Another «simple» classifier: Perceptron

Perceptron is a «building block» of Neural Networks

- NN is a class of ML algorithms belonging to both the categories of supervised and semisupervised models (depending on specific implementations/algorithms)
- The learned model f(x) is an algebraic function (or a set of functions), rather than a boolean function, as for DTrees. The learned function is linear for Perceptron algorithm, non-linear for the majority of other NN algorithms.
- In general, both features and output function(s) are allowed to be *real-valued* (rather than only discrete, as in Dtrees). So, with neural networks we can train **regressors**.
- The simple Perceptron model is, however, a binary classifier.
- By establishing a cut-off value on a continuous output, we can still obtain a classifiers (e.g. if y<y_c/then c=positive, else c=negative)

History of Neural Network models

- NNs are similar to biological neural systems which are the most robust learning systems we know.
- Initially, it was an attempt to understand natural biological systems through computational modeling.
- Allow massive parallelism for computational efficiency.
- Help to understand the "distributed" nature of neural computation (rather than "localist"), that allow robustness and graceful degradation.
- Intelligent behaviour is due to an "emergent" property of a large number of simple units rather than from explicitly encoded symbolic rules and algorithms.
- Problem is, as we will see, that this emergent behaviour cannot be explained (black box), contrary to Dtrees and regression trees.

Neural Network Learning

- Learning approach of NN algorithm based on modeling adaptation in biological neural systems.
- History of algorithms:
 - ➤ **Perceptron**: Initial algorithm for learning simple neural networks (single layer) developed in the 1950's.
 - ➤ Backpropagation: a more complex algorithm for learning multi-layer neural networks developed in the 1980's.
 - ➤ Convolutional Neural Networks, Recurrent Neural Networks (since past 10 years more or less), still mostly based on «old» backpropagation principle + other mechanisms to meet the challenge of large, complex data such as images and text

Real Neurons

Cell structures:

- ➤ Cell body •
- **>** Dendrites
- >Axon —
- ➤ Synaptic terminals

Neural Communication

- The electrical potential across cell membrane exhibits spikes called **action potentials**.
- Spike originates in the cell body, travels down axon, and causes synaptic terminals to release neurotransmitters.
- Chemical diffuses across the synapse to dendrites of other neurons (synaptic terminals, dendrites).
- Neurotransmitters can be excitatory or inhibitory.
- If net input of neurotransmitters to a neuron from other neurons is **excitatory and exceeds some threshold**, **it fires an action potential**.

Neural connections

Real Neural Learning

- Synapses change size and strength with experience (evolving structure).
- **Hebbian learning**: When two connected neurons are firing at the same time, the strength of the synapse between them increases.
- "Neurons that fire together, wire together."

The computational model of a neuron (perceptron):

• The network model of a single neuron is a graph with cells as nodes, and synaptic connections as weighted edges from node x_i to neuron node n

xi are the features values of instances x

 First, the perceptron computes a linear combination (convolution) of the input (x):

$$net(x) = net(x_1, x_2, \dots x_n) = \sum_i w_i x_i$$

 $\begin{array}{c|c} x_1 & w_1 \\ \vdots & & \\ w_n & \text{net}(x) \end{array}$

Next, the output function is computed: o

$$o = \varphi(net(x)) = 0$$
 if $net(x) < \theta$
 $o = \varphi(net(x)) = 1$ if $net(x) \ge \theta$

 θ_i is a constant called threshold or bias

Perceptron training phase = estimating edge weights W_{ij} and threshold θ

Perceptron learns a Linear Decision Boundary

• This is a **hyperplane** in an n-dimensional space (n is the number of features). What is learned are the coefficients w_i and θ (the parameters of the model):

$$f(x) = \sum_{i} w_{i} x_{i} - \theta$$

• So, φ classifies the instance x (a feature vector* $\langle x_1, x_2...x_n \rangle$) as positive $(\varphi(x) = 1)$ if:

$$\sum_{i} w_{i} x_{i} > \theta$$

> else it is classified as **negative**

Will interchageably use feature vector or instance to denote examples of objects in a given domain, represented as lists of feature values.

Perceptron learns a Linear Decision Boundary And in a two dimensional chase

Example in a two-dimensional space

We can compute the coordinates of x in the n-dimensional space:

$$\mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 - \theta = 0$$

$$\mathbf{x}_2 = \mathbf{m} \mathbf{x}_1 + \mathbf{q}$$

➤ A line or a *hyperplane* in *n*-dimensional space

Note: the geometric representation of domain objects x in D as vectors, rather than records of a table, allows a more intuitive representation of the data and of the learned prediction function

Note the different decision regions learned by Dtrees (rectangual regions) and the Perceptron (semiplanes)

If x is in R1 or R2 then positive, else if x is in R3 the negative

What if your training data is as in this example?

Can we learn a percepton model? Can we learn a decision tree?

Perceptron Training Algorithm

- Assume supervised training examples in the training dataset
 D: <x_j,y_j> giving the desired output y=c(x), for a set of known instances x_i
- Each instance is represented by a feature vector. Feature values are «fed» to the input nodes of the perceptron one at the time (rather than all together like in Dtrees)
- Objective: Learn the synaptic weights (w_i) «forcing» the model to produce the correct output o_j for each example x_j (o_j is correct if equal to the provided label of xj in D, y_i).
- Perceptron uses an iterative updating algorithm to learn a «correct» set of weights and thresholds.

Perceptron Learning Algorithm

Set the weights and the threshold **to random** values

Until all instances, x_i in D, are correctly classified

For each instance x_j , $\langle x_{j1}, x_{j2}, ..., x_{jn} \rangle$, in D

Compute the output: $o_i := \varphi(net_i - \theta_i)$

Update weights and the threshold by:

$$W_{i} := W_{i} + \Delta W_{i} = W_{i} + \eta \operatorname{Err}_{j} X_{ji} = W_{i} + \eta (y - o_{j}) X_{ji}$$

$$\theta := \theta + \eta \operatorname{Err}_{j} = \eta (y_{j} - o_{j})$$

- \succ Where η is a constant (hyperparameter) called the "learning rate"
- > The «until» condition is a **convergence condition**

Note: weights on edges are updated proportionally to the observed error on the output (Err_j) **and** to the intensity of the signal x_{ij} traveling on the edges. η controls the proportion of this adjustment.

Perceptron iterative Learning Rules

$$w_{i} := