters)
thanks to high parallel computing like
Hadoop, NoSQL, Spark, etc.

• Vanishing Gradient: This is greatly
simplified by the use of ReLU function
(rectifier linear unit, see later) and other
activation functions with "good" properties,
or other mechanisms such as batch norm.
and ResNets.

• Versatile method: Deep Neural Network
approaches can be used for supervised,
semi-supervised, unsupervised problems
and for reinforcement learning.

Many Deep Learning models
1. Feedforward “discriminative” models (semi-
supervised/supervised training, used especially for image processing):
• CNN Convolutional Neural Networks

2. Unsupervised training (“generative” models to re-build the input, select
essential features, etc: used for a large set of applications and input data)
• Stacked Denoising Auto-Encoders
• Generative Adversarial Networks (GAN)

3. Recurrent models (used for sequential data, such as speech, natural
language, patients trajectories..)
• RNN Recurrent neural Networks
• LSTM Long Short-Term memory

4. Reinforcement learning (to learn behaviors and strategies)
• Deep Q-Learning

CONVOLUTIONAL
NEURAL

NETWORKS

CNN

• Explicitly designed for image processing (although
extensible to data that can be represented in
matrix/tensor form)

• Architecture: a hierarchy of “loosely” connected
layers, except for the last layers which are usually
fully connected

• The first layer is directly connected to “pixels”

Important concepts in
CNN architectures

So
ftm

ax

C
o

n
vo

lu
tio

n

V
o

lu
m

e
s o

f
co

n
vo

lu
vo

lu
to

rs

Strid
e

s P
a

d
d

in
g

A
ctiva

tio
n

fu
n

ctio
n P

o
o

lin
g

Convolution: what
is ?

• A digital filter (a small 2D weight mask,
also called kernel) sliding over the
different input positions;

• For each position, an output value is
generated by replacing the source pixel
with a weighted sum of itself and it
nearby pixels (convolution).

• This is the equivalent of the netj
computation in MPN neurons, but only
applies to a subset of signals (depending
upon the dimension of the filter)

• So here each neuron performs a
convolution on a subset of input signals

• Note: input in CNN is a matrix (or a multi-
layer volume) rather than a vector

Neurons like convolutors
• Given an nxn filter (also called kernel), if we connect the n2 inputs

that it "covers" at the previous level, and we use weights as
connection weights, we notice that a convolution computes a
weighted sum of input (net) like a “classic” neuron.

• However, neurons here are less connected, each only takes a
subset of inputs from previous layer

Only 3
connections are
shown for clarity

We ignore the bias w0

2-D convolution (3x3 kernel)

input

Output («feature map»)

1 0 1

0 1 0

1 0 1

kernel

Further note that the output is a COMPRESSED representation of input, called feature map (it

refers to the fact that convolutions learn automatically latent higer-level features of the image)

Convolutional layers, once trained, detect progressively more
complex features of an image

So
ftm

ax

C
o

n
vo

lu
tio

n

V
o

lu
m

e
s o

f
co

n
vo

lu
vo

lu
to

rs

Strid
e

s P
a

d
d

in
g

A
ctiva

tio
n

fu
n

ctio
n P

o
o

lin
g

3D Volumes
• Input data to CNN are 3-dimensional: height,

width, depth. The depth is, e.g., the number of
color channels. For example, an RGB image
would have a depth of 3, and
the greyscale image would have a depth of 1.

• They can also be different representations of
an image, like rotations, so the “meaning” of
the third dimension really depends on
applications

• A fourth dimension is the batch size, see later.

• In summary, input and output data of
a convolutional layers have 3D (or 4D with
batch) dimensions, called VOLUMES.

• Filters (kernels) on each slice of a volume can
be the same but in general are different.

