
Neural Networks: multi-layer networks and the 

backpropagation model

1



Perceptrons are binary classifiers. 

They learn a single linear boundary.

What if data not linearly separable?
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Multi-Layer Networks: architecture
Multi-layer networks can represent arbitrary functions. A typical multi-layer network 
consists of input, hidden and output layers, each layer fully connected to the next, with 
activation feeding forward.

● Input nodes do not have activation functions. Thus, they are placeholders for the 
input feature values of instances x: <x1..xm>.

● Edges between nodes are weighted by wij (indexes i, j now identify nodes in adjacent
layers i→j)

● Now, an example instances x from the training set D, is a pair of vectors (<x1, x2,..., 
xm>, <y1, y2,..., yK>), called the feature vector and ground-truth vector. Note that
now we can have multiple outputs (k), and m in general is different from k!

● Parameters to be learned :  the wij

● Hyperparameters to be selected: the network architecture (layers, hidden nodes..) 
the neuron activation functions 𝜑, and (especially for deep  networks) many others
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Multilayer networks: the basic
computation step

● Output values can be continuous rather than discrete as for 

classifiers (like Dtrees and Perceptron).

● So, Multilayer Perceptron is a regressor (although it can be turned into

a classifier by introducing a cut-off)

● Like for the perceptron, each node 𝑛𝑗
[𝐿]

in a given layer [L] receives in 

input a weighted sum of values netj from previous layer [L-1] and 

computes an activation function φ(netj - 𝜃j). 

● Like for the Perceptron, edge weights are iteratively updated to 

minimize the error (the difference between «true» output(s) and 

computed output(s)). The iterative algorithm is called 

Backpropagation.
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There might be very many hidden layers

Ground truth from D

𝑠 =෍

𝑖

𝑤𝑖𝑗𝑥𝑖

ො𝑦 = 𝑓(𝑊, 𝑠)



There might be multiple layers and multiple  output nodes
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Multilayer networks

● Target is to learn the weights (including threshold/bias) of edges
such as to minimize the error between the output observed on output 
nodes ො𝑦j and the true output values yj in training set  D

● Differently from DT and Perceptron, the ground truth vector <y1,y2,..., yK> is a 

complex output functions of real (regressor) or discrete (classifier) values

● Note that we would need 4 indexes now: i and j to identify connections wij

between node pairs in connected layers (i➔j), a superscript (h) to identify an 

example in D  (i.e (<xh
1, x

h
2,..., x

h
m>, <yh

1, y
h
2,..., y

h
K>)), and another

superscript [L] to identify layers in the NN  (e.g. 𝑤𝑖𝑗
[𝐿]

.) We will omit h and [L] 

whenever possible, to avoid overloading the notation.
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Gradient descent

● Weight updating rule is based on the Hill-Climbing heuristic, like for 

perceptron. 

● In a Hill-Climbing heuristic: 

1. We start with an initial solution ( a random set of weights W (W 

denotes a matrix).

2. Generate one or more “neighboring” solutions (weights which are 

“close” to previous values) with the objective of reducing the 

error. 

3. Pick the best neighboring solution according to some criterion, 

and continue until there are no better neighboring solutions

● In the case of the neural network, gradient descent is used to 

identify the “best” neighboring solutions.



Gradient and Gradient Descent
● The gradient of a scalar field x is a 

vector field 
՜
𝒙′ that points in the direction

of the greatest rate of increase (or 

decrease) of the scalar field, and whose

magnitude is that rate.

● In simple terms, the variation of any

quantity – e.g. an error function - can be 

represented (e.g. graphically) by a slope. 

The gradient represents the steepness

and direction of that slope.

● Note: Finding the gradient is essentially

finding the derivative of a function.

