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Motivation

Evaluating the performance of learning systems is 
important because:

➢Learning systems are usually designed to predict the 
class/value of  “future” unlabeled data points 

➢ In some cases, evaluating alternative models (that we
call «hypotheses»)  is an integral part of the learning 
process

➢For example, in neural networks, different network 
architectures – with different numbers of hidden layers
–represent alternative hypotheses. 

Which one is the best predictor of reality?
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The «real» 
function and 
the hypothesis

Whether our algorithm must learn a discrete c(x) or 
continuous f(x) function ,the problem is that we are given
the «true» values of the function ONLY for the points 
(examples) of the training set D

Learning a model amounts to learning a function h(x) –
named an hypothesis – that approximates the unknown
function at best (note we now use h(x) rather than f(x) or 
c(x), to highlight the fact that ML systems learn approximate
solutions of a given problem!)

Perfect learning is not possible in the majority of real-life 
cases

During the learning process, ML algorithms try to «fit» at
best h(x) (usually, in an iterative manner) on training data so 
as to minimize errors on the training set points

Once an hypothesis is learned, we must evaluate its quality
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Evaluation in (supervised) ML systems

Basic evaluation workflow
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How to select a training set? Stratified sampling

When randomly selecting training or testing sets, we may want to 

ensure that class proportions are maintained in each selected set

labeled data set

++++++++++++ - - - - - - - -

training set

++++++ - - - -
test set

++++++ - - - -

validation set

+++ - -

This can be done via stratified 

sampling: first stratify instances by 

class, then randomly select instances 

from each class proportionally.
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How to monitor 
the training 
process?

Learning curves:

A learning curve is a plot showing the 
progress in terms of 
performance (the Loss, or any chosen
performance measure) w.r.t. a specific
metrics related to learning, during the 
training of a machine learning model.



Learning curves by training set size
How does the performance of a learning method change as a 

function of the training-set size?

this can be assessed by plotting learning curves
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Figure from Perlich et al. Journal of Machine Learning Research, 2003



Learning 
curves by n. 
of epochs 



Learning curves by learning rate 𝜂
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Many types of learning 
curves can be plotted
according to different
settings of the 
hypeparameters



Learning 
curve by n. 
of hidden 
layers
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Issues in 
performance 
evaluation

1. Which performance measure we should use?

2. How well can a classifier be expected to perform on 
“novel” data, not used for training? 

3. Since a performance measure is an estimate on a sample, 
how accurate is our estimate?

4. How to compare performances of different hypotheses or 
those of different classifiers?
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Which 
performance 
shoud we use?

•Performance measures are a function of the errors made by 
the current model

•Adopted performance measures depend on whether we are 
learning a classifier or a regressor

•For classifiers, e.g., perceptron, the error function is binary: 
either the learned model is correct (it predicts the right class) 
or it is wrong

•For regressors, we must take into account the «distance» 
between the predicted value and the ground-truth
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Classifier and (linear) regressor errors
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f(xi)=yi

e



Performance 
measures for 
classifiers
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Classifier error (measured on the test set)
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e

𝑒𝑟𝑟𝑜𝑟 ℎ 𝑥 = σ𝑖=1
𝑛 𝛿(𝑐(𝒙𝒊), ℎ(𝒙𝒊))

𝛿(x,y)=0 if x=y, else 𝛿(x,y)=1 

𝛿 It is called the Kronecker function

yi=c(xi) is the correct classification ෝ𝑦𝑖=h(xi) is the 
output of the classifier



Performances of classifiers

• For classifiers, often it matters to distinguish the types of errors: is the system misclassifying the 
«reds» or the «blues»??

• Performances are usually reported in the form of a confusion matrix (also called contingency 
table)

• The table has four cells (in case of binary classifiers):
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➢ False Positive (FP): number of negative 

instances classified as positive by the 

system

➢False Negative (FN): number of positive 

instances classified as

negative by the system

➢True Positive (TP): number of positive 

(=blue, =1..) instances classified as

positive by the system

➢ True Negative (TN): number of negative 

(=red, =0,..) instances classified as

negative by the system



Contingency 
Table
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18

Total instances 43
Total positive 24
Total negative 19

TP: 22 FP: 2

FN: 2 TN: 17

Learned decision boundary is  f(x)
If f(x)>0 then c(x)=0 (negative) else c(x)=1 (positive) 



Performances measures of classifiers (1)
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Also called Sensitivity or True
Positive rate
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Total instances 43
Total positive 24
Total negative 19

TP: 22 FP: 2

FN: 2 TN: 17

Learned decision boundary is  f(x)
If f(x)>0 then c(x)=0 (negative) else c(x)=1 (positive) 

P=22/24 R=22/2
4
A= (22+17)/43



Extending to multiple classes (macro P 
and R)
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Example: classifying future trends of a stock as UP, DOWN, STAY
The model is predicting 19 
"up" but actually only 8 are 
truly "up"



Other measures
•Specificity (or True Negative Rate) TN/(TN+FP) detected
negative over all negative

•False Positive Rate FP/(FP+TN) misclassified negative over all
negative

•False Negative Rate (Miss rate)  FN/(FN+TP)  misclassified
positive over all positive

Note that FP+TN = total number of negative in test set

FN+TP = total number of positive in test set
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Total instances 43
Total positive 24
Total negative 19

TP= FP= 

FN= TN=

22 2

2 17

Accuracy (22+17)/43  

=0.907

Precison 22/24 =0.91

Recall (TPR) 22/24=0.91

FScore 0.91

FPR 2/19 =0,10



Performances measures of classifiers (2)
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• Receiver Operating Characteristic curve (or ROC curve.) is a graphical plot
that illustrates the performance of a binary classifier systems. 