Example:
Convolution on 3-D input volumes with

3 different filters

Here, there is a different kernel sliding on each slice of the input volume –
convolutions are then combined on a 2D output, called feature map

Dimension of
input/output

volumes

• Input has a volume (HxWxD)
• Each kernel/filter kj has a volume

HjxWjxDj spanning either on a single
slice (Dj=1) of the input volume, or
over the entire input volume D

• And you can have multiple kernels n
over the same 3D volume

• The dimension of the output volume
depends on the input volume,on
the dimension and number of filters,
and on how they slide over each
slice of a volume (see later for exact
computation)

Convolutions on 3D volumes
compress the data

Input volume :
32x32x3 neurons

Output volume i:
28x28x6 neurons (obtained by
applying 6 5x5x3 kernels to the i-
1 volume) => Dout=6

Wout=Win-F+1 (F is size
of kernel)
32-5+1=28

Kernel
(5x5x3)

Example of two-layers 3D-volumes

Each kernel is applied on the input 3D volume

of feature maps and creates a compressed

feature map

Here, each
kernel slides
on all slices,
output is a

compressed
3D volume

Illustration of the processing of a single volume using CNN. To clarify how a single convolution layer of the CNN processes a 3D input volume

of size 150 × 150 × 24, each 3D volume has 24 images (depth is 24) and a 2D convolution is applied to each image using a kernel of size K ×

K. The output of an individual kernel is then summed to create a 2D feature map (150-k+1 X 150-k+1). Usually, multiple kernels are used, and

the above step is applied again for those kernels, and different feature maps are produced for respective kernels. The final result is a volume

of feature maps. (https://www.researchgate.net/figure/Illustration-of-the-processing-of-a-single-volume-using-CNN-To-clarify-how-a-

single_fig1_332349176)

Vin=150x150x24 (Win Hin Din)

Kernelj=kxkx24 but the 24 output are summed on a

single slice (feature map)

And we have n kernels, so Dout=n

Concerning Wout and Hout, see later how to compute

https://www.researchgate.net/figure/Illustration-of-the-processing-of-a-single-volume-using-CNN-To-clarify-how-a-single_fig1_332349176

The
network is

now a
sequence

of “3D-
Volumes”

layers

• Each layer of the NN receive and output a 3D volume
(except the last)

• Width and height surfaces preserve the spatial
organization of the original input (although progressively
compressed in highr-level features), the depth identifies
the “salient features” captured from the image by each
kernel, arranged in slices (every slice is the result of the
application of a kernel). Note that # of slices may vary in
any layer

MLP vs 3D volumes

Ok but..

Q1: What exactly are these
kernels/filters?

Q2: How do we compute the
kernel/filters weight?

Q3: How do we select the size of a
kernel/filter?

Q1: Kernels and Features

• Each filter/kernel can be thought of as a feature (pattern, trait) identifier.

• Captured features in the first layer can be (for images) straight edges, simple
colors, and curves. The simplest characteristics that all images have in common
with each other.

• In the subsequent layers, patterns can be more complex (e.g., eyes, nose, for a
face classifier). Note however that there is no explicit semantics here.

• We can therefore see kernels as a “set of learnable weights to capture relevant
features in data”. (parameters)

• For this reason, the slices of output volumes after each convolutional+activation
layer are called “feature maps”

Example:
line detector

kernel

Application of a kernel to a
pixel map

Visualization of
an image detail Pixel representation Pixel representation of filer

Examples from: link

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

Another example
source link

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

Example 2:
Effect of different «edge» filters/kernels

• In this example: kernels
are edge detectors, each
slice results from
applying a specific type
of edge filter to the input
image

• The upper image is the initial one. The
subsequent 3 images are the result of
applying 3 filters/kernels (in 3 slices).

• Note that each kernel is capturing a
different edge of the original image

How many filters in each layer?

• For example, the following 96 filters are used in the first
layer of a CNN to measure left-right mirror symmetry in
images (see paper)

https://www.researchgate.net/publication/311368457_Using_Convolutional_Neural_Network_Filters_to_Measure_Left-Right_Mirror_Symmetry_in_Images

Remember: kernel weights
are the PARAMETERS of a

CNN

• During the training phase, kernels (=the weights
of each kernel) must be learned using a process
similar to backpropagation

• Number and dimension of kernels are
hyperparameters

• During the prediction phase, kernels layers
convolve around the input image and “activate”
(like neurons) when the specific learned patterns
they are looking for (a line, a texture) is found in
the input.

Q2: How to learn
filter weights?

