
Neural Networks: multi-layer networks and the

backpropagation model

1

Perceptrons are binary classifiers.

They learn a single linear boundary.

What if data not linearly separable?

2

Multi-Layer Networks: architecture
Multi-layer networks can represent arbitrary functions. A typical multi-layer network
consists of input, hidden and output layers, each layer fully connected to the next, with
activation feeding forward.

● Input nodes do not have activation functions. Thus, they are placeholders for the
input feature values of instances x: <x1..xm>.

● Edges between nodes are weighted by wij (indexes i, j now identify nodes in adjacent
layers i→j)

● Now, an example instances x from the training set D, is a pair of vectors (<x1, x2,...,
xm>, <y1, y2,..., yK>), called the feature vector and ground-truth vector. Note that
now we can have multiple outputs (k), and m in general is different from k!

● Parameters to be learned : the wij

● Hyperparameters to be selected: the network architecture (layers, hidden nodes..)
the neuron activation functions 𝜑, and (especially for deep networks) many others

3

output

hidden

input

activation

Multilayer networks: the basic
computation step

● Output values can be continuous rather than discrete as for

classifiers (like Dtrees and Perceptron).

● So, Multilayer Perceptron is a regressor (although it can be turned into

a classifier by introducing a cut-off)

● Like for the perceptron, each node 𝑛𝑗
[𝐿]

in a given layer [L] receives in

input a weighted sum of values netj from previous layer [L-1] and

computes an activation function φ(netj - 𝜃j).

● Like for the Perceptron, edge weights are iteratively updated to

minimize the error (the difference between «true» output(s) and

computed output(s)). The iterative algorithm is called

Backpropagation.

4

There might be very many hidden layers

Ground truth from D

𝑠 =෍

𝑖

𝑤𝑖𝑗𝑥𝑖

ො𝑦 = 𝑓(𝑊, 𝑠)

There might be multiple layers and multiple output nodes

5

Multilayer networks

● Target is to learn the weights (including threshold/bias) of edges
such as to minimize the error between the output observed on output
nodes ො𝑦j and the true output values yj in training set D

● Differently from DT and Perceptron, the ground truth vector <y1,y2,..., yK> is a

complex output functions of real (regressor) or discrete (classifier) values

● Note that we would need 4 indexes now: i and j to identify connections wij

between node pairs in connected layers (i➔j), a superscript (h) to identify an

example in D (i.e (<xh
1, x

h
2,..., x

h
m>, <yh

1, y
h
2,..., y

h
K>)), and another

superscript [L] to identify layers in the NN (e.g. 𝑤𝑖𝑗
[𝐿]

.) We will omit h and [L]

whenever possible, to avoid overloading the notation.

6

Gradient descent

● Weight updating rule is based on the Hill-Climbing heuristic, like for

perceptron.

● In a Hill-Climbing heuristic:

1. We start with an initial solution (a random set of weights W (W

denotes a matrix).

2. Generate one or more “neighboring” solutions (weights which are

“close” to previous values) with the objective of reducing the

error.

3. Pick the best neighboring solution according to some criterion,

and continue until there are no better neighboring solutions

● In the case of the neural network, gradient descent is used to

identify the “best” neighboring solutions.

Gradient and Gradient Descent
● The gradient of a scalar field x is a

vector field
՜
𝒙′ that points in the direction

of the greatest rate of increase (or

decrease) of the scalar field, and whose

magnitude is that rate.

● In simple terms, the variation of any

quantity – e.g. an error function - can be

represented (e.g. graphically) by a slope.

The gradient represents the steepness

and direction of that slope.

● Note: Finding the gradient is essentially

finding the derivative of a function.

● Example of a simple error function with 2 parameters

L(W) (some error

function)

L(W(t), 𝑦, ො𝑦)

Error at step t

To find a local minimum of a function (e.g., error(x)) using the

gradient descent, one takes (small) steps proportional to the

negative of the gradient (or the approximate gradient) of the

function at the current point (gradient=derivative)

9

Gradient and Gradient Descent

● The objective of the learning algorithm, then, is to find the parameters W (all the

coefficients wij for all layers) which give the «minimum possible cost» of some

optimization problem – called Loss(W).