● Example of a simple error function with 2 parameters

L(W) (some error

function)

L(W(t), 𝑦, ො𝑦 )

Error at step t



To find a local minimum of a function (e.g., error(x)) using the 

gradient descent, one takes (small) steps proportional to the 

negative of the gradient (or the approximate gradient) of the 

function at the current point (gradient=derivative)
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Gradient and Gradient Descent



● The objective of the learning algorithm, then, is to find the parameters  W (all the 

coefficients wij for all layers)  which give the «minimum possible cost» of some 

optimization problem – called Loss(W).

● For the Gradient Descent of “basic” NNs, the Loss is computed by the Mean Squared 

Error function (MSE). The MSE for the multilayer NN:

𝐿𝑜𝑠𝑠 𝑊 =
1

|𝐷|
෍

ℎ𝜖𝐷

෍

𝑗=1..𝑘

(𝒚𝑗
ℎ − ෝ𝒚𝑗

ℎ)2

➢ D is the set of training examples xh

➢ n = |D|; the number of training instances  (h: 1..n)

➢ k is the number of output nodes of the NN (we have output vectors)

➢ W is the set of weights and to simplify, it includes the thresholds/bias (that can be 

represented as the weight wo of a dummy node  with constant value 1). 

➢ 𝒚𝑗
ℎ is the “ground truth” output for an example xh in D and ෝ𝒚𝑗

ℎis the observed output for 

xh with the current weights 
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Gradient and Gradient Descent

● The Loss function is also called Cost function or Error function. There are 

many loss functions (will see some). See link, link

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/


Gradient descent needs a 
differentiable activation function

● As we said, the gradient is a derivative
● To do gradient descent of a Loss function, which depends on the yj, 

we need the activation (yj=𝑓(𝑛𝑒𝑡𝑗)) function of neurons to be a 

differentiable function of its input and weights.

● The binary step function of the Perceptron is not differentiable.
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Differentiable activation function
A common activation function is the non-linear, 

differentiable sigmoid function (aka. logistic function):
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netjw0j

0

1

Note: for multiple layers, the input values
xi to node nj in layer L is the output oi of
previous nodes in layer L-1, and wij is the
synaptic weight of the connection i➔j.

Note: the threshold or bias

Is commonly denoted with symbols

T or or 𝑤0 or 𝜃 In any case, we

are simply adding a constant to the 

convolution net(x)
𝑜𝑗=𝜎(𝑛𝑒𝑡𝑗) =

1

1+𝑒
−𝑛𝑒𝑡𝑗

𝑛𝑒𝑡𝑗 =෍

𝑖

𝑤𝑖𝑗𝑥𝑖 + 𝑤0

i joi=xi 

ojwij

[L-1]

[L]



13

Example:
Feeding data through the NN with the                  

Sigmoid Activation function)

The activation function limits the node output values in [0 1] 

(threshold is 0 in the figure):

threshold

oj

net

෍

𝑖

𝑤𝑖𝑗𝑥𝑖

𝑜𝑗=𝜎(𝑛𝑒𝑡𝑗) =
1

1+𝑒
−𝑛𝑒𝑡𝑗

𝑜𝑗=𝜎(𝑛𝑒𝑡𝑗) =
1

1+𝑒
−𝑛𝑒𝑡𝑗
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Thresholding with 𝜎:

wi->j

x:<x1,x2>=<1,0.5>

netj= (1 × 0.25) + (0.5 × (-1.5)) = 0.25 + (-0.75)   =  - 0.5

Example (2):
Feeding data through the NN with the                  

Sigmoid Activation function (with threshold 0)



Back to Gradient Descent
● The «classic» NN  model uses the MSE (mean square error) as a loss

function to compute the error to be minimized ( ො𝑦 is the output 

estimate by the current network)

𝐿𝑜𝑠𝑠 𝑊 =
1

𝑛
෍

ℎ=1..𝑛

෍

𝑗=1..𝑘

(𝑦𝑗
ℎ − ෢𝑦𝑗

ℎ)2
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● A popular modification of this formula is to multiplying it by ½ so that

when we compute the derivative, the 2s cancel out for a cleaner formula:

● For derivation, the gradient descent algorithm will consider only one 

input-output pair (the inner sum of the total Loss) at each iteration. 

Once this is derived, the general form for all input-output pairs can be 

generated by summing the individual gradients. The error function is 

therefore simplified as:  𝐿𝑜𝑠𝑠 𝑊 = (1/2σ𝑗(𝑦𝑗
ℎ − ෢𝑦𝑗

ℎ)2)

𝐿𝑜𝑠𝑠 𝑊 =
1

2𝑛
෍

ℎ=1..𝑛

෍

𝑗=1..𝑘

(𝑦𝑗
ℎ − ෢𝑦𝑗

ℎ)2

n=|D|



Example of loss computation:
1 output node
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Input instance x<(1.0,1.0),0.50>; Loss(W,x)=1/2(0.50-0.73)2=0.0529/2



How can we minimize the error ?

● Gradient descent implies taking the derivative of the Loss function. To compute a 

derivative, we must re-write the Loss function in a way that «highlights» the relevant

variables

● First of all, what are our relevant «variables» (what can be changed in the network)?

● The network weights wij! In fact the output oj
h,[L] in each layer L are computed by 

feeding the network with data INSTANCES xh (i.e., the values of the features of the 

training instances). These values propagate through the networks and are weighted, 

summed, and thresholded on each neuron, from input up to the output nodes. 

● Therefore the final output vector ෝ𝒚ℎdepends on the weights (parameters) and on 

the type of activation function that generates the output of each neuron (note that

the activation function is an hyperparameter, not adjustable during training).

● So, to minimize the error, we can only adjust the weights! and change the 

activation function (hyperparameter), but the latter is to be chosen a priori
18

𝐿𝑜𝑠𝑠 𝑊 = (
σℎ=1..𝑛 σ𝑗=1..𝐾(𝑦𝑗

ℎ − ෢𝑦𝑗
ℎ)2

2𝑛
)



Gradient Descent updating rule: 
Hill Climbing in the Gradient Descent

● How can we apply gradient descent to learn weights in a neural network? The 

idea is to use gradient descent to adjust the weights to minimize the error (loss

function) at each iteration (similarly to Perceptron):

● Each weight  wij (note that we omit the superscript L indicating the layer and the h 

superscript whenever possible) is updated proportionally to (𝜂) the partial derivative 

(𝜕(Loss)/ 𝜕wij),  e.g. the fraction of the gradient of the total loss that can be 

«imputed» to the weight wij

● 𝜂 is a hyperparameter (like the activation function and the Loss function) and is 

usually <<1

● Hill Climbing: by repeatedly applying this updating rule to all weights and all

instances of the training set D,  we can "roll down the hill", and hopefully find a 

minimum of the cost function.

● BUT: the problem is that in the formula of the loss, we don’t have the weights! 19



How do we go about?

● We define some Loss function, e.g.

● But, in order to update the weights W of the NN, we need to compute               for all weights

and layers. 

● Note:  
𝜕𝐿𝑜𝑠𝑠()

𝜕𝑤
𝑖𝑗
[𝐿] tells us «how fast» the observed loss changes when a specific parameter 𝑤𝑖𝑗

[𝐿]
of 

the NN changes, in other words WHAT IS THE CONTRIBUTION of that parameter to the 

observed error, and next, we use this information to adjust the parameter

● The problem is: we can only observe the output error (𝑦𝑗
ℎ − ෢𝑦𝑗

ℎ), how do we compute these

derivatives?? The relation between the numerator and the parameters 𝑤𝑖𝑗
[𝐿]

is not explicit

● SOLUTION: we model the network with COMPUTATIONAL GRAPHS, were all nodes represent

differentiable operators, and we apply an algorithm called  BACKPROPAGATION to derive the 

contribution of each computational step to the total loss
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𝜕𝐿𝑜𝑠𝑠()

𝜕𝑤𝑖𝑗
[𝐿]

𝐿𝑜𝑠𝑠 𝑊 = (
σℎ∈𝐷 σ𝑗∈𝐾(𝑦𝑗

ℎ − ෢𝑦𝑗
ℎ)2

2𝑛
)
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Backword pass: the basic step

● General backpropagation step  in each node of the network (f here denotes a generic function

computed on a generic node, x, y and z are the  input and output of the node 𝑓 𝑥, 𝑦 = 𝑧):  

The Loss that backpropagates

from previous nodes

The contribution of a generic

node 𝑓 𝑥, 𝑦 to the Loss, and how it

propagates backwords

We apply the derivative chain rule. Of course, it is important that f is a DERIVABLE function

Digitare l'equazione qui.

𝜕𝐿

𝜕𝑧
=

𝜕𝐿

𝜕(𝑓(𝑥, 𝑦))



We can compute these derivatives step by step in an easier way 

using the computational graph representation of NN

● A computational graph is a directed graph where the nodes correspond to operations or 

variables. By applying the derivative chain rule, we can “backpropagate” the gradients

● Example: consider the function 𝑓 = 𝑥 + 𝑦 × 𝑧 = 𝑞 × 𝑧 within a more complex network

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑞

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑥

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑦

𝜕𝐿

𝜕𝑓𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑧

Note: 
𝜕𝑓

𝜕𝑞
=z and 

𝜕𝑓

𝜕𝑧
=q=(x+y)  

𝜕𝑞

𝜕𝑥
= 

𝜕𝑞

𝜕𝑦
=1 

If, e.g.,  the gradient backpropagating from subsequent computations
𝜕𝐿

𝜕𝑓
=2, and x=1, y=2, and z=2

then we have
𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑞
=2 ∗ 2; 

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑧
=2 ∗(1+2);  

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑥
=2 ∗ 2 ∗ 1;  

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑦
= 2 ∗ 2 ∗ 1

Other network 

layers

Other network 

layers

Other network 

layers

The key is to understand how a 
change in one variable brings 
change on the variable that 
depends on it. If q directly 
affects f, then we want to know 
how it affects f. 

If we make a slight change in 
the value of q how 
does f change? We can term 
this as the partial derivative of 
f with respect to q.



Let’s see how it works for a simple neuron with sigmoid

activation

● Step 1 compute the partial derivative of the loss

𝜕𝐿

𝜕 ො𝑦
= 𝑦 − ො𝑦

● Step 2 start backpropagating the loss, using the 

chain rule:

𝜕𝐿

𝜕𝑐
=

𝜕𝐿

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑐
=

𝜕𝐿

𝜕 ො𝑦
𝜎(𝑐)(1 − 𝜎 𝑐 )= 𝑦 − ො𝑦

𝑒−𝑐

(1+𝑒−𝑐)2
= 

𝑦 − ො𝑦 ො𝑦(1- ො𝑦)
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*

+

*

𝜎

x1

x2

w1

w2

a=w1x1

b=w2x2

c=a+b ො𝑦
Loss

y

𝐿 𝑦, ො𝑦 =
1

2
𝑦 − ො𝑦 2

*

+

*

𝜎

x1

x2

w1

w2

a=w1x1

b=w2x2

c=a+b ො𝑦

𝜕𝐿

𝜕 ො𝑦

𝜕𝐿

𝜕𝑐



Simple NN backpropagation with CG

● Step 3: backpropagation form summation node

● Step 4: multiplication nodes

𝜕𝐿

𝜕𝑤1
=

𝜕𝐿

𝜕𝑎

𝜕𝑎

𝜕𝑤1
=

𝜕𝐿

𝜕𝑎

𝜕(𝑤1𝑥1)

𝜕𝑤1
= 

𝜕𝐿

𝜕𝑎
𝑥1 = 𝑦 − ො𝑦

𝑒−𝑐

(1+𝑒−𝑐)2
𝑥1

Where 𝑐 = 𝑤1𝑥1 + 𝑤2𝑥2

So, we can update w1!! 