• This is easy: start with random selection of
weights and use backpropagation with
gradient descent, like for multi-layer
perceptron

• The only difference is with the neuron
activation function (ReLu, see later)

• In the final fully connected layer uses a
different approach (Softmax, see later)

• Since neurons are only locally connected, a
lower number of weights must be computed
in each slice (but we have many layers and
many filters).

• Note: especially in the first layer, we can also
use pre-defined kernels (e.g., Gabor filters in
the first layer)

𝛿

https://www.sciencedirect.com/topics/engineering/gabor-filter

Let’s consider the backpropagation step only on filters: this
is the forward step to cpmpute convolutions

Backword step

Credits: https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

Q3: How do we establish
the size of kernels?

Size of the kernels is an hyperparameter and plays an
important role in finding the key patterns in data:

➢A larger size kernel can overlook at the features
and could skip the essential details in the input

➢A smaller size kernel could provide more
information leading to more confusion. Thus there
is a need to determine the most suitable size of
the kernel (given the type of images, and the
purpose of computation, e.g., face recognition,
symmetry detection, semantic labeling of images
….)

How do we establish
the size of kernels?

• Local kernels: In one extreme case where we have
1x1 kernels, we are essentially saying low-level
features are per-pixel, and they don't affect
neighboring pixels at all, and that we should apply
the same operation to all pixels.

• Global kernel: In the other extreme, we have kernels
with the size of the entire image. In this case, the
CNN essentially becomes fully connected and stops
being a CNN, and we are no longer making any
assumption on low-level feature locality.

Gaussian
Pyramid

• Approaches like gaussian
pyramids (set of different
sized kernels) are generally
used to test the efficiency of
the feature extraction and
appropriate size of the filter is
determined.

Summary so far

• CNNs are multi-layered loosely connected neural
networks

• At each layer, a (2)-3D convolution operation is
applied on the current layer using a (2) 3D kernels

• Key elements of the convolution are the kernel
values and size

• Values (connection weights) are the CNN
parameters, learned using backpropagation

• Size is a hyperparameter to be tuned

• Kernel values are learned through backpropagation

So
ftm

ax

C
o

n
vo

lu
tio

n

V
o

lu
m

e
s o

f
co

n
vo

lu
vo

lu
to

rs

Strid
e

s P
a

d
d

in
g

A
ctiva

tio
n

fu
n

ctio
n P

o
o

lin
g

Strides:

• kernels slide on input with a 1-unit step (moves 1
neuron to the left). We can use higher
increment, or stride. This further reduces the
number of connections to be learned.

• A stride of 2 or 4 may imply a high-efficiency
gain on first layers

• The increment of strides s are another
hyperparameter

Example of
Stride=1

Example of
Stride=2

Why strides?

• They reduce the size (width, length) of the next
layer, and lets you decide how much overlap you
want between two output values in a layer.

• Let’s say you have a 5x5 input to a layer, and the
kernel is 3x3. This is the first thing it sees:

Why strides?
• With a stride of 1, this will be the second

thing:

• With a stride of two, instead:

W’=(W-F)/S +1

=(5-3)/2 +1=2

F dim of filter, S dim of slide

Formula to compute the dimension W’

of the output (same applies to H)

• With a stride of 3:

• We exceed the boundary of the input! So,
how can we avoid this problem?

Problem with strides

So
ftm

ax

C
o

n
vo

lu
tio

n

V
o

lu
m

e
s o

f
co

n
vo

lu
vo

lu
to

rs

Strid
e

s P
a

d
d

in
g

A
ctiva

tio
n

fu
n

ctio
n P

o
o

lin
g

Padding
• To solve the problem of «extremes edges» (kernels

that either don’t reach an edge of the input or
exceed its boundaries) we use 0-valued borders
around the input volume. This is called padding

• Around the entire input, we add padding data with a
width equal to the kernel/filter width minus one (or
height equal to kernel height minus one) P=F-1
(larger paddings can be used)

• The hyperparameter
“padding” P defines the
thickness of such
borders.