● For the Gradient Descent of “basic” NNs, the Loss is computed by the Mean Squared

Error function (MSE). The MSE for the multilayer NN:

𝐿𝑜𝑠𝑠 𝑊 =
1

|𝐷|
෍

ℎ𝜖𝐷

෍

𝑗=1..𝑘

(𝒚𝑗
ℎ − ෝ𝒚𝑗

ℎ)2

➢ D is the set of training examples xh

➢ n = |D|; the number of training instances (h: 1..n)

➢ k is the number of output nodes of the NN (we have output vectors)

➢ W is the set of weights and to simplify, it includes the thresholds/bias (that can be

represented as the weight wo of a dummy node with constant value 1).

➢ 𝒚𝑗
ℎ is the “ground truth” output for an example xh in D and ෝ𝒚𝑗

ℎis the observed output for

xh with the current weights

10

Gradient and Gradient Descent

● The Loss function is also called Cost function or Error function. There are

many loss functions (will see some). See link, link

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

Gradient descent needs a
differentiable activation function

● As we said, the gradient is a derivative
● To do gradient descent of a Loss function, which depends on the yj,

we need the activation (yj=𝑓(𝑛𝑒𝑡𝑗)) function of neurons to be a

differentiable function of its input and weights.

● The binary step function of the Perceptron is not differentiable.

11

netj

oj

Tj

0

1

Differentiable activation function
A common activation function is the non-linear,

differentiable sigmoid function (aka. logistic function):

12

netjw0j

0

1

Note: for multiple layers, the input values
xi to node nj in layer L is the output oi of
previous nodes in layer L-1, and wij is the
synaptic weight of the connection i➔j.

Note: the threshold or bias

Is commonly denoted with symbols

T or or 𝑤0 or 𝜃 In any case, we

are simply adding a constant to the

convolution net(x)
𝑜𝑗=𝜎(𝑛𝑒𝑡𝑗) =

1

1+𝑒
−𝑛𝑒𝑡𝑗

𝑛𝑒𝑡𝑗 =෍

𝑖

𝑤𝑖𝑗𝑥𝑖 + 𝑤0

i joi=xi

ojwij

[L-1]

[L]

13

Example:
Feeding data through the NN with the

Sigmoid Activation function)

The activation function limits the node output values in [0 1]

(threshold is 0 in the figure):

threshold

oj

net

෍

𝑖

𝑤𝑖𝑗𝑥𝑖

𝑜𝑗=𝜎(𝑛𝑒𝑡𝑗) =
1

1+𝑒
−𝑛𝑒𝑡𝑗

𝑜𝑗=𝜎(𝑛𝑒𝑡𝑗) =
1

1+𝑒
−𝑛𝑒𝑡𝑗

14

Thresholding with 𝜎:

wi->j

x:<x1,x2>=<1,0.5>

netj= (1 × 0.25) + (0.5 × (-1.5)) = 0.25 + (-0.75) = - 0.5

Example (2):
Feeding data through the NN with the

Sigmoid Activation function (with threshold 0)

Back to Gradient Descent
● The «classic» NN model uses the MSE (mean square error) as a loss

function to compute the error to be minimized (ො𝑦 is the output

estimate by the current network)

𝐿𝑜𝑠𝑠 𝑊 =
1

𝑛
෍

ℎ=1..𝑛

෍

𝑗=1..𝑘

(𝑦𝑗
ℎ − ෢𝑦𝑗

ℎ)2

15

● A popular modification of this formula is to multiplying it by ½ so that

when we compute the derivative, the 2s cancel out for a cleaner formula:

● For derivation, the gradient descent algorithm will consider only one

input-output pair (the inner sum of the total Loss) at each iteration.

Once this is derived, the general form for all input-output pairs can be

generated by summing the individual gradients. The error function is

therefore simplified as: 𝐿𝑜𝑠𝑠 𝑊 = (1/2σ𝑗(𝑦𝑗
ℎ − ෢𝑦𝑗

ℎ)2)

𝐿𝑜𝑠𝑠 𝑊 =
1

2𝑛
෍

ℎ=1..𝑛

෍

𝑗=1..𝑘

(𝑦𝑗
ℎ − ෢𝑦𝑗

ℎ)2

n=|D|

Example of loss computation:
1 output node

16

Input instance x<(1.0,1.0),0.50>; Loss(W,x)=1/2(0.50-0.73)2=0.0529/2

How can we minimize the error ?

● Gradient descent implies taking the derivative of the Loss function. To compute a

derivative, we must re-write the Loss function in a way that «highlights» the relevant

variables

● First of all, what are our relevant «variables» (what can be changed in the network)?

