
Neural Networks: multi-layer networks and the

backpropagation model

1

Perceptrons are binary classifiers.

They learn a single linear boundary.

What if data not linearly separable?

2

Multi -Layer Networks: architecture
Multi-layer networks can represent arbitrary functions. A typical multi-layer network
consists of input, hidden and output layers, each layer fully connected to the next,
with activation feeding forward.

ƀ Input nodes do not have activation functions. Thus, they are placeholders for
the input feature values of x.

ǒEdges between nodes are weighted by wij (indexes i, j
now identify nodes in adjacent layers iŸj)

ƀ Now, an example x from the set D, is a pair of vectors (<x1, x2,..., xm>, <y1, y2,...,
yK>), called the feature vector and ground-truth vector. Note that now we
can have multiple outputs (k) and m in general is different from k!

ƀ Parameters: the wij

ƀ Hyperparameters: the network architecture (layers, hidden nodes..) the neuron
activation functions•, and (especially for deep networks) many others

3

output

hidden

input

activation

Multilayer networks

ǒ Target is to learn the weights (and the threshold) of
edges such as to minimize the error between the output
available on output nodes oj and the true output values yj in
training set D

ǒNow, the ground truth vector <y 1,y2,..., yK> is a complex

output functions or a multiple classifications.

ǒNote that we need 3 indexes now: i and j to identify

connections wij between node pairs in connected layers (iČ j),

a superscript (h) to identify an example in D (i.e (<x h
1, x

h
2,...,

xh
m>, <y h

1, y
h
2,..., yh

K>)). We will omit the example identifier

whenever possible, to avoid overloading the notation.

4

Multilayer networks

ǒOutput values can be continuous rather than discrete as for

classifiers (like Dtrees and Perceptron).

ǒSo, Multilayer Perceptron is a regressor (although it can be turned into

a classifier)

ǒ Like for the perceptron, each node nj receives in input a weighted

sum of values net j and computes an activation function ű(netj -

—j).

ǒ Like for the Perceptron, edge weights are iteratively updated to

minimize the error (the difference between «true» output(s) and

computed output(s)). The iterative algorithm is called

Backpropagation .

5

Multilayer networks
ǒ Weight and threshold updating rule is based on the Hill-Climbing

heuristic, like for perceptron.

ǒ In a Hill -Climbing heuristic:

1. We start with an initial solution (a random set of weights W and

—).

2. Generate one or more ñneighboringò solutions (weights which are

ñcloseò to previous values) with the objective of reducing the

error.

3. Pick the best solution according to some criterion, and continue

until there are no better neighboring solutions

ǒ In the case of the neural network, gradient descent is used to

identify the ñbestò neighboring solutions.

Gradient and Gradient Descent

ǒThe gradient of a scalar field is a vector field that points

in the direction of the greatest rate of increase (or

decrease) of the scalar field, and whose magnitude is that

rate.

ǒIn simple terms, the variation of any quantity ïe.g. an

error function - can be represented (e.g. graphically) by a

slope. The gradient represents the steepness and

direction of that slope.

ǒNote: Finding the gradient is essentially finding the

derivative of a function.

To find a local minimum of a function (e.g., f(x) = error (x)) using

the gradient descent, one takes (small) steps proportional to the

negative of the gradient (or the approximate gradient) of the

function at the current point (gradient=derivative)

8

Gradient and Gradient Descent

ƀ The objective of the learning algorithm, then, is to find the parameters W

(all the coefficinets wij) which give the «minimum possible cost» ïcalled

Loss(W).

ƀ Usually, for the Gradient Descent, the error is computed by the Mean Squared

Error function (MSE) over the weights W. The MSE for the multilayer NN:

ὒέίίὡ
ρ

ȿὈȿ
ȢȢ

ώ έ

ỏ D is the set of training examples

ỏ n = |D|; the number of training instances

ỏ k is the number of output nodes of the NN

ỏ W is the set of weights and to simplify, it includes the thresholds (that can

be represented as the weight wo of a dummy node with constant value 1).

9

Gradient and Gradient Descent

ƀ The error function is also called Loss function or Cost function .

There are many other loss functions (will see some). See link, link

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

Gradient descent needs a
differentiable activation function
ǒTo do gradient descent with multiple neurons, we need

the activation (output) function of neurons to be a
differentiable function of its input and weights.

ǒThe binary step function of the Perceptron is not
differentiable .