• The curves are created by plotting the recall (True Positive rate; TPR) against
the false positive rate (FPR) at various system settings (e.g.,different
hyperparameters, growing dimension of training set, etc). One would aim at
high recall and low FPR. 

• FPR=False positives/All negatives

Note that «random» is a bisector if data have an equal
probability of being positive or negative

https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier


Performance measures of classifiers (3): 
AUROC/AUC
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AUROC is the integral of the ROC curve



Why is AUROC useful?
It may help understand what is the «uncertainty» zone of your predictor, and output a 
classification only if outside this zone

Example: we predict if a paper will be accepted at a conference, based on features like lenght of 
the paper, number of authors… Say red are accepted papers, blue are rejected.
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Let’s say our predictor output a probability, or confidence value
(on the x axis), that a paper is accepted or not. The y axis is the 
count of observations in the test set (say we have 250 accepted, 
250 rejected in our test set).
For example, there are 50 papers for which the system predicts
p=0.7 of being positive, and they are indeed all positive.
20 papers have p=0.5, of which 10 are positive, 10 are negative

As shown in the figure, when the system output a 
probability between 0.4 and 0.6, it has a 50% 
chance of being wrong! So we should not rely on 
system’s predictions for these output values.



AUC measures this «uncertainty area»
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For p>0.6 the system reliably classifies positive, for p<0.4 it reliably classifies
negative, in between the system is unable to correctly sperate positive from negatives

This is also helpful to set 
the "cutoff" or 
THRESHOLD of certain
classifiers. Remember: 
the output of a NN is a 
continuous value (or a 
probabiity if we use 
softmax). The cutoff is
the value above wich we
predict "1" and below
which we predict "0"



How dos this relate 
to ROC and AUROC?
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The left side of the ROC curve corresponds
to the more "confident" thresholds: a higher
threshold leads to lower recall (TPR) and 
fewer false positive errors. The extreme
point is when both recall and FPR are 0. In 
this case, there are no correct detections
but also no false ones.

The right side of the curve represents the 
"less strict" scenarios when the threshold is
low. Both recall and False Positive rates are 
higher, ultimately reaching 100%. If you put 
the threshold at 0, the model will always 
predict a positive class: both recall, and the 
FPR will be 1.



Area Under the ROC curve: 
the highest the value, the 
smallest the uncertainty zone
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To summarise:
• green and red curves represent the 

probability that a given model classifies an 
instance as positive or negative given the 
values of its features (note: in most
cases probability curves are not "nice" gaussians.. 
This is only an example)

• AUROC (the rightmost curves) tells us how good 
the model is at separating.

• More here

Here the model is reciprocating the classes!

Here, TPR=1 and FPR=0, so
We have a perfect classifier

https://www.evidentlyai.com/classification-metrics/explain-roc-curve
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Precision-Recall curve (or PR curve) is a graphical plot that illustrates the 
performance of a binary classifier system. The curve is created by plotting the recall
(True Positive rate; TPR) against the precision at various system settings (for 
example, different thresholds of a NN output such that if y≥β then c(x)=positive else 
negative; different hyperparameter settings, etc.).

• The Area Under the Precision-Recall curve (AUPR) has an intuitive meaning

just like AUROC. However:

➢ AUROC is better for a binary balanced problem.

➢ AUPR is better for a binary imbalanced problem (we discussed about

imbalanced classes under the topic feature engineering). See link

Performances measures of classifiers (4)
PR curve and AUPR

https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/


Why not ROC/AUROC with unbalanced classes?

● Suppose we have imbalanced data, e.g., in credit risk prediction, the vast majority of 

instances in the dataset are negative (not fraudulent users) and only a minority is 

positive. We really care about capturing positive instances.

● ROC curve is not a good visual illustration for highly imbalanced data, because the False 

Positive Rate ( FPR=FP / (FP+TN) ) does not drop drastically when the total number of real 

negatives is huge (since now FP<<TN).

● Whereas Precision ( True Positives / (True Positives + False Positives) ) is highly sensitive to 

False Positives and is not impacted by a large total true negative denominator.
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Performance 
of regressors

32



Performance measures of Regressors
𝑒𝑟𝑟𝑜𝑟 ℎ 𝑥𝑖 = 𝑓 𝑥𝑖 − ℎ 𝑥𝑖

MAE (mean absolute error)=

1

𝑛
σ𝑖=1
𝑛 |𝑓 𝑥𝑖 − ℎ 𝑥𝑖 |

RMSE Root Mean Squared Error

1

𝑛
(

𝑖=1

𝑛

(𝑓 𝑥𝑖 − ℎ 𝑥𝑖 )
2

RSS Residual Sum of Squares

(

𝑖=1

𝑛

(𝑓 𝑥𝑖 − ℎ 𝑥𝑖 )
2

33
33

f(xi)=yi
ℎ 𝑥𝑖 = ෝ𝑦𝑖 = 𝑚𝑥𝑖 + 𝑞

..plus many others algorithm-dependent Loss functions



Issues
1. Which performance measure we should

use?

2. How well can a classifier be expected to 
perform on “novel” data, not used for 
training? 

3. Since a performance measure is an estimate 
on a sample, how accurate is our estimate?

4. How to compare performances of different
hypotheses or those of different classifiers?
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Before we try to answer 
the issue 2 and 3
WE NEED TO UNDERSTAND WHAT ARE THE CAUSES OF AN ERROR 
(IN CLASSIFIERS AND REGRESSORS)
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Why errors, in 
the first place?

● The task of a ML learning algorithm is to find an 
hypothesis model h(x) such that it approximates at best 
the real function y=f(x) both on the points x1..xn of our 
dataset D, and on all other unseen examples

● So h(x) must GENERALIZE on unseen examples

● However, perfectly fitting f(x) is impossible in most cases, 
as we said

● The errors (the difference between the real and learned 
functions) is made up of 3 different components, as we 
have already seen: bias, variance and irreducible error

36



Remember the 3 error
components

Error=bias2+variance+ irreducible error

● The Bias lies in the algorithm (a tendency
to model the problem in a specific way 
which might be inappropriate, e.g. a linear 
model for lineraly unseparable data). It can 
be expressed as:

● Variance is the sensitivity of the model to 
the variability of the data: this can be 
reduced not only with ensambles, but also
by using "appropriate" evaluation
methods. It can be expressed as:
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𝐸[(ℎ 𝑥 − 𝐸(ℎ 𝑥 )2] = 
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E[h(x)] is the expected
value (mean) of different
hypotheses obtained
with different settings of 
the same model. Since it
averages over 
different model settings, 
it is only sensible to the 
model choice



Variance
(for any discrete distribution)
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Variance is defined (in general) as the 
mean of squared differences between
values of N individual outcomes xi and the 
mean (x), i.e. it measures the dispersion
around the mean

For continuous distributions, the sum 

becomes an integral

In our case, the variance is the «dispersion» of the predicted output values of the model 
h(x) around the mean



𝑖=1

𝑛

(ℎ 𝑥𝑖 − 𝐸(ℎ(𝑥))2𝐸[(ℎ 𝑥 − 𝐸(ℎ 𝑥 )2] = 



Lower variance Higher variance models
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𝐸[(ℎ 𝑥 − 𝐸(ℎ 𝑥 )2] = 



How to reduce 
the variance?

Variance cannot be reduced if inherent of our
data.
We can adopt two techniques (or a combination 
of the two):

◦ Train different models (each takes care of 
specific features of the data, we already
presented this technique with ensamble
methods)

◦ Use a validation technique that reduces the 
possibility of «being unlucky» when
randomly selecting a test set: K-Fold Cross-
Validation:
➢ K-FCV: perform several independent splits

on learning and test set and then average 
the performance over these different
splits.
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K-Fold Cross-Validation 
of a hypothesis (model)

42

Partition all the available labeled data in k equally sized
random samples.

1



K-Fold Cross-Validation 
of a hypothesis (model)
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Learni

e1

2

At each step i, learn from Learni and test on Testi, then compute 
the error (ei) on Testi. Testi

e2

e3



Why K-Fold Cross Validation 
reduces the variance?

● Intuitively, it reduces the 
probability of “being lucky”, or 
unlucky, in selecting the test-set 

● To understand the issue more in 
detail, we need to introduce the 
next topic: 

➢ testing the accuracy of an 
error estimate
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Variance and 
bias affect the 
results of 
performance 
measures
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In practice, this means that, depending
on the model, its sensitivity to changes
in hyperparameters and to the choice
of the training data, the performance 
measures can significantly vary.

So the question is: given this sensitivity,
to what extent can we rely on 
performance evaluation experiments?



….Which
brings us back 
to the initial
questions:

1. Which performance measure we should use?

2. How well can a classifier be expected to 
perform on “novel” data, not used for training?

3. Since a performance measure is an estimate on 
a sample, how accurate is our estimate?

4. How to compare performances of different
hypotheses or those of different classifiers?
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Evaluation: What is an Estimator?
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An Estimator is any function on a sample of the data that is used to estimate some «useful
qualities» of the original data from which the sample is drawn. Formally, an estimator is a 
function on a sample S:

where x(i) is a random variable drawn from a distribution D, i.e. x(i) ~ D .

• We would like to use the sample S to estimate some useful qualities of the original data.
• For example, the mean is an estimator (mean value of a random variable X, given a sample 

of «trials»)
• In general, an estimator is any random variable used to estimate some parameter of the 

underlying population from which the sample is drawn
• An obvious question to ask about any estimator (not only the estimator of a ML error rate) is 

whether «on average» it gives the right estimate



Questions to be considered
in estimating the error of a model

Let h(x) be a model learned by a specific ML algorithm L using some specific hyper-parameters
and choice of the training set D. The objective is to estimate its prediction accuracy. The following 
are relevant questions:

Q1: Given the observed accuracy (or any other performance measure) of h over a limited sample 
of test data S, how well does this value estimate its accuracy over additional (unseen) instances?

Q2: Given that one hypothesis h1 outperforms another, h2,over some sample data S, how
probable is it that this hypothesis is more accurate in general (= over the full instance space)?
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Note:  we analyse the problem for classifiers, extending to 
regressors is straighforward



Estimating Hypothesis
Accuracy

A better formulation of Q1:

A) Given a hypothesis h and a data sample containing n instances drawn at
random according to distribution D, what is the best estimate of the 
accuracy of h over future instances drawn from the same distribution?

Need to consider: sample error vs. true error

B) What is the «probable error» in this accuracy estimate?