𝑤1 = 𝑤1 + 𝜂
𝝏𝑳

𝝏𝒘𝟏
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x

+

x

𝜎

x1

x2

w1

w2

a=w1x1

b=w2x2

c=a+b ො𝑦

𝜕𝐿

𝜕 ො𝑦

𝜕𝐿

𝜕𝑐

+
𝜕𝐿

𝜕𝑐

𝜕𝐿

𝜕𝑐

𝜕𝑐

𝜕𝑎

𝜕𝐿

𝜕𝑎
=

𝜕𝐿

𝜕𝑐

𝜕𝑐

𝜕𝑎
=

𝜕𝐿

𝜕𝑐

𝜕(𝑎+𝑏)

𝑎
=

𝜕𝐿

𝜕𝑐
1= 𝑦 − ො𝑦

𝑒−𝑐

(1+𝑒−𝑐)2

𝜕𝐿

𝜕𝑎

𝜕𝐿

𝜕𝑤1

Note: during each backpropagation step, x1,x2, w1,w2, y and ො𝑦
are NUMBERS!! 𝜂 is an hyperparameter and is established apriori  (e.g., 0,1) 

Also note that here we have written 𝑦 − ො𝑦 for simplicity, but since

the process is repeated for every example h in the dataset, we should

write 𝑦ℎ − ො𝑦ℎ where h is the superscript that identifies one example in D

𝜕𝐿

𝜕𝑥1

Finally, 
𝜕𝐿

𝜕𝑥1
=𝑤1

𝜕𝐿

𝜕𝑎



In class exercise

● Rework all the formulas of backpropagation

up to x1 and w1 on a simple neuron, as

before, when the loss function is the binary

cross entropy (here, y is either 1 or 0, while

ො𝑦 is the output of the sigmoid)

● Consider the two cases: when y=1 and

y=0)

26

𝐿𝑜𝑠𝑠 𝑦, ො𝑦 = −(𝑦 log ො𝑦 + (1 − 𝑦) log 1 − ො𝑦

*

+

*

𝜎

x1

x2

w1

w2

a=w1x1

b=w2x2

c=a+b ො𝑦
Loss

y



What happens for a more complex NN
● We have computed step by step the weight 

updating formula for a simple neuron

● This formula also applies to the FIRST set of 

weights (those closest to the output nodes in 

figure)

● The only difference is that rather than having 𝑥𝑖

(the input) in the formula, we have 𝑜𝑖
[𝐿−1]

, i.e., the 

output of previous layer (the green perceptrons)

● So, the formula for updating the weights of the 

«closest» layer L-1 is

●
𝜕𝐿

𝜕𝑤[𝐿]
𝑖
= 𝒐𝒊

[𝑳−𝟏]
𝑦 − ො𝑦 ො𝑦(1- ො𝑦)

● And since we might have multiple output nodes

and multiple examples, the complete formula is: 

●
𝜕𝐿

𝜕𝑤[𝐿]
𝑖𝑗
= 𝑜𝑖

[𝐿−1]
𝑦𝑗
ℎ − ො𝑦𝑗

ℎ 1 − ො𝑦𝑗
ℎ ො𝑦𝑗

ℎ
where j is 

the jth output node
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ො𝑦3

NOTE: COMMONLY, the quantity 𝑦𝑗
ℎ − ො𝑦𝑗

ℎ 1 − ො𝑦𝑗
ℎ ො𝑦𝑗

ℎ
is 

denoted with 𝛿𝑗
[L] , the contribution of output node 𝑛𝑗

[𝐿]
𝑗 to the 

total loss at step h.  So we have
𝝏𝑳

𝝏𝒘[𝑳]
𝒊𝒋
= 𝒐𝒊

[𝑳−𝟏]
𝜹𝒋
[𝑳]