10

netj

oj

Tj

0

1

Differentiable activation function
A common solution is to use the non-linear, differentiable

sigmoid function (aka. logistic function):

11

netjTj

0

1

Where the input x i to node j is the output
o i of previous nodes . This could be
confusing!

i joi

Note: the threshold or bias

Is commonly denoted with symbols

T or orύ or — In any case, we

are simply adding a constant to the

convolution net(x)

12

Example:
Feeding data through the NN with the

Sigmoid Activation function (with T j = 0)
)

The activation function limits the node output (threshold is 0 in the

example):

threshold

oj

net

13

Thresholding(with T=0):

wi->j

x:<x1,x2>=<1,0.5>

netj= (1 × 0.25) + (0.5× (-1.5)) = 0.25 + (-0.75) = - 0.5

Example (2):
Feeding data through the NN with the

Sigmoid Activation function (with Tj = 0)

Back to Gradient Descent
ǒWe use the MSE (mean square error) as a loss function to compute

the error to be minimized:

ὒέίίὡ
ρ

ὲ
ȢȢ

ώ έ

14

ƀ A popular modification of this formula is to multiplying it by ½ so that

when we compute the derivative, the 2s cancel out for a cleaner formula:

ƀ For derivation, the backpropagation algorithm will consider only one

input -output pair (the inner sum of the total Loss). Once this is derived,

the general form for all input-output pairs can be generated by combining

the individual gradients. The error function is therefore simplified as:

Should be LOSS(Wj) where j is the observed output nodeïwe omit to avoid overloing the notation

ὒέίίὡ
ρ

ςὲ
ȢȢ

ώ έ

Example of loss computation:
1 output node

15

Input instance X<(1.0,1.0),0.50>; Loss(W)= 1/2(0.50-0.73)2= 0.0529/2

How can we minimize the error ?

ǒ Gradient descent implies taking the derivative of the Loss function. To compute

a derivative, we must re-write the Loss function in a way that «highlights» the

relevant variables.

ǒ First of all, what are our relevant «variables» (what can be changed in the

network)?

ǒ The network weights wij! In fact the output oj are computed by feeding the

network with data INSTANCES (i.e., the values of the features of the training

instances). These values propagate through the networks and are weighted,

summed, and thresholded on each neuron, from input up to the output nodes.

ǒ Therefore the final output depend on the weights and on the threshold function

that generates the output of each neuron (which is an hyperparameter).

ǒ To minimize the error, we can only adjust the weights!

17

Gradient Descent updating rule:
Hill Climbing in the Gradient Descent

ǒHow can we apply gradient descent to learn weights in a neural

network? The idea is to use gradient descent to adjust the weights to

minimize the error (loss function) at each iteration:

ǒEach weight wij is updated proportionally to the partial derivative

(‬(Loss)/‬wij), e.g. the fraction of the gradient of the total error that

can be «imputed» to the weight wij

ǒHill Climbing: by repeatedly applying this updating rule to all

weights and all n instances of the training set D, we can "roll down

the hill", and hopefully find a minimum of the cost function.

18

Sketched proof of the updating equations for
Backpropagation

19

A. How fast the error changes when w ij changes
B. How fast the error changes when o j changes
C. How fast the o j changes when w ij changes
D. How fast the o j changes when net j changes
E. How fast the net j changes when w ij changes

Applying the derivative chain rule, we obtain 3 components :

A B C B D E E

ƀ For convenience, let define:

We can consider‏ as the derivative of the error caused by a node nj when computing the convolution

Remember: «how fast» relates

with the steepness of the

derivative.

The contribution of wij to an observed output error

20

netJ

oj=f(netJ)

Letôs compute the partial derivatives

= = =έ(1-έ)

=
В

=έ

21

We only need to compute the third partial

derivative

This depends on the position (layer) of the node nj

Note oi is the output of node ni

connected to node nj trough

synaptic weight wij (see picture on slide 20)

Letôs compute the partial Derivatives:
Output nodes

B

ƀ ConsidernJ as any output node, we have only B to derivate
(link):

Then, the previous equations become:

=
В ȢȢȢȢ

=(έ ώ)

Note once more that oi=xi, i-th input of node

nj is the output of node ni in previous layer
o4=

o1=x1o1=x1

o2=x2

o3=x3

https://towardsdatascience.com/learning-backpropagation-from-geoffrey-hinton-619027613f0

Letôs compute the partial Derivatives:
Inner nodes

23

ƀ Considernow the case in which nj as any inner node in one
of the hidden layers. The problem is that we do not know
the error of the inner nodes since we can only observe
the error on the output (observable) nodes!.

ƀ ..But! We can «backpropagate» the error from the output
layer!

ƀ Solution : Starting from the output layer we can recursively
calculate the partial derivative of the error for each layer.
This is the main idea of the Backpropagation Algorithm !

Letôs compute the partial Derivatives:
Inner nodes (2)

ǒ We can consider the (gradient of the) error observed on an inner node

nj in hidden layer Y as the sum of the (derivative of the) errors caused

by the L nodes n1..nl..nL of layer Y+1 to which nj is connected, weighted

by the value of the connecting synapsis

24

nj

wij

wj1
é.

wjl

wjL
nL

nl

n1

‬ὒέίί

‬έ

inner nodes are ñresponsibleò of errors on output nodes for a fraction
depending on the weight of their connections to output nodes.

25

ŭ=0.2

ŭ=0.4

ŭH2=(0.4×0.1+0.2×1.17) oH2(1-oH2)

Error backpropagation
in the inner nodes

ñdeltasòat nodes O1 and O2

Summary so far
ǒ The gradient descent updating rule is an optimization algorithm

that aims to find (i.e. learn) the weights that minimize the error of the

model.

ƀ ...but, the gradient descent algorithm is inefficient into

computing the partial derivatives.

ǒ Solution : Backpropagation.

ǒ The goal of the Backpropagation technique is to compute iteratively

the partial derivative of the loss function for any weight w (and

threshold) in the network, starting from output nodes back to input

nodes.

26

Gradient Descent updating rule Backpropagation technique

Backpropagation

Algorithm
ǒ If something is not clear, please read these link, link

http://neuralnetworksanddeeplearning.com/chap2.html
https://mccormickml.com/2014/03/04/gradient-descent-derivation/

Backpropagation of error

ǒ Objective : learn oj= f(wji, x) for j= 1ék output functions, where x :<x 1..xm> is

aninput instance (represented by m features) and wij are the weights on network

edges. We are given a training set D of input -output pairs < xh,yh> where xh is a

m-dimensional vector and yh is a k-dimensional vector

ǒMain idea of the backpropagation algorithm : start with random values for

wji (and thresholds) and until the loss (i.e. the error, i.e.,the difference between

the ñtrueò and ñcomputedò output values) is below a thresholdⱠor does not

decrease, use the gradient descent updating rule and the computed output

values to iteratively update the values wij (and thresholds). Weights among

two nodes i and j in two connected layers (i j) are updated according to:

27

Backpropagation Learning Rule
Eachweight changed by:

ỏ where:

ỏ Ȅ is a constant called the learning rate

yj is the correct output for output node j (as in learning set)

ŭj is the derivative of error for generic node j (see the previous
slides)

L is the set of all nodes receiving input from node j

28

i j
oi oj

wij

Note : as for perceptron, weights wij are updated proportionally to error ŭj

observed on the output of a node j and to the intensity of the signal (o i)
traveling on edge i j

If j is a inner node, and L is

the subsequent layer

Error backpropagation in the
hidden nodes

29

ÅNote again that the error component is (oj - yj) for an
output node , while in a hidden (inner) node in layer Y it
is the weighted sum of the errors generated by all
the nodes of the subsequent layer to which it is
connected! (the error backpropagates)

Note that l is the index of all nodes to

which a hidden node j is (forward)
connected

Recapof backpropagation algorithm
ƀTo learn weights (and threshold), a hill-climbing approach

(i.e. gradient descent) is used.

ƀForward step : At each iteration and for each input ,

we compute the output oj and the error on output nodes.

ƀBackward step : We then update weights starting from

output nodes back to input nodes using the gradient

descent rule.

30

Weight updates are proportional to the derivative of

a loss function . έ‏

Pseudo code Backpropagation Training
Algorithm

31

Hyperparameters: network architecture, loss function, –
Parameters: synaptic weights

1. Set weights to small random real values.
2. Until all training examples produce the correct value (within Ů),

or loss ceasesto decrease(or other termination criteria):
1. (Begin epoch)
2. For each training example, x in D, do:

1. Forward step: Compute the network output for xôs input
values

2. Backward step: Compute the error between current
output and correct output for x

3. Update weights by back-propagating error
3. (End epoch)

32

Example:
Forward pass

Feed with the first example x and compute output on all nodes with initial
(random) weights. Consider for simplicity all thresholds equal to zero.

1.

2.

3.

x
: x

1
x

2 é
x

nOutj one of the output nodes
hk the hidden nodes
I j the input nodes

1

I1

In

I2

h1

h2

outj

é
é

é

wh1,j

wh2,j

oj

Example:
Backward pass

Compute the error on the output node, and
backpropagate computation on hidden nodes.