Computing output feature-map
dimensions with strides and padding

• Let Wout be the (horizontal) size of the output of a layer i
and Win the corresponding input dimension. Also, let 𝐹 be
the horizontal size of the kernel/filter. The following
relationship applies:

𝑊𝑜𝑢𝑡 = ((𝑊𝑖𝑛-𝐹 + 2 ∙ 𝑃𝑎𝑑𝑑𝑖𝑛𝑔)/Stride) + 1
• A similar relationship links the vertical parameters.
• In previous example, padding=2, F=3, Win=5; stride=3,
𝑊𝑜𝑢𝑡 =((5-3+2x2)/3)+1)= 3

• Larger strides, larger compression
• The depth of the output volume instead depends on the

depth of each kernel d and on the number of kernels k
Dout= (kxd)

So
ftm

ax

C
o

n
vo

lu
tio

n

V
o

lu
m

e
s o

f
co

n
vo

lu
vo

lu
to

rs

Strid
e

s P
a

d
d

in
g

A
ctiva

tio
n

fu
n

ctio
n P

o
o

lin
g

Activation function

• So far we introduced the steps to compute a
convolution of input data (the analogous of netj(x)
function in standard neural networks). The convolutions
are then fed into neurons nj that compute an activation
function, to finally produce an output oj.

• In the Multilayer Perceptron (MLP) networks the
(historically) most popular activation function is the
sigmoid function.

• In deep networks, the use of sigmoid is problematic for
the vanishing gradient problem, as we have seen.

ReLU
To solve this problem, the Rectified Linear (ReLU)
activation function has been introduced

1. The derivative is 0 for negative or null
values of the net(x)

2. No saturation for positive values: the range
of activations is [0, ∞)

3. It causes sparse activation of neurons
which are shown to add robustness (all the

activations of negative input
are zero). Note that ReLU is NOT linear: it
is linear in [-∞ 0)[0 + ∞) but not in the full
interval

4. Issue: output of layers is no longer
normalized in [0 1] (➔ need batch norm. for

inner layes, not just input)

Note that 2 and 3 are also drawback, please

read more on ReLU

Relu derivative

𝜕ሺ𝑅𝐸𝐿𝑈ሺ𝑥ሻሻ

𝜕𝑥
=ቊ

1 𝑥 > 0
0 𝑥 < 0

Types of Activation Functions
(many are used in literature)

To learn more on CNN activation functions: link

https://arxiv.org/pdf/1811.03378.pdf

ELU, ReLU, LReLU

So
ftm

ax

C
o

n
vo

lu
tio

n

V
o

lu
m

e
s o

f
co

n
vo

lu
vo

lu
to

rs

Strid
e

s P
a

d
d

in
g

A
ctiva

tio
n

fu
n

ctio
n P

o
o

lin
g

Pooling
Layer

• Pooling is to aggregate data in input volume, to generate lower
dimension feature maps (it is an additional way to compress
data).

• A pooling layer is a new layer added after the
convolutional layer and after nonlinearity (e.g. ReLU) has been
applied;

• A Pooling layer is frequently used in convolutional neural
networks, with the purpose to progressively reduce the spatial
size of the representation, to reduce the number of features
and the computational complexity of the network.

• The main reason for the pooling layer is to prevent the model
from overfitting. The idea is to reduce the number of
unnecessary details, keeping the “invariants”.

• “Reasonably” invariant operators for small translations are the
average and max pooling

• The pooling layer operates upon each feature map separately,
to create a new set of the same number of pooled feature maps

• It makes sense for images (not always reasonable for other
types of input) to reduce variability due to rotation and scaling

Pooling operations: Max pooling

Output slice j of layer i

Example of effect of max pooling

Pooling with different kernels and stride
dimensions

What numbers do you have

on paddig layers?

Pooling methods

More on: link

https://arxiv.org/pdf/1606.02228v2.pdf

Advantages of pooling

• The idea is that pooling creates "summaries" of each
sub-region.

• Dimension Reduction: In deep learning when we train
a model, because of excessive data size the model can
take a huge amount of time for training.

• Consider e.g., the use of max-pooling of size 5x5 with
stride 1, applied after the convolution operation. It
reduces each successive region of size 5x5 of a slice
to a 1x1 region with a max value of the 5x5 region.