● The network weights wij! In fact the output oj
h,[L] in each layer L are computed by

feeding the network with data INSTANCES xh (i.e., the values of the features of the

training instances). These values propagate through the networks and are weighted,

summed, and thresholded on each neuron, from input up to the output nodes.

● Therefore the final output vector ෝ𝒚ℎdepends on the weights (parameters) and on

the type of activation function that generates the output of each neuron (note that

the activation function is an hyperparameter, not adjustable during training).

● So, to minimize the error, we can only adjust the weights! and change the

activation function (hyperparameter), but the latter is to be chosen a priori
18

𝐿𝑜𝑠𝑠 𝑊 = (
σℎ=1..𝑛 σ𝑗=1..𝐾(𝑦𝑗

ℎ − ෢𝑦𝑗
ℎ)2

2𝑛
)

Gradient Descent updating rule:
Hill Climbing in the Gradient Descent

● How can we apply gradient descent to learn weights in a neural network? The

idea is to use gradient descent to adjust the weights to minimize the error (loss

function) at each iteration (similarly to Perceptron):

● Each weight wij (note that we omit the superscript L indicating the layer and the h

superscript whenever possible) is updated proportionally to (𝜂) the partial derivative

(𝜕(Loss)/ 𝜕wij), e.g. the fraction of the gradient of the total loss that can be

«imputed» to the weight wij

● 𝜂 is a hyperparameter (like the activation function and the Loss function) and is

usually <<1

● Hill Climbing: by repeatedly applying this updating rule to all weights and all

instances of the training set D, we can "roll down the hill", and hopefully find a

minimum of the cost function.

● BUT: the problem is that in the formula of the loss, we don’t have the weights! 19

How do we go about?

● We define some Loss function, e.g.

● But, in order to update the weights W of the NN, we need to compute for all weights

and layers.

● Note:
𝜕𝐿𝑜𝑠𝑠()

𝜕𝑤
𝑖𝑗
[𝐿] tells us «how fast» the observed loss changes when a specific parameter 𝑤𝑖𝑗

[𝐿]
of

the NN changes, in other words WHAT IS THE CONTRIBUTION of that parameter to the

observed error, and next, we use this information to adjust the parameter

● The problem is: we can only observe the output error (𝑦𝑗
ℎ − ෢𝑦𝑗

ℎ), how do we compute these

derivatives?? The relation between the numerator and the parameters 𝑤𝑖𝑗
[𝐿]

is not explicit

● SOLUTION: we model the network with COMPUTATIONAL GRAPHS, were all nodes represent

differentiable operators, and we apply an algorithm called BACKPROPAGATION to derive the

contribution of each computational step to the total loss

20

𝜕𝐿𝑜𝑠𝑠()

𝜕𝑤𝑖𝑗
[𝐿]

𝐿𝑜𝑠𝑠 𝑊 = (
σℎ∈𝐷 σ𝑗∈𝐾(𝑦𝑗

ℎ − ෢𝑦𝑗
ℎ)2

2𝑛
)

21

Backword pass: the basic step

● General backpropagation step in each node of the network (f here denotes a generic function

computed on a generic node, x, y and z are the input and output of the node 𝑓 𝑥, 𝑦 = 𝑧):

The Loss that backpropagates

from previous nodes

The contribution of a generic

node 𝑓 𝑥, 𝑦 to the Loss, and how it

propagates backwords

We apply the derivative chain rule. Of course, it is important that f is a DERIVABLE function

Digitare l'equazione qui.

𝜕𝐿

𝜕𝑧
=

𝜕𝐿

𝜕(𝑓(𝑥, 𝑦))

We can compute these derivatives step by step in an easier way

using the computational graph representation of NN

● A computational graph is a directed graph where the nodes correspond to operations or

variables. By applying the derivative chain rule, we can “backpropagate” the gradients

● Example: consider the function 𝑓 = 𝑥 + 𝑦 × 𝑧 = 𝑞 × 𝑧 within a more complex network

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑞

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑥

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑦

𝜕𝐿

𝜕𝑓𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑧

Note:
𝜕𝑓

𝜕𝑞
=z and

𝜕𝑓

𝜕𝑧
=q=(x+y)

𝜕𝑞

𝜕𝑥
=

𝜕𝑞

𝜕𝑦
=1

If, e.g., the gradient backpropagating from subsequent computations
𝜕𝐿

𝜕𝑓
=2, and x=1, y=2, and z=2

then we have
𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑞
=2 ∗ 2;

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑧
=2 ∗(1+2);

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑥
=2 ∗ 2 ∗ 1;

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑦
= 2 ∗ 2 ∗ 1

Other network

layers

Other network

layers

Other network

layers

The key is to understand how a
change in one variable brings
change on the variable that
depends on it. If q directly
affects f, then we want to know
how it affects f.