Need to consider : confidence intervals (ranges in which the «true
value» of the error may lie)

In other terms, if we measure an error rate (on a sample S) of, say, 20%, the true
error rate of h on any sample is not guaranteed to be exactly 20%. Let’s say that it
is 20% ± Δ. Can we estimate the value of Δ (confidence interval)?
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To answer our questions, we need to estimate the Confidence 
intervals
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Objective: Estimating the interval around the estimated error, such that the true
(unknown) error lies within these bounds with some confidence. (See later)

Δ



Sample Error and True Error

● Definition Sample Error (i.e., errors(h), error rate):
The sample error of hypothesis h(x) for the target function c(x) (the ground-truth classification c(x) 
of instances x in S), on a data sample S of n instances is:

where:

➢ n is the number of instances in sample S

➢ r is the number of misclassified instances

➢ h(x) is the classification produced by our current model h

➢ δ( c(x) ≠ h(x) ) = 1 if c(x) ≠ h(x), and 0 otherwise.
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𝑒𝑟𝑟𝑜𝑟 ℎ 𝑥 = σ𝑖=1
𝑛 𝛿(𝑐(𝒙𝒊), ℎ(𝒙𝒊))=r/n



Sample Error and True Error (2)
● Definition True Error (i.e., errorD, (h), p): 

The true error of hypothesis h for the target (unknown) classification function c(x) and 
distribution D of instances, is the probability that h will misclassify any instance x

drawn at random according to D

error D (h)=Pr(h(x)≠c(x))

53

Remember, we consider classifiers c(x) for now, but it easilty extends to regressors f(x)



Estimate, probability
and random variables

We are given a sample S of n instances, we classify S with h(x) and we measure r
errors, we then estimate the error probability of h(x): 

errorS(h) = 𝑃 (r errors in n instances) =        = 1 - accuracyS(h)

●Note: We call S “sample” since it can be any subset X’ of  the set of instances X  
sampled according to a distribution D. 

●However, r (or        ) is a random variable, governed by chance.  If we choose
another sample S’ of n different instances, we may get a different number r’ and a 
different estimate. In general errorS(h) ≠ errorS’(h)
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A Random Variable can be viewed as the name of an experiment with a 
probabilistic outcome. Its value is the outcome of the experiment. 



Estimate, 
probability 
and random 
variables

• A simple experiment for a Random Variable: 

• Make k different sets of trials, in each trial, toss a 
coin 10 times and measure the number of “head”. 
Although, as the number of experiments k
increases, the average number of “head” 
occurrences tend to k/2, in every single trial you
will likely obtain different numbers.

• In coin tossing, we know that the “real” head rate 
(the expected value for the fraction of head tosses) is
50%, but in hypothesis testing, we don’t know what
is the real error rate. So, how can we get an idea of 
errorD (h) on the entire population X, distributed
according to D?
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Sample Error & True Error (3)

Our question is: Is the Sample Error a good estimator 
for the True Error?

We do not know the “true” error probability however we
know that errors(h) is a random variable that follows a 
binomial distribution with mean p (the unknown «true» 
expected error)

56

What is this “binomial”?



Sample Error & True Error:
Why a binomial?

•Say p is the (unknown) “true” expected error of h(x) on X. If we have
a sample S of n instances (test set), what is the probability that, given
instances x in S, c(x) ≠ h(x) for r times??

•Even if we do not know the true value of p (the expected value of the 
error), each instance x in S has probability p of being misclassified by 
h(x) and (1-p) of being classified correctly.

•The probability of observing r misclassified examples in n instances is
then:
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# of ways in which

we can select r items

from a population of n

𝑛
𝑟

𝑝



Example:
p is the probability of rain days in January
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What is the probability of
x rainy days out of 20 days?

The abscissa is the value r (n. of rainy days), on the y axis we read the correspondent
probability, e.g. there is a 20% probability that there will be 5 rainy days out of 20 
observations, 6% probability of 8 rainy days out of 20, etc.



How do we compute these
probabilities?

• Say we know that p( rain) = 25% (on January)

• However, if we watch the weather in 4 consecutive days, we
are not sure we will get “rain” 1 time and “not rain” 3 times. 
The number of observed “rainy days” in each trial of 4 
consecutive days is governed by chance.

• What is the probability of getting, instead, 2 rainy days in 4 
days?

Same formula to estimate the probability of 2 errors over 4 instances, 
given we know that the true error rate is 25%



Example: p is the expected value of the probability that our ML system 
misclassifies an instance x drawn at random from the entire
population of instances

60

What is the probability of x errors 
when classifying 20 instances?

● The abscissa is the value r, e.g. there is a 20% probability that there will be 5 
errors out of 20 classifications,  6% probability of  8 out of 20, etc.

The probability of all correct or all
wrong classifications is close to zero



We usually normalize and plot r/n

0                           0,3                                                            1

Now x is the % of wrongly classified instances

Even if we do not know p, we know that if we perform several experiments on different samples S 
(test sets) we will observe a bell shape distribution of  the error rate r/n!!!!

P(x)



Properties of Binomial distribution

• Expected Value of r over n trials:

• Variance:

• Standard Deviation (STD, SD):

𝑉𝑎𝑟 𝑋 =
σ𝑖=1
𝑛 (𝑜𝑖 − 𝑝)2

𝑛
=
1

𝑛
(𝑛𝑝 1 − 𝑝 2 + 𝑛 1 − 𝑝 0 − 𝑝 2)

= 𝑛𝑝(1 − 𝑝)

𝐸 𝑋 = 𝑛𝑝

)𝑉𝑎𝑟 𝑋 = 𝑛𝑝(1 − 𝑝

𝜎 𝑋 = )𝑛𝑝(1 − 𝑝

Probability of r errors in n trials

oi is the outcome of a correctness test on instance xi. It is 1
If c(x)≠ h(x) and 0 if c(x)=h(x)

For np times o=1, for 
n(1-p) times o=0



Estimator of an error
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Now, we know that the random variable X=r (number of errors observed in n 
independent tests) follows a binomial distribution with unknown mean np. If we
compute the error rate on a sample of n observations S, we obtain a value r/n which is
our current estimate errorS(h) of errorD(h).