𝜕𝐿

𝜕𝑦3

𝑜5
[4]



What happens for a more complex NN
● Also note that the loss that backpropagates from 

each node j of the last layer L=5 back to the nodes

i of layer 4 is  

𝜕𝐿

𝜕𝑜
𝑖
[4]=𝑤𝑖𝑗

[5]
𝛿𝑗
[5]

= 𝑤𝑖𝑗
5

𝑦𝑗
ℎ − ො𝑦𝑗

ℎ 1 − ො𝑦𝑗
ℎ ො𝑦𝑗

ℎ
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𝜕𝐿

𝜕𝑦3
𝜕𝐿

𝜕𝑥1
=𝑤1

𝜕𝐿

𝜕𝑎



But now we need to update also the weights of the other layers

● The gradients coming from each node of  layer [L-

k+1] backpropagate to each node 𝑛𝑖
[𝐿−𝑘]

of the 

preceding layer [L-k] and gets summed

● Remember: 𝛿𝑗
[𝐿−𝑘+1]

denotes  the gradient of node

𝑛𝑗
[𝐿−𝑘+1]

and 𝑤𝑖𝑗
[𝐿−𝑘]

𝛿𝑗
[𝐿−𝑘+1]

is the gradient

travelling  back along the synaptic connection 

𝑤𝑖𝑗
[𝐿−𝑘]

towards node 𝑛𝑖
[𝐿−𝑘]

● The node itself further contributes to the gradient

with the  multiplier 𝑜𝑖 (1- 𝑜𝑖) (the derivative of the 

sigmoid)  since the derivative of the sum is 1. 
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𝜕𝐿

𝜕𝑜𝑖
=෍

𝑗

𝑤𝑖𝑗𝛿𝑗
[𝐿−𝑘+1]

𝑛𝑖
[𝐿−𝑘]

𝑜𝑖
[𝐿−𝑘]

𝑛𝑗
[𝐿−𝑘+1]𝑤𝑖𝑗

[𝐿−𝑘]

𝜕𝐿

𝜕𝑜𝑖

𝛿𝑖
[𝐿−𝑘]

=
𝜕𝐿

𝜕𝑜𝑖

𝜕𝑜𝑖

𝜕𝑐
= σ𝑗𝑤𝑖𝑗𝛿𝑗

[𝐿−𝐾+1]
𝑜𝑖 (1- 𝑜𝑖)

𝜎+
c oi

𝑛𝑖
[𝐿−𝑘]

Pls note that here I omitted the layer superscript on weights and output..)



Example:  from layer L=3 to L=2

● The gradient on node 𝑛1
[2]

backpropagates

from 𝑛1
[3]

and 𝑛2
[3]

● Where 𝛿1
[3]

= 𝑦1
ℎ − ො𝑦1

ℎ 1 − ො𝑦1
ℎ ො𝑦1

ℎ
and a 

similar formula for 𝛿2
[3]

● The gradient backpropagating on node 𝒏𝟏
[𝟐]

is 

the sum of the gradients caused by 𝒏𝟏
[𝟑]

and 

𝒏𝟐
[𝟑]
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𝜕𝐿

𝜕𝑥1
[3]

𝜕𝐿

𝜕𝑥4
[3]

𝜕𝐿

𝜕𝑜1
[2]

= ෍

𝑗=1,2

𝜕𝐿

𝜕𝑥1𝑗
[3]

= 𝑤11
[3]

𝛿1
[3]

+ 𝑤12
[3]
𝛿2
[3]Digitare

l'equazione qui.

x4

L=3
L=2L=1



And from L=2 to L=1

● The gradient on node 𝑛1
[2]

is 

𝛿1
[2]
=

𝜕𝐿

𝜕𝑜1
[2] 𝑜1

[2]
(1- 𝑜1

[2]
)∙ 1 = 

(𝑤11
[3]
𝛿1
[3]