If we make a slight change in
the value of q how
does f change? We can term
this as the partial derivative of
f with respect to q.

Let’s see how it works for a simple neuron with sigmoid

activation

● Step 1 compute the partial derivative of the loss

𝜕𝐿

𝜕 ො𝑦
= 𝑦 − ො𝑦

● Step 2 start backpropagating the loss, using the

chain rule:

𝜕𝐿

𝜕𝑐
=

𝜕𝐿

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑐
=

𝜕𝐿

𝜕 ො𝑦
𝜎(𝑐)(1 − 𝜎 𝑐)= 𝑦 − ො𝑦

𝑒−𝑐

(1+𝑒−𝑐)2
=

𝑦 − ො𝑦 ො𝑦(1- ො𝑦)

24

*

+

*

𝜎

x1

x2

w1

w2

a=w1x1

b=w2x2

c=a+b ො𝑦
Loss

y

𝐿 𝑦, ො𝑦 =
1

2
𝑦 − ො𝑦 2

*

+

*

𝜎

x1

x2

w1

w2

a=w1x1

b=w2x2

c=a+b ො𝑦

𝜕𝐿

𝜕 ො𝑦

𝜕𝐿

𝜕𝑐

Simple NN backpropagation with CG

● Step 3: backpropagation form summation node

● Step 4: multiplication nodes

𝜕𝐿

𝜕𝑤1
=

𝜕𝐿

𝜕𝑎

𝜕𝑎

𝜕𝑤1
=

𝜕𝐿

𝜕𝑎

𝜕(𝑤1𝑥1)

𝜕𝑤1
=

𝜕𝐿

𝜕𝑎
𝑥1 = 𝑦 − ො𝑦

𝑒−𝑐

(1+𝑒−𝑐)2
𝑥1

Where 𝑐 = 𝑤1𝑥1 + 𝑤2𝑥2

So, we can update w1!!

𝑤1 = 𝑤1 + 𝜂
𝝏𝑳

𝝏𝒘𝟏

25

x

+

x

𝜎

x1

x2

w1

w2

a=w1x1

b=w2x2

c=a+b ො𝑦

𝜕𝐿

𝜕 ො𝑦

𝜕𝐿

𝜕𝑐

+
𝜕𝐿

𝜕𝑐

𝜕𝐿

𝜕𝑐

𝜕𝑐

𝜕𝑎

𝜕𝐿

𝜕𝑎
=

𝜕𝐿

𝜕𝑐

𝜕𝑐

𝜕𝑎
=

𝜕𝐿

𝜕𝑐

𝜕(𝑎+𝑏)

𝑎
=

𝜕𝐿

𝜕𝑐
1= 𝑦 − ො𝑦

𝑒−𝑐

(1+𝑒−𝑐)2

𝜕𝐿

𝜕𝑎

𝜕𝐿

𝜕𝑤1

Note: during each backpropagation step, x1,x2, w1,w2, y and ො𝑦
are NUMBERS!! 𝜂 is an hyperparameter and is established apriori (e.g., 0,1)

Also note that here we have written 𝑦 − ො𝑦 for simplicity, but since

the process is repeated for every example h in the dataset, we should

write 𝑦ℎ − ො𝑦ℎ where h is the superscript that identifies one example in D

𝜕𝐿

𝜕𝑥1

Finally,
𝜕𝐿

𝜕𝑥1
=𝑤1

𝜕𝐿

𝜕𝑎

In class exercise

● Rework all the formulas of backpropagation

up to x1 and w1 on a simple neuron, as

before, when the loss function is the binary

cross entropy (here, y is either 1 or 0, while

ො𝑦 is the output of the sigmoid)

● Consider the two cases: when y=1 and

y=0)