• Note that the “estimator” errorS(h) is also a random variable! If we perform many
experiments on different samples Si we could get different values.

• However, for large enough dimension of the sample S, the expected value of 
errorS(h) (i.e. E[errorS(h)]) is the same as for errorD(h)!

Why? Because of the Central Limit Theorem



Central Limit 
Theorem

General Formulation:
The theorem states that the arithmetic mean of a sufficiently 
large number of experiments of independent random 
variables, each with a well-defined expected value and well-
defined variance, will be approximately normally distributed.

• This will hold regardless of whether the source population 
is normal or skewed (biased), provided the samples size is 
sufficiently large (usually n > 30 but this is a "rule of the 
thumb" , and a better way of establishing a threshold can 
be found here)

• Furthermore, the mean of all such experiments will (tend 
to) be the same as the “real” population mean

• A Normal distribution (or Gaussian Distribution):

A family of continuous probability distributions such that 
the probability density function is the normal (or 
Gaussian) function
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https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Berry%E2%80%93Esseen_theorem


Putting it all toghether:
errorS(h)  and errorD(h) both follow a gaussian law, and 
E(errorS(h))→p

In our case we know:

a) Experiments are accuracy tests on data samples Si

b) The involved random variables are the error rates ri/ni observed on 
these samples Si. These random variables are statistically independent of 
each other, and follow a binomial distribution, as we have seen

c) For a sufficiently large number of experiments, the observed values
ri/ni will be approximately normally distributed, according to the central
limit theorem

d) Their mean value will tend to the “real” (the unknown true value) 
expected error p over the entire set of instances X

65



mean(errorS(h))→p=E[errorD(h(x))]

66

p
P(n/r)

r/n

errorSi

errorSj

• p is the unknown 
expected (true error) 
error rate. 

• Yellow bars are the 
results of different 
experiments on 
different samples Si

• The average of 
these results tends 
to p as the number 
of experiments
grows

The average of many observed values of the random variable errorS(h), generated by repeated random 

experiments, converges toward p, the expected value of the TRUE arror rate over the entire distriibution D of 

instances.



Gaussian (normal) Distribution
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The curve parameters, as we have already seen, are the 
mean μ (e.g., p - the expected error rate - in our specific
case ) and the standard deviation σ.



Interesting properties of gaussian
distributions
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Number of standard deviations from the mean (z value)

Gaussian curves allow to establish a fixed
relationship between standard deviation and 
portions of the area under the Gaussian
curve. These areas are interpreted as probability
mass

In a gaussian curve, for any μ and σ,  it holds that: 
● 99.7% of the probability mass lies in the area below the mean value μ ±

3σ

● 95.4% of the probability mass lies in the area below μ ± 2σ

● 68.3% of the probability mass lies  in the area below μ ± σ



but..when shall 
we get to our 
problem of 
estimating the 
quality of an 
error estimator 
???
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Stay tuned pls.. 
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Consequences of applicability central
limit theorem to the random variable r/n
Result 1:

If the random variable X=r/n follows a Gaussian distribution, then errorS(h(x))=r/n 
is an unbiased estimator of the real expected error rate p since:

In our case, we are talking about the bias of the error function:

(𝐵𝑖𝑎𝑠(𝑒𝑟𝑟𝑜𝑟𝑠(ℎ))
2 = (𝐸 𝑒𝑟𝑟𝑜𝑟𝑆 ℎ − 𝑒𝑟𝑟𝑜𝑟𝐷 ℎ )2 = (𝑝 − 𝑝)2=0
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Bias is defined as the systematic deviation of a quantity from the actual value.



Consequences of applicability central
limit theorem to the random variable r/n

The Standard deviation of a sample S of n instances is defined as:

➢Note that for n→∞ (very large samples), then σS→0 

(since r/n→p i.e., the observed error will converge to the real error rate)
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We replace the (unknown) p with our computed mean 
value r/n. This is an estimate since we assume that r/n is a 
good approximation of the real error rate p, which holds 
approximately true for large enough n, according to CLT!

Result 2: we can approximate the standard deviation of errorD(h(x))



Why is this approximation acceptable
(and  replacing p with r/n is not)?

• Why we can set ??

• Say p=0.6 and r/n=0.7 (difference is 0.1)

• However, p(1-p)=0.24 r/n(1-r/n)=0.21 (difference is only 0.03))

• → Although approximating the real error with the estimated error
can lead to a significant over or under-estimate, approximating
the real SD with the estimated SD is much less critical

• In general, if n is sufficiently large, the probability that our
estimate is very far from real SD is sufficiently low
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Consequences of applicability central
limit theorem to the random variable r/n
Result 3:

Normal (gaussian) distributions have important properties concerning how the 
probability mass is distributed below the curve (e.g., 99.7% of the probability
mass lies in the area below the mean value μ ± 3σ, 95.4% of the probability
mass lies in the area below μ ± 2σ, 68.3% of the probability mass lies in the area 
below μ ± σ …), establishing fixed relationships between the probability mass 
and intervals around the mean.

This property allows easy calculation of confidence intervals!!
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We are ready to compute the confidence 
intervals for an error estimate
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Confidence interval for an error estimate
• The confidence interval represents the statistical significance (Margin Error; ME) of the 

expected distance Δ between the real value (in our case, p) and the observed estimate 
(in our case, r/n).

• Definition: An N% confidence interval for some parameter p is an interval [LB, UB] that 
is expected with probability N% to contain p. (equivalently: with probability N% we 
have LB≤ p ≤UB)

• The confidence interval is a way to show what the uncertainty is with a certain 
measured statistics. The margin of error ME tells you how many percentages points 
your results (e.g., your estimated error rate) will differ from the real population value 
(e.g., the real error rate)
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Confidence interval for an error
estimate

● Confidence interval (CI)

➢ME (Margin Error) = 𝒛𝝈= (Critical Value) x (Standard 
Deviation for the population) 

The critical values are also called z-values.