+ 𝑤12
[3]
𝛿2
[3]

) 𝑜1
[2]

(1- 𝑜1
[2]

)

(remember the derivative of the σ𝑥𝑖 is 1 and the 

derivative of the sigmoid is 𝜎(𝑥)(1 − 𝜎(𝑥)) )

● The gradient 𝛿1
[2]

of node 𝑛1
[2]

further 

backpropagates towards 𝑛1
[1]

, 𝑛2
[1]

and 𝑛3
[1]

● Note that as we backpropagate towards the first 

layers, we keep multiplying coefficients and  

derivatives.. Will se later that this is a problem!
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Digitare
l'equazione qui.

x4

𝜕𝐿

𝜕𝑜1
[2]𝑤11

[2]
𝛿1
[2]



So the general formulation is

● 𝛿𝑖
[𝐾]

= σ𝑗𝑤𝑖𝑗
𝐾+1

𝛿𝑗
𝐾+1

𝑜𝑖(1 − 𝑜𝑖)

For K=1..L-1, and:

● 𝛿𝑖
[𝐿]

= 𝑦𝑖
ℎ − ො𝑦𝑖

ℎ 1 − ො𝑦𝑖
ℎ ො𝑦𝑖

ℎ
for output 

nodes in last layer L

The weights updating rule is:

● 𝑤𝑖𝑗
[𝐾]

=𝑤𝑖𝑗
[𝐾]

-𝜂
𝛿𝐿

𝛿𝑤𝑖𝑗
[𝐾]

Where
𝛿𝐿

𝛿𝑤𝑖𝑗
[𝐾]=𝑜𝑖

[𝑘−1]
𝛿𝑗
[𝐾]

for K=1..[L]
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Recap of backpropagation algorithm
• To learn weights (and threshold), a hill-climbing approach (i.e. gradient

descent) is used: 𝑤𝑖𝑗
[𝐾]

= 𝑤𝑖𝑗
[𝐾]

− 𝜂𝛿𝑗
[𝐾]
𝑜𝑖
[𝐾−1]

• Forward step: at each iteration and for each input xh in D, we

compute  the output  vector 𝒚
[𝐿]

on last layer and the Loss on output 

nodes (this applies to any loss function, that must be derivable)

• Backward step: We compute the derivative of the Loss entering each

ouput node, and  then update weights with backpropagation, starting 

from output nodes back to input nodes using the gradient descent rule. 
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Weight updates wij on each layer K are proportional (𝜂) to the contribution of 

the destination node 𝑛𝑗
[𝐾]

to the total observed loss (which is 𝛿𝑗
[𝐾]

) and to the 

intensity of the signal travelling on the connection i➔j, 𝑜𝑖
[𝐾−1]

𝑤𝑖𝑗
[𝐾]

𝑜𝑖
[𝐾−1] 𝛿𝑗

[𝐾]
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Example: 1

-0,1

0,1● Error
● Weight
● Output

1

2 4

3

5

-0,1

-0,1

0,1

0,1

Training set:
1. <0.1, 0.1>, 0.1
2. <0.1, 0.9>, 0.9
3. <0.9, 0.1>, 0.9
4. <0.9, 0.9>, 0.1

● All thresholds are equal to zero



Example:
Forwarding pass

2

-0,1

0,1

● Error
● Weight
● Output

0,1

0.5

0.5

0.5

1

2 4

3

5

0,1
-0,1

-0,1

0,1

0,1

Example with the first instance:
1. <0.1, 0.1>, 0.1

● Let’s suppose  thresholds w0 are equal to zero



Example:
Back-propagate the error

2

-0,1

0,1

● Error
● Weight
● Output

0,
1

0.5

0.5

0.5

1

2 4

3

5

0,
1

-0,1

-0,1

0,1

0,1

Example with the first instance:
1. <0.1, 0.1>, 0.1

0,1

𝛿5
[2]