Advantages of pooling

• Rotational/Position Invariance Feature Extraction:
Pooling can also be used for extracting rotational
and position invariant feature.

• Consider the same example of using pooling of size
5x5. Pooling extracts the max value from the given
5x5 region. Extract the dominant feature value (max
value) from the given region, irrespective of the
position of the feature value.

• The max value would be the same from any position
inside the region. Pooling thus provides
rotational/positional invariant feature extraction.

Pooling
Caveat

• It is important to be careful in the use of
the pooling layer since you are actually
reducing the “context” of elements within
a given input (e.g., pixels surrounding a
pixel; words to the left and right of a word;
etc)

• While it would help at significantly
reducing the complexity of the model, it
might cause to lose the «location
sensitivity» in the model.

• This is particularly problematic e.g., for
videos, where context might be very
important (e.g., detecting trajectories)

Pooling Drawbacks
example

Only background survives

Contrast is excessively reduced

What about backpropagation of the pooling
layers?

• Intuitively a non-max value
will not affect the output,
since the output is only
concerned about the max
value in the filter. Therefore
the non-max values have a
gradient of 0.

• (note the gradients flowing
from subsequent layers are
set here to “some” value
just to provide an example)

So
ftm

ax

C
o

n
vo

lu
tio

n

V
o

lu
m

e
s o

f
co

n
vo

lu
vo

lu
to

rs

Strid
e

s P
a

d
d

in
g

A
ctiva

tio
n

fu
n

ctio
n P

o
o

lin
g

The last layer is
a fully

connected layer

• Therfore the first
operation to connect the
output volume of the last
CNN layer before the FC
layers is FLATTENING
(maps are converted into
vectors)

Softmax Function
• In the FC layer, the activation level 𝑛𝑒𝑡𝑘 of individual

neurons is calculated in the usual way , but the activation
function for the last output layer is (instead of Sigmoid or
ReLU) the Softmax:

where the yk can be interpreted as probabilities since
they are in the [0,1] range

𝑦𝑘=f(𝑛𝑒𝑡𝑘)=
𝑒𝑛𝑒𝑡𝑘

σ𝑗 𝑒
𝑛𝑒𝑡𝑗

Softmax VS Sigmoid

Fully connected
NN layer with
softmax

Note: b here is the
bias/threshold, as usual

Example (1)

Example (2)

Example (3)
in matrix form

The effect of
the Softmax
function

From scores to probabilities.
Highest probabilities are

assigned to highest values

X
xj

xj
xyj

Computing
the Loss in
the softmax

layer

Gradient descent of a loss function, as for NN:

• However:

➢Commonly, we use Cross-Entropy in the final layer of a
convolutional net

➢The cross-entropy between two discrete distributions 𝑝 and 𝑞
(measuring how far 𝑞 differs from 𝑝 for fixed 𝑝) is defined by:

Computing the error (e.g., for multi-
class classifiers)

• Let Th=[0,0..1,0..0] be the ground truth multi-class
classification (n classes) for input instance inh∈ D h=1..|D| (a 1
value in position k of Th indicates that the correct
classification for inh is the k-th class label),

• let Yh be the output (softmax) vector , assigning
probabilities to each possible class value;

• The cross-entropy H(Th, Yh) is given by (for n classes):

𝐻ሺ𝑻𝒉,𝒀ℎ)=σ𝑗=1..𝑛 𝑡𝑗
ℎ log 𝑦𝑗

ℎ = σ𝑗=1..𝑛 𝑡𝑗
ℎ log 𝑠𝑗

ℎሺ𝑥ℎ𝑗ሻ

Backpropagation on softmax layer

• First of all, note that the ground truth vector T: [t1,t2,…tk] is a «one-hot» vector, only one
element (say, tm) is =1, and all the others are zero (the softmax is used for classifiers!)