➢Δ is called Absolute Error of the estimate
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We are expressing the interval
in terms of «how many» standard
deviations. z is the (unknown)  «how many»

𝑝 −
𝑟

𝑛
≤ 𝑧𝜎 ≃ 𝑧𝜎𝑆 ⟹

𝑟

𝑛
− 𝑧𝜎𝑆 ≤ 𝑝 ≤

𝑟

𝑛
+ 𝑧𝜎𝑆



Confidence intervals
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The good news is that the error follows a gaussian distribution, a regular and symmetric
distribution that facilitates the computation of such intervals

Δ

𝑟

𝑛 𝑝



Confidence intervals computation with
Gaussian Distributions
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Δ

p

errorS(h)

Δ = | errorD(h(x)) - errorS(h(x))|

One reason that we prefer to work with the gaussian distribution is that we have tables specifying the size of the 
interval around the mean that contains N% of the probability mass under the Normal distribution. This is precisely
the information (the critical values, z-values) needed to calculate our N% confidence interval.

For any gaussian, we can say 
“with a probability of 68% (95%, 
99.7%, N%)  any value x we 
measure for errorS will lie in the 
interval ±1σ (±2σ, ±3σ, ±zσ)
around the mean p”. More in 
general, with an N% probability 
it will lie in the ±zσ interval

Since errorS(h(x)) follows a gaussian, we can use this property!



How do we compute confidence intervals in 
practice?
• We must fix either N% (the confidence, or probability mass) or z (the lenght of the 

interval, in terms of «how many» standard deviations, or "critical value")
• Clearly, the higher is the confidence we need, the larger is the interval we will find
• We must set as our target either the confidence, or the lenght of the interval
• For gaussian curves, tables are provided to determine one variable when the other is

given, e.g. :

• Tables are provided to compute z for any N and viceversa
• To compute confidence intervals from z tables, see here
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e.g. with 90% probability,
The true error will lie in an
interval of +/- 1.64σ 
around the estimated error
rate

https://www.statisticshowto.com/probability-and-statistics/confidence-interval/#:~:text=Step%201%3A%20Divide%20your%20confidence,%3A%2024%2F160%20%3D%200.15.


How to use 
z-tables to 
relate N 
and z
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𝑧 = 𝑧𝑟𝑜𝑤 + 𝑧𝑐𝑜𝑙𝑢𝑚𝑛

N in the cell must be multiplicated by 2



The Z-table:
Gaussian Distribution
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0.4265 %

The z-value in the 

table gives you this

area (for a mean =0 

and sigma=1)

The red line is your

z-value (e.g. 1.45) 

for sigma=1

Or viceversa if the input is N: Dividing by 2 the probability mass (say, N=

85.3% /2 = 0.4265), we obtain the z (1.45) value from the table, to calculate the 

interval



How to : Finding the N% confidence interval

• We know the formula to compute the interval, given the 
estimated error rate:

• In this formula, z is unknown. But we fixed N, so we look in 
the table and we obtain z for the desired N, and compute 
the interval. 
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Example 1

• We have a classifier which produced a hypothesis model h(x), and a 
test set S of 100 instances

• We apply h(x) on the sample test set S and compute 13% (0.13) error
rate (r/n)

• Since n>30 we assume that the error distribution follows a gaussian
distribution with mean 0,13 and standard deviation σS:

• To compute the N=90% confidence interval, on the table we find
Z=1.64
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Example 1:
Calculating the N% Confidence Interval

● We then have: 

Z=1.64  and

● The 90% confidence interval is estimated using the 
previous formula is:
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Example 2:
Finding 95% CI on a face recognition task
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Example 2: Accuracy is 0.78, hence error rate is 0.22; the test set has 50 instances, 
hence n=50.

Choose, e.g., to compute the N% confidence interval with N=0.95
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From here on not on 23-24
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One side 
bound 
(Tailed-test)

• We might be interested in computing the probability that the 
error of our ML system is “at most” a given value, rather than
within a given range like before.

• Which amounts to computing the blue area

• Now N% is the area for which errorS ≤ zσ
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Gaussian is symmetric!
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L<=P(x)<=U

P(x)<=U

P(x)>=L

P(x)<=L P(x)>=U

One-sided / Two-sided bounds: The Gaussian distribution is 
symmetric and its total area is 100% (of the probability mass).



Example: One/Two-Sided bounds

• There is a 97.5% (95+2.5=97.5) probability
that: errorD < 0.34

• There is a 97.5% (95+2.5=97.5) probability
that: errorD > 0.11
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In the previous emotion recognition example, we said that with 95% probability

(the confidence), the true error (i.e errorD ) lies in the [0.11,0.34] interval.

• There is a 5% (100-95=5) area outside this interval, of which, 2.5% to the left and 2.5% to 
the right (due to symmetry)

• Therefore, we can also say that there is a 2.5% probability that errorD > 0.34 (the upper
bound UB) and 2.5% probability that errorD < 0.11 (the lower bound LB)  



Issues
1. Which performance measure we should 

use?

2. How well can a classifier be expected to 
perform on “novel” data, not used for 
training?

3. Since a performance measure is an estimate 
on a sample, how accurate is our estimate?

4. How to compare performances of different 
hypotheses or those of different classifiers?
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Comparing
Two Learned Hypotheses

When evaluating two hypotheses (e.g. using different hyper-parameters on the same
ML algorithm), their observed ordering concerning accuracy may or may not reflect the 
ordering of their true accuracies.