26

𝐿𝑜𝑠𝑠 𝑦, ො𝑦 = −(𝑦 log ො𝑦 + (1 − 𝑦) log 1 − ො𝑦

*

+

*

𝜎

x1

x2

w1

w2

a=w1x1

b=w2x2

c=a+b ො𝑦
Loss

y

What happens for a more complex NN
● We have computed step by step the weight

updating formula for a simple neuron

● This formula also applies to the FIRST set of

weights (those closest to the output nodes in

figure)

● The only difference is that rather than having 𝑥𝑖

(the input) in the formula, we have 𝑜𝑖
[𝐿−1]

, i.e., the

output of previous layer (the green perceptrons)

● So, the formula for updating the weights of the

«closest» layer L-1 is

●
𝜕𝐿

𝜕𝑤[𝐿]
𝑖
= 𝒐𝒊

[𝑳−𝟏]
𝑦 − ො𝑦 ො𝑦(1- ො𝑦)

● And since we might have multiple output nodes

and multiple examples, the complete formula is:

●
𝜕𝐿

𝜕𝑤[𝐿]
𝑖𝑗
= 𝑜𝑖

[𝐿−1]
𝑦𝑗
ℎ − ො𝑦𝑗

ℎ 1 − ො𝑦𝑗
ℎ ො𝑦𝑗

ℎ
where j is

the jth output node
27

ො𝑦3

NOTE: COMMONLY, the quantity 𝑦𝑗
ℎ − ො𝑦𝑗

ℎ 1 − ො𝑦𝑗
ℎ ො𝑦𝑗

ℎ
is

denoted with 𝛿𝑗
[L] , the contribution of output node 𝑛𝑗

[𝐿]
𝑗 to the

total loss at step h. So we have
𝝏𝑳

𝝏𝒘[𝑳]
𝒊𝒋
= 𝒐𝒊

[𝑳−𝟏]
𝜹𝒋
[𝑳]

𝜕𝐿

𝜕𝑦3

𝑜5
[4]

What happens for a more complex NN
● Also note that the loss that backpropagates from

each node j of the last layer L=5 back to the nodes

i of layer 4 is

𝜕𝐿

𝜕𝑜
𝑖
[4]=𝑤𝑖𝑗

[5]
𝛿𝑗
[5]

= 𝑤𝑖𝑗
5

𝑦𝑗
ℎ − ො𝑦𝑗

ℎ 1 − ො𝑦𝑗
ℎ ො𝑦𝑗

ℎ

28

𝜕𝐿

𝜕𝑦3
𝜕𝐿

𝜕𝑥1
=𝑤1

𝜕𝐿

𝜕𝑎

But now we need to update also the weights of the other layers

● The gradients coming from each node of layer [L-

k+1] backpropagate to each node 𝑛𝑖
[𝐿−𝑘]

of the

preceding layer [L-k] and gets summed

● Remember: 𝛿𝑗
[𝐿−𝑘+1]

denotes the gradient of node

𝑛𝑗
[𝐿−𝑘+1]

and 𝑤𝑖𝑗
[𝐿−𝑘]

𝛿𝑗
[𝐿−𝑘+1]

is the gradient

travelling back along the synaptic connection

𝑤𝑖𝑗
[𝐿−𝑘]

towards node 𝑛𝑖
[𝐿−𝑘]

● The node itself further contributes to the gradient

with the multiplier 𝑜𝑖 (1- 𝑜𝑖) (the derivative of the

sigmoid) since the derivative of the sum is 1.

29

𝜕𝐿

𝜕𝑜𝑖
=෍

𝑗

𝑤𝑖𝑗𝛿𝑗
[𝐿−𝑘+1]

𝑛𝑖
[𝐿−𝑘]

𝑜𝑖
[𝐿−𝑘]

𝑛𝑗
[𝐿−𝑘+1]𝑤𝑖𝑗

[𝐿−𝑘]

𝜕𝐿

𝜕𝑜𝑖

𝛿𝑖
[𝐿−𝑘]

=
𝜕𝐿

𝜕𝑜𝑖

𝜕𝑜𝑖

𝜕𝑐
= σ𝑗𝑤𝑖𝑗𝛿𝑗

[𝐿−𝐾+1]
𝑜𝑖 (1- 𝑜𝑖)

𝜎+
c oi

𝑛𝑖
[𝐿−𝑘]

Pls note that here I omitted the layer superscript on weights and output..)