• Therefore,
𝜕𝐿

𝜕𝑦𝑖
=

𝜕𝐿

𝜕𝑠𝑖
=0 𝑖𝑓 𝑖 ≠ 𝑚 𝑎𝑛𝑑 −

1

𝑠𝑚
𝑖𝑓 𝑖 = 𝑚

• 𝑤ℎ𝑒𝑟𝑒 𝑠𝑖 is the softmax of 𝑧𝑖

s1

s3

s2

Backpropagation of softmax layer

𝜕𝐿

𝜕𝑥𝑖
=
𝜕𝑠𝑚

𝜕𝑥𝑖
×

𝜕𝐿

𝜕𝑠𝑚

𝑥𝑖

𝜕𝐿

𝜕𝑠𝑚
=

Softmax Cross entropy

We can write
𝜕𝑠𝑚

𝜕𝑥𝑖
= 𝑠𝑚(1- 𝑠𝑚) if i=m else −𝑠𝑖𝑠𝑚 (see al the derivation steps here)

This means that the backward gradient is -𝑠𝑚(1- 𝑠𝑚)
1

𝑠𝑚
= (𝑠𝑚-1) at position m, and −𝑠𝑖𝑠𝑚(-

1

𝑠𝑚
)= 𝑠𝑖 for𝑖 ≠ 𝑚

https://towardsdatascience.com/backpropagation-in-rnn-explained-bdf853b4e1c2#:~:text=You%20see%2C%20a%20RNN%20essentially,where%20they%20are%20summed%20up.

Backpropagation of the softmax layer (general
formulation)

𝜕𝐿/𝜕𝑤𝑖𝑗 =
𝜕𝐿

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑤𝑖𝑗

𝐿ሺ𝐻 𝑇, 𝑌 = −෍

𝑗

𝑡𝑗𝑙𝑜𝑔𝑦𝑗

𝑦𝑗 = 𝑠𝑗 =
𝑒𝑧𝑗

σ𝑖 𝑒
𝑧𝑖

𝑧𝑗 =෍

𝑖

𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗

𝜕𝐿

𝜕𝑠𝑗
= −

𝑡𝑗

𝑦𝑗
𝜕𝑦𝑗

𝜕𝑧𝑗
= 𝑠𝑗ሺ1 − 𝑠𝑗ሻ

𝜕𝑧𝑗

𝜕𝑤𝑖𝑗
= 𝑥𝑖

𝜕𝐿

𝜕𝑤𝑖𝑗
=

𝜕𝐿

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑤𝑖𝑗
= −𝑡𝑗ሺ1 − 𝑠𝑗ሻ𝑥𝑖

L(T,Y)

t1 t2 t3

Superscript h is omitted here

𝜕𝐿

𝜕𝑦𝑗

𝜕𝐿

𝜕𝑦𝑗

𝜕𝑦𝑗
𝜕𝑧𝑗

𝜕𝐿

𝜕𝑦𝑗

𝜕𝑦𝑗
𝜕𝑧𝑗

𝜕𝑧𝑗
𝜕𝑥𝑖

Cross

entropy
softmaxconvolution

X z y
tw

But, remember that 𝑡𝑗 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≠ 𝑚 𝑎𝑛𝑑 𝑡𝑚 = 1

Therefore, only 𝑤𝑖𝑚 (i=1…K) are updated!

Putting it all
together

• The network is a sequence of convolution,
activation and pooling layers with a final fully
connected layer with Softmax

• Hyper-Parameters are: pooling and strides, padding,
the number and type of kernels/filters and their
dimension, activation function, number of hidden
layers;

• Parameters to be estimated: all weights (kernels
and final MLP connection weights)

• Clearly also the shape of input and input features is
relevant: this is part of data pre-processing. For
images, RGB pixels are often sufficient (no pre-
processing)

• Method to estimate weights: backpropagation

More mathematical details

• Backpropagation in convolutional layers: link

• Softmax: link

• Much more in next semester (Prof. Rodolà)

http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/

STACKED DENOISING
AUTOENCODERS

(untrained deep NN)

Stacked
Denoising

Auto-
encoders

• They are basically a «minimally
trained» (or untrained)
generalization of Backpropagation,
with multiple layers, such as for
CNN

• Purpose is to learn in an untrained
manner the “latent” (essential)
features of an input (images or any
other type of non-sequential input)

• Main application is anomaly
detection

Basic idea of autoencoders

• Learn a «compressed» representation of input data, one that
preserves its essential features

• To learn this representation,
– first compress the input (encoder),
– then try to reconstruct it (decoder),
– Finally, measure the reconstruction error (loss) and update the

parameters to minimize it

• Once trained, the model is able to identify instances that
subtantially deviate from normality (➔ high reconstruction
error)

Auto-Encoders: Encoder+Decoder
• Encoder: The deterministic (= non-stochastic) mapping fθ that

transforms an input x into a «hidden» compressed representation
y=fθ(x)

➢θ= (W,b) are the parameters of the encoder (convolutional
layers in CNN are encoders)

• Decoder: The resulting hidden representation y=f(x) is then
mapped back to a «reconstructed» d dimensional vector z via a
«reverse» decoding function g(y)

Auto-Encoders

• In general, z is not to be interpreted as an exact
reconstruction of x, but rather, in probabilistic
terms, as the parameters 𝜽 (typically the mean) of a
distribution p(X=x|Z = z) that «may generate x with
high probability» where p(x|z) denotes the
conditional probability of x given z.

• Autoencoder training objective consists of
minimizing the reconstruction error (the difference
between x and z=gθ’(y))

• Intuitively, if a representation f(x) allows a good
reconstruction of its original input x, it means that it
has retained much of the information that was
present in that input (=identifying the «essential»
features).

Auto-encoders Implementation
NN with backpropagation

• They can be implemented as a neural
network with one (or more) hidden
layer(s) and an equal number of nodes
in input and output

• Can be trained without supervision,
since we don’t need to know the class
of an instance: the task is simply to
learn the weights in order for the
output to be similar to the input (or
better: to learn the “essential” features
of the input instances)

• Often used an as anomaly detector: if
an instance is very different from
“normality”, the learnd network is
unable to reconstruct it (reconstruction
error is high).

Denoising
Auto-

encoders
a better
method

• The reconstruction criterion alone is unable to
guarantee the extraction of useful features as it can
lead to the obvious («trivial») solution “simply copy
the input on output”

• Denoising criterion:

“A good representation is one that can be
obtained robustly from a corrupted input and that
will be useful for recovering the corresponding
clean input”

• This means that we add some random noise to
(=we corrupt) the input when training, to avoid
trivial learning and detect the relevant features
of the input in a “robust” way

Denoising autoencoders

Denoising Auto-encoders Architecture

Denoising autoencoders can still be learned using
backpropagation with gradient descent. What is the advantage?
As in the figure, y is a “compact” representation of x, one that
only retains only its essential features.

Stacked Denoising Auto-encoder
Architecture

• After training a first level denoising autoencoder, its learned
encoding function fθ is used on “clean” input (no noise)

• The resulting representation is used to train a second level
denoising autoencoder (middle) to learn a second level encoding
function f.

• From there, the procedure can be repeated with more layers (for
details, see this paper)

https://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf

Staked vrs Deep autoencoders.. What’s the
difference?

• The difference is in the way they are trained

• Deep autoencoders are trained with standard
backpropagation, staked autoencoders are
trained «layer by layer» as explained in the
already indicated paper

https://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf

SAE can also be used to learn a classifier with
minimal supervision, the final layer training can be

supervised

• After training a stack of encoders , an
output layer is added on top of the
stack (with softmax, as for convnets).

• The parameters of the whole system
are fine-tuned to minimize the error
in predicting the supervised target
(e.g., class), by performing gradient
descent.

• Everything here just like convnets

Anomaly
detection is
untrained

Large reconstruction errors imply anomaly

Advantages of deep methods over
«traditional» ML algorithms

• Traditionally input features to a machine learning algorithm have
to be hand-crafted, and the result often depends on
practitioners’ expertise and domain knowledge to determine
patterns of prior interest.

• Conversely, Deep Learning techniques learn optimal features
(the slices, or feature maps) directly from the data without any
guidance, allowing for the automatic discovery of latent
relationships that might otherwise be not found

• Caveat: this is true for images, not for many other types of data,
especially human-enterd that still require a lot of effor for feature
extraction and engineering

• The most essential idea of Deep Learning is that of
representation. Algorithms rely on complex, «dense» data
representations that are often expressed as compositions of
other, simpler representations

Other deep Learning issues

1. Highly parametric: like (and perhaps more than)
for “surface” learners, parameter and feature
tuning is a complex task (can easily have more
than 100 million parameters (weights)!!) GTP-4
has 1.76 trillion parameters!!!