• Assume h1 is tested on the test-set S1 of size n1

• Assume h2 is tested on the test-set S2 of size n2
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P
(e
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o
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(h
))

errorS(h)

errorS1(h1) errorS2(h2)

Observe h1 more accurate than h2



Comparing
Two Learned Hypotheses
When evaluating two hypotheses (e.g. using different hyper-parameters on the same ML 
algorithm), their observed ordering concerning accuracy may or may not reflect the 
ordering of their true accuracies.

• Assume h1 is tested on the test-set S3 of size n1

• Assume h2 is tested on the test-set S4 of size n2
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P
(e

rr
o
r S

(h
))

errorS(h)

errorS3(h1) errorS4(h2)

Observe h1 less accurate than h2



Testing alternative hypotheses

When we wish to understand how much we can rely on a statistical finding 
(e.g., that a model h2 is more precise than h1 on a sample dataset), we need to 
list the alternatives (e.g. h2 in not more precise than h1 on the entire
population).

One of these alternatives is called the Null Hypothesis H0

Usually, the null hypothesis disconfirms our findings
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Alternative Hypothesis Tests

Suppose we measured the error rate of h1 and h2 finding that
d = errorS1(h1) - errorS2(h2) ≠ 0; we can perform 3 different tests:

1. Two-Tailed Test: We formulate and test two alternatives:

➢H0  (null hypothesis): data do not support that h1≠h2                                   
(hence errorD(h1) - errorD (h2) could actually be 0)

➢H1: data support that h1≠h2
(d is either positive or negative; with high confidence our
finding is true; like N=95%)
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Alternative Hypothesis Tests

2. One-tailed right-test (d>0)

➢H0 (null hypothesis): data do not support that h2>h1

➢H1: data support h2>h1 (error of h1 is significantly lower)

3. One-tailed left-test (d<0)

➢H0 (null hypothesis): data do not support that h2<h1

➢H1: data support h1>h2 (error of h1 is significantly higher)
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How to do: Two-Tailed Test
1. Assumes:
➢h1 is tested on the test-set S1 of size n1

➢h2 is tested on the test-set S2 of size n2

➢n1>30, n2 >30 to hold the Central Limit Theorem
➢Note: for CLT, binomial is approximated by Gaussian, so both errors1(h1) 

and errors2(h2) approximately follow a Gaussian distribution.

2. Suppose we wish to estimate the difference dD (the «true» difference) 
between the (unknown) true errors of these two hypotheses:

3. As usual, define dS the estimator of dD with the known sample errors:

➢ dS is an unbiased estimator of dD. We will not give the proof.
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How to do: Two-Tailed Test

4. To obtain the confidence interval we need to compute the σds:
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Note: What is the probability distribution governing the random variable? For CLT, 
we know that both errors1(h1) and errors2(h2) follow distributions that are 
approximately Gaussian. Because the difference of two Normal distributions

(Gaussian) is also a Normal distribution, dSwill also follow an approximately Normal

distribution, with mean dD and variance:

Note: It can also be shown that the variance of this distribution is the sum of the 
variances of errors1(h1) and errors2(h2) 



How to do: Two-Tailed Test

If H0 (null hypothesis) holds true, then we must have:

errorD(h1) = errorD (h2) ⇒ dD=0

Which means: although in our experiments we observe
that errorS(h1) ≠ errorS(h2) (e.g.,errorS(h1) < errorS(h2)), the “true” 
expected value of error differences of h1 and h2 on D is zero.

• To test the likelihood of H0, we have to consider:

10
3

Error estimates on the samples

dD must be zero if H0 holds true

Error bounds in estimating dS

We know both dS and σds so we compute z and look on a z-table, to 

see“how many times” our result dS is far from the expected mean difference                      
(which is zero according to H0)



How to do: Two-Tailed Test
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If H0 holds, dD=0We estimate dS on the sample 

|dS-0|=zσ ,  z=|dS|/σ 

Given z, using the 

table we can 

compute N (the 

confidence area).

If the area lies within the non-critical region (i.e. N≤95%), the Null Hypothesis 

H0 is accepted (= there is no significant difference between the two hypotheses)

The “common 

wisdom” is that the 

acceptance region 

for H0 is within -2σ 

and +2σ (N≤95%)



How to do:  Two-Tailed Test

● In other terms: the farther our measured distance dS is from the 
“expected” distance (dD=0 in case the null hypothesis H0 holds), the 
less confident we should be in H0.

● For any measured value of dS, the y-axis gives us the probability of 
observing that value

● If dS is farther than ±2σ from dD, then we may conclude that the 
probability of having observed the value dS in case dD=0 is too
small. And hence we reject H0 as being very unlikely. 

105



How to do:
Example of Two-Tailed Test

Assume:
● dS=0.15
● σS=0.05
● z=dS/σ=3 

Then ⇒ N=99,87%  
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How to do:
Example of Two-Tailed Test
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Our z-test says that, if dD=0, the probability to obtain the value dS=0.15 or more, 
is less than 0.13% (100-99,87)!!        So H0 is very unlikely

Z=3

99.87%

0.065%+0.065% = 0.13%

We should reject H0!!



p-value

The p-value is the “probability value” of 
observing our estimate, given that H0 
holds.