Example: from layer L=3 to L=2

● The gradient on node 𝑛1
[2]

backpropagates

from 𝑛1
[3]

and 𝑛2
[3]

● Where 𝛿1
[3]

= 𝑦1
ℎ − ො𝑦1

ℎ 1 − ො𝑦1
ℎ ො𝑦1

ℎ
and a

similar formula for 𝛿2
[3]

● The gradient backpropagating on node 𝒏𝟏
[𝟐]

is

the sum of the gradients caused by 𝒏𝟏
[𝟑]

and

𝒏𝟐
[𝟑]

30

𝜕𝐿

𝜕𝑥1
[3]

𝜕𝐿

𝜕𝑥4
[3]

𝜕𝐿

𝜕𝑜1
[2]

= ෍

𝑗=1,2

𝜕𝐿

𝜕𝑥1𝑗
[3]

= 𝑤11
[3]

𝛿1
[3]

+ 𝑤12
[3]
𝛿2
[3]Digitare

l'equazione qui.

x4

L=3
L=2L=1

And from L=2 to L=1

● The gradient on node 𝑛1
[2]

is

𝛿1
[2]
=

𝜕𝐿

𝜕𝑜1
[2] 𝑜1

[2]
(1- 𝑜1

[2]
)∙ 1 =

(𝑤11
[3]
𝛿1
[3]

+ 𝑤12
[3]
𝛿2
[3]

) 𝑜1
[2]

(1- 𝑜1
[2]

)

(remember the derivative of the σ𝑥𝑖 is 1 and the

derivative of the sigmoid is 𝜎(𝑥)(1 − 𝜎(𝑥)))

● The gradient 𝛿1
[2]

of node 𝑛1
[2]

further

backpropagates towards 𝑛1
[1]

, 𝑛2
[1]

and 𝑛3
[1]

● Note that as we backpropagate towards the first

layers, we keep multiplying coefficients and

derivatives.. Will se later that this is a problem!

31

Digitare
l'equazione qui.

x4

𝜕𝐿

𝜕𝑜1
[2]𝑤11

[2]
𝛿1
[2]

So the general formulation is

● 𝛿𝑖
[𝐾]

= σ𝑗𝑤𝑖𝑗
𝐾+1

𝛿𝑗
𝐾+1

𝑜𝑖(1 − 𝑜𝑖)

For K=1..L-1, and:

● 𝛿𝑖
[𝐿]

= 𝑦𝑖
ℎ − ො𝑦𝑖

ℎ 1 − ො𝑦𝑖
ℎ ො𝑦𝑖

ℎ
for output

nodes in last layer L

The weights updating rule is:

● 𝑤𝑖𝑗
[𝐾]

=𝑤𝑖𝑗
[𝐾]

-𝜂
𝛿𝐿

𝛿𝑤𝑖𝑗
[𝐾]

Where
𝛿𝐿

𝛿𝑤𝑖𝑗
[𝐾]=𝑜𝑖

[𝑘−1]
𝛿𝑗
[𝐾]

for K=1..[L]

32

Recap of backpropagation algorithm
• To learn weights (and threshold), a hill-climbing approach (i.e. gradient

descent) is used: 𝑤𝑖𝑗
[𝐾]

= 𝑤𝑖𝑗
[𝐾]

− 𝜂𝛿𝑗
[𝐾]
𝑜𝑖
[𝐾−1]

• Forward step: at each iteration and for each input xh in D, we

compute the output vector 𝒚
[𝐿]

on last layer and the Loss on output

nodes (this applies to any loss function, that must be derivable)

• Backward step: We compute the derivative of the Loss entering each

ouput node, and then update weights with backpropagation, starting

from output nodes back to input nodes using the gradient descent rule.

33

Weight updates wij on each layer K are proportional (𝜂) to the contribution of

the destination node 𝑛𝑗
[𝐾]

to the total observed loss (which is 𝛿𝑗
[𝐾]

) and to the

intensity of the signal travelling on the connection i➔j, 𝑜𝑖
[𝐾−1]

𝑤𝑖𝑗
[𝐾]

𝑜𝑖
[𝐾−1] 𝛿𝑗

[𝐾]

34

Example: 1

-0,1

0,1● Error
● Weight
● Output

1

2 4

3

5

-0,1

-0,1

0,1

0,1

Training set:
1. <0.1, 0.1>, 0.1
2. <0.1, 0.9>, 0.9
3. <0.9, 0.1>, 0.9
4. <0.9, 0.9>, 0.1