2. Poor interpretability: machine learning algorithms
like decision trees (or itemset mining) give us
crisp rules as to why it chose what it chose, while
deep learners produce scores and not reveal why
they have given that score. In many industrial
applications, this is an issue.

3. Need lots of training data. For simpler and
sparse input data «off the shelf» ML methods can
still be better (e.g. regression/decision forests and
matrix factorization methods)

How to cope with high number of parameters

• Dropout: consists of «turning off» neurons with a predetermined
probability (e.g. 40% in the fully connected layers).

• Turning off a neuron means temporarily removing it from the
network, along with all its incoming and outgoing connections

• This means that every iteration uses a different sample of the
model's parameters, which forces each neuron to have more robust
features that can be used with other random neurons.

• It is also a way to prevent overfitting
• However, dropout also increases the training time needed for the

model's convergence.
• More here

https://jmlr.org/papers/v15/srivastava14a.html

How to cope with high number of hyper-
parameters

• Random Search uses random combinations of
hyperparameters. This means that not all of the h-parameter
values are tried, and instead, they are sampled with fixed (k)
numbers of iterations

• Grid Search looks through each combination of
hyperparameters. This means that every combination of
specified hyperparameter values will be tried (often
unfeasible).

• Both implemented in sckit learn and other ML platforms. Use
Random Search when number of h-parameters is very high.

3. Needs big datasets

In general, with so many parameters to
learn, it may perform poorly with small
datasets
• However, in some case, it is possible to

“expand” the representation of
instances with data extracted from
larger datasets

• See «few shot learning» as a battery of
methods to «make the best» out of few
examples

• Transfer learning (train on a large
dataset, fine-tune on the one for which
we have few examples) is also used

How to cope with limited data

https://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf
https://www.mdpi.com/2227-7390/10/19/3619

How to select the right
Loss and Final Activation Functions

Usually, the selection of the Loss and Activation function
depends on the problem type (LINK):

https://towardsdatascience.com/deep-learning-which-loss-and-activation-functions-should-i-use-ac02f1c56aa8

Additional and «HOT TOPICS»
in Deep Learning

• NN Architectures LINK, LINK, LINK
• How to choose the right activation and loss functions: LINK
• About the optimizers: LINK
• Overfitting: Dropout and Regularization LINK, LINK, LINK
• NN weight initialization LINK, LINK
• Curse of dimensionality LINK
• Interpretability/Explainability LINK, LINK, LINK
• Novel LOSS functions LINK
• Meta-learning LINK
• Transfer Learning LINK
• Few-shot learning LINK
• Attention Mechanisms LINK
• Other useful links LINK , LINK

Some will be expanded during lessons on ML workfolw

(data engineering and model fitting)

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo-prequel-cells-layers/
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/deep-learning-which-loss-and-activation-functions-should-i-use-ac02f1c56aa8
https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://towardsdatascience.com/simplified-math-behind-dropout-in-deep-learning-6d50f3f47275
https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79
https://www.deeplearning.ai/ai-notes/initialization/
https://medium.com/free-code-camp/the-curse-of-dimensionality-how-we-can-save-big-data-from-itself-d9fa0f872335
https://towardsdatascience.com/interpretable-machine-learning-1dec0f2f3e6b
https://christophm.github.io/interpretable-ml-book/
https://towardsdatascience.com/interpretability-of-deep-learning-models-9f52e54d72ab
https://www.researchgate.net/publication/340594267_A_Comprehensive_Survey_of_Loss_Functions_in_Machine_Learning
https://arxiv.org/abs/2004.05439
https://arxiv.org/abs/1911.02685?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529
https://arxiv.org/pdf/1904.05046.pdf
http://akosiorek.github.io/ml/2017/10/14/visual-attention.html
https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-science-pdf-f22dc900d2d7
https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-science-pdf-f22dc900d2d7
https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463