● The common wisdom is to reject the 
null hypothesis if p<0.05 (5% the area 
under the curve of the tails)
(same as saying that the estimated
value lies outside the ±2σ interval, or 
outside the 95% probability mass 
around the mean)

● In the previous example, we obtained
p < 0.0013 (0.13%)
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How to do: One-Tailed Test
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In a one-tailed test we test either h1>h2 or h1<h2 

In case h1>h2, we state the null hypothesis as follows:
● H0: not support that h1>h2 (hence h1≤h2)
● H1: support h1>h2 (in this case we should get an estimate of d )

For the 1-tailed test 
the p-value = 0.05 
(5%)

Then, the right area 
is 0.95 (95%) of the 
total area



How to do:
Example of One-Right tailed test

● errors1(h1)= x1=17.5%,  errors2(h2)= x2=12.4%, d=5.1% (0.51)

● n1=50, n2=50
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N=0.2327 = 23.27%⇒ p>0.05

The null hypothesis is accepted: 

● The difference is not large enough to support  h1<h2  (p is not lower than 0.05)

Right-tailed test ( h2 > h1 ( d>0)):



Summary: 
Two-Tailed Test

111



Comparing
Two Learning Algorithms
● Comparing the average accuracy of hypotheses produced by two different ML 

algorithms is more difficult. Ideally, we want to measure:

➢where LX(S) represents the hypothesis learned by learning algorithm LX from 
training data S.

● To accurately estimate this, we need to average over multiple, independent
training and test sets.

● However, since labeled data is limited, generally must average over multiple 
splits of the overall data set into training and test sets (K-Fold Cross Validation, 
see the beginning of this lesson).
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How to use: 
K-Fold Cross Validation to evaluate different

learning algorithms
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Randomly partition dataset D into k disjoint equal-sized (N) 
subsets P1…Pk

For i from 1 to k do:
Use Pi for the test set and remaining data for training

Di = (D – Pi)
hA = LA(Di)
hB = LB(Di)  (learn models on Di )
δi = errorPi(hA) – errorPi(hB)  (test models on Pi and compute 

difference)
Return the average difference in error:

Error bound is

computed as: 



Is LA better than LB?

● K-fold cross-validation improves confidence in our
estimate of δ since we are performing many
experiments and computing δ as the average of δi.

● As K grows this average tends to the true mean
difference (however we cannot make K too big since
individual samples should be  large enough for the 
CLT to apply)

● We can, in any case, apply hypothesis testing as
before
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Example:
Sample Experimental Results
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SystemA SystemB

Trial 1 87% 82%

Trail 2 83% 78%

Trial 3 88% 83%

Trial 4 82% 77%

Trial 5 85% 80%

Average 85% 80%

Experiment 1

SystemA SystemB

Trial 1 90% 82%

Trail 2 93% 76%

Trial 3 80% 85%

Trial 4 85% 75%

Trial 5 77% 82%

Average 85% 80%

Experiment 2

δ

+5%

+5%

+5%

+5%

+5%

+5%

δ

+8%

+17%

–5%

+10%

– 5%

+5%

Which experiment provides better evidence that SystemA is better 
than SystemB?

Experiment 1 mean δ has σ=0, therefore we have perfect 
confidence in the estimate of δ



Experimental Evaluation: 
Conclusions

● Good experimental methodology is important for evaluating learning 
methods.

● Important to test on a variety of domains to demonstrate generality for a 
variety of problems. Testing on 10+ data sets is common.

● Variety of freely available data sources
➢UCI Machine Learning Repository (link)
➢KDD Cup  (large data sets for data mining) (link)
➢CoNLL Shared Task  (natural language problems)(link)

● Data for real problems is preferable to artificial problems to demonstrate
usefulness in real contexts.

● Many available datasets have been subjected to significant feature 
engineering to make them learnable.
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http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.kdnuggets.com/datasets/kddcup.html
http://www.ifarm.nl/signll/conll/


Related links

● Metrics: link, link, link, link, link

● Basic statistics: link

● Bias, Variance, and Error: link, link, link

● Estimator: link, link

● Estimating the accuracy of a hypothesis/Confidence
Interval:

➢Text: link, link, link, link, link, link

➢Video: link

➢Hypothesis testing: link, link, link

➢Z-table: link
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https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124
https://medium.com/thalus-ai/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
https://medium.com/@wilamelima/metrics-to-measure-machine-learning-model-performance-e8c963665476
https://machinelearningmastery.com/metrics-evaluate-machine-learning-algorithms-python/
https://www.analyticsvidhya.com/blog/2019/08/11-important-model-evaluation-error-metrics/
https://www.me.psu.edu/cimbala/me345/Lectures/Basic_Statistics.pdf
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://medium.com/datadriveninvestor/bias-and-variance-in-machine-learning-51fdd38d1f86
https://www.statisticshowto.datasciencecentral.com/absolute-error/
https://en.wikipedia.org/wiki/Estimator
https://365datascience.com/point-estimates-confidence-intervals/
https://users.cs.northwestern.edu/~pardo/courses/eecs349/readings/chapter5-ml.pdf
https://www.cse.unsw.edu.au/~mike/ml4as/08/l00-2x2.pdf
https://disi.unitn.it/~passerini/teaching/2010-2011/MachineLearning/slides/21_hypothesis_testing/handouts.pdf
https://www0.gsb.columbia.edu/faculty/pglasserman/B6014/ConfidenceIntervals.pdf
https://learnche.org/pid/univariate-review/confidence-intervals
https://www.cs.cmu.edu/~tom/10601_sp08/slides/evaluation-2-13.pdf
https://www.youtube.com/watch?v=_asRoBRorDI
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Confidence_Intervals/BS704_Confidence_Intervals_print.html
https://newonlinecourses.science.psu.edu/stat504/node/19/
http://www.stat.yale.edu/Courses/1997-98/101/confint.htm
https://www.statisticshowto.datasciencecentral.com/tables/z-table/#left