● All thresholds are equal to zero

Example:
Forwarding pass

2

-0,1

0,1

● Error
● Weight
● Output

0,1

0.5

0.5

0.5

1

2 4

3

5

0,1
-0,1

-0,1

0,1

0,1

Example with the first instance:
1. <0.1, 0.1>, 0.1

● Let’s suppose thresholds w0 are equal to zero

Example:
Back-propagate the error

2

-0,1

0,1

● Error
● Weight
● Output

0,
1

0.5

0.5

0.5

1

2 4

3

5

0,
1

-0,1

-0,1

0,1

0,1

Example with the first instance:
1. <0.1, 0.1>, 0.1

0,1

𝛿5
[2]

= 0,1

Example:
Back-propagate the error

3

-0,1

0,1

● Error
● Weight
● Output

0,
1

0.5

0.5

0.5

1

2 4

3

5

0,
1

0,1

-0,1

-0,1

0,1

0,1

𝛿5
[2]

= 0,1

𝛿4
[1]

= 0,0025

𝛿3
[1]

= −0,0025

4Example:
Update all weights

● Error
● Weight
● Output

-0,1

0,1

0,
1

-0.0025

0.0025

0.5

0.5

0.5

1

2 4

3

5

0,
1

-0,1

-0,1

0,1

0,1

● 𝞰 = 0.2

0,1

Read the second example and continue until all examples have been

consumed;

If Loss>Θ then start new epoch

40

Issues with «basic»
backpropagation Algorithm

● Not guaranteed that training error converges to zero, it may
converge to local minima or oscillate indefinitely.

● Convergence speed may also depends on initial choice of
random weights W

● Convergence and accuracy of results also depend on
network architecture (how many hidden units? How many
nodes per unit?) and the other hyperparameters

● When adding many hidden layers, everything gets worst
and we experience another undesired phenomenon
(vanishing gradient, see Deep learning slides)

Best weights W to begin?

● Note that if we start with all-equal weights, all neurons will

learn the same thing, and NN will not converge

● Simple rule is to select weights uniformly at random in a

range −𝛼 + 𝛼

● See this paper for more insight on weight initialization

techniques

https://www.cs.toronto.edu/~fritz/absps/momentum.pdf

Avoiding local minima

● To avoid local-minima problems*:
➢ run several trials starting with different random

weights (random restarts)
➢ or using perturbations (need to introduce

another hyperparameter, the momentum).

43

https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d

Avoiding local minima: momentum

Momentum:

● Δwt
ij=−𝜂∂Loss/∂wij+𝜇Δwij

t−1

● Where t is the t-th update for weight wij

● Keeps memory of previous updates (t-1)

● Introduction of the momentum rate 𝜇 allows the attenuation of

oscillations in the gradient descent (but yet another hyperparameter!)

● Here (for those interested) a recent paper (2021 JMLR) on the

problem of local minima

44

https://www.jmlr.org/papers/volume22/19-586/19-586.pdf

NN Overfitting Prevention
● Running too many epochs can result in overfitting

45

er
ro

r

on training data

on test data

0 # training epochs

● Overfitting is a common problem in deep non-deep NN, will
see some standard technique (regularization, drop out..). in
the last part of the course, dedicated to the entire ML project
pipeline

●46

Determining the Best

Number of Hidden Units

● Too few hidden units prevents the network from adequately fitting

the data.

● Too many hidden units can result in over-fitting.

● Use internal cross-validation to empirically determine an optimal

number of hidden units (or use ML algorithms to learn the best

architecture, here is an example).

https://arxiv.org/pdf/1611.01578.pdf

An intuitive explanation of hidden units in NN

47

A visual intuition of how neural networks work

(character recognition)

Input are pixels output are
numbers from 0 to 9.
What are the hidden layers?

A visual intuition of neural networks (2)

A visual intuition of neural networks (3)

Inner layer have a «hidden» meaning,
but we can think of them as «recognizers»
of simpler component of the input.
Once the weights are learned, they activate
when the component is recognized.

An intuition of neural networks (4)

An intuition of neural networks (5)

Layer 2 recognizes smallest

component, layer 3 more

complex

component.

HOWEVER this is an intuitive

explanation. We can’t actually

tell the network does this..

A visual intuition of neural networks (6)

Another visual intuition: face recognition

HOWEVER this is an intuitive explanation. We can’t

actually tellthe network does this..

So we have another issue with NN: Interpretability

55

Next lessons:
Deep Learning algorithms

56