= 0,1



Example:
Back-propagate the error

3

-0,1

0,1

● Error
● Weight
● Output

0,
1

0.5

0.5

0.5

1

2 4

3

5

0,
1

0,1

-0,1

-0,1

0,1

0,1

𝛿5
[2]

= 0,1

𝛿4
[1]

= 0,0025

𝛿3
[1]

= −0,0025



4Example:
Update all weights

● Error
● Weight
● Output

-0,1

0,1

0,
1

-0.0025

0.0025

0.5

0.5

0.5

1

2 4

3

5

0,
1

-0,1

-0,1

0,1

0,1

● 𝞰 = 0.2

0,1



Read the second example and continue until all examples have been

consumed;

If Loss>Θ then start new epoch
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Issues with «basic» 
backpropagation Algorithm

● Not guaranteed that training error converges to zero, it may
converge to local minima or oscillate indefinitely.

● Convergence speed may also depends on initial choice of 
random weights W

● Convergence and accuracy of results also depend on 
network architecture (how many hidden units? How many
nodes per unit?)  and the other hyperparameters

● When adding many hidden layers, everything gets worst
and we experience another undesired phenomenon
(vanishing gradient, see Deep learning slides)



Best weights W to begin?

● Note that if we start with all-equal weights, all neurons will

learn the same thing, and NN will not converge

● Simple rule is to select weights uniformly at random in a 

range −𝛼 + 𝛼

● See this paper for more insight on weight initialization

techniques 

https://www.cs.toronto.edu/~fritz/absps/momentum.pdf


Avoiding local minima

● To avoid local-minima problems*:
➢ run several trials starting with different random 

weights (random restarts) 
➢ or using perturbations (need to introduce 

another hyperparameter, the momentum).
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https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d


Avoiding local minima: momentum

Momentum:

● Δwt
ij=−𝜂∂Loss/∂wij+𝜇Δwij

t−1

● Where t is the t-th update for weight wij

● Keeps memory of previous updates (t-1)

● Introduction of the momentum rate 𝜇 allows the attenuation of 

oscillations in the gradient descent (but yet another hyperparameter!)

● Here (for those interested) a recent paper (2021 JMLR) on the 

problem of local minima 
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https://www.jmlr.org/papers/volume22/19-586/19-586.pdf


NN Overfitting Prevention 
● Running too many epochs can result in overfitting

45

er
ro

r

on training data

on test data

0 # training epochs

● Overfitting is a common problem in deep non-deep NN, will
see some standard technique (regularization, drop out..). in 
the last part of the course, dedicated to the entire ML project 
pipeline



●46

Determining the Best 

Number of Hidden Units

● Too few hidden units prevents the network from adequately fitting 

the data.

● Too many hidden units can result in over-fitting.

● Use internal cross-validation to empirically determine an optimal 

number of hidden units (or use ML algorithms to learn the best 

architecture, here is an example).

https://arxiv.org/pdf/1611.01578.pdf


An intuitive explanation of hidden units in NN
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A visual intuition of how neural networks  work 

(character recognition)



Input are pixels output are
numbers from 0 to 9.
What are the hidden layers?

A visual intuition of neural networks (2)



A visual intuition of neural networks (3)



Inner layer have a «hidden» meaning,
but we can think of them as «recognizers»
of  simpler component of the input.
Once the weights are learned,  they activate
when the component is recognized.

An intuition of neural networks (4)



An intuition of neural networks (5)



Layer 2 recognizes smallest

component, layer 3 more 

complex

component.

HOWEVER this is an intuitive 

explanation. We can’t actually

tell the network does this.. 

A visual intuition of neural networks (6)



Another visual intuition: face recognition

HOWEVER this is an intuitive explanation. We can’t

actually tellthe network does this.. 



So we have another issue with NN: Interpretability
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Next lessons:
Deep Learning algorithms
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