2

x
: x

1
x

2 é
x

n

I1

In

I2

h1

h2

outj

é
é

é

wh1,j

wh2,j

oj

éand on input nodes

3

x
: x

1
x

2 é
x

n

I1

In

I2

h1

h2

outj

é
é

é

wh1,j

wh2,j

oj

Example:
Backward pass

é

Example:
Update weights and iterate 4

x
: x

1
x

2 é
x

n

I1

In

I2

h1

h2

outj

é
é

é

wh1,j

wh2,j

oj

é

Example:
continue...

1.Update all the weights
2.Consider the second example
3.Compute input and output in all nodes
4.Compute errors on output and all nodes
5.Re-update weights
6.Until all examples have been considered (Epoch)
7.Repeat for n Epochs, until convergence

5

Another Example: 1

-0,1

0,1ƀError
ƀWeight
ƀOutput

1

2 4

3

5

-0,1

-0,1

0,1

0,1

Training set:
1. < 0.1, 0.1>, 0.1
2. < 0.1, 0.9>, 0.9
3. < 0.9, 0.1>, 0.9
4. < 0.9, 0.9>, 0.1

ƀ All thresholds are equal to zero

Another Example:
Forwarding pass

2

-0,1

0,1

ƀError
ƀWeight
ƀOutput

0,
1

0.5

0.5

0.5

1

2 4

3

5

0,
1

-0,1

-0,1

0,1

0,1

Example with the first instance:
1. < 0.1, 0.1>, 0.1

ƀ All thresholds are equal to zero

Another Example:
Back-propagate the error

2

-0,1

0,1

ƀError
ƀWeight
ƀOutput

0,
1

0.5

0.5

0.5

1

2 4

3

5

0,
1

-0,1

-0,1

0,1

0,1

Example with the first instance:
1. < 0.1, 0.1>, 0.1

0,1

Another Example:
Back-propagate the error

3

-0,1

0,1

ƀError
ƀWeight
ƀOutput

0,
1

-0.0025

0.0025

0.5

0.5

0.5

1

2 4

3

5

0,
1

0,1

-0,1

-0,1

0,1

0,1

4Another Example:
Update the weights

ƀError
ƀWeight
ƀOutput

-0,1

0,1

0,
1

-0.0025

0.0025

0.5

0.5

0.5

1

2 4

3

5

0,
1

-0,1

-0,1

0,1

0,1

ƀ = 0.2

0,1

Issues with «basic»
backpropagation Algorithm

ǒNot guarantee that training error converges to zero, it may
converge to local minima or oscillate indefinitely.

ǒMany epochs (thousands) may be required; time-
consuming when training large networks.

ǒConvergence speed may also depends on initial choice of
random weights W

ǒConvergence and accuracy of results also depend on
network architecture (how many hidden units? How many
nodes per unit?) and hyperparameters

ǒWhen adding many hidden layers, everything gets worst
and we experience another undesired phenomenon
(vanishing gradient, see Deep learning slides)

43

Best weights W to begin?

ǒ Note that if we start with all-equal weights, all neurons will

learn the same thing, and NN will not converge

ǒ Simple rule is to select weights uniformly at random in a

range ‌ ‌

ǒ44

Avoiding local minima

ǒTo avoid local -minima problems *:
ỏ run several trials starting with different random

weights (random restarts)
ỏ or using perturbations (need to introduce

another hyperparameter, the momentum).

45

https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d

Avoiding local minima: momentum

Momentum:

ǒ ȹwt
ij=ī–ÖLoss/Öwij+‘ȹwij

tī1

ǒ Where t is the t-th update for weightὡij

ǒ Keeps memory of previous updates (t-1)

ǒ Introduction of the momentum rate‘allows the attenuation of

oscillations in the gradient descent

ǒ * Readings : «Avoiding Local Minima in Feedforward Neural Networks

by Simultaneous Learning (2007)»

46

NN Overfitting Prevention
ǒRunning too many epochs can result in overfitting

47

e
rr

o
r

on training data

on test data

0 # training epochs

ǒAs for Decision Trees, split the dataset into Learning,
Validation and Test sets:

ỏ Test the accuracy on the validation set after every
epoch .

ỏ Stop training when additional epochs increase
validation error.

ǒ48

Determining the Best

Number of Hidden Units

ǒ Too few hidden units prevents the network from

adequately fitting the data.

ǒ Too many hidden units can result in over-fitting.

ǒ Use internal cross-validation to empirically

determine an optimal number of hidden units.

Hidden units and explainability

49

A visual intuition of how neural networks work

(character recognition)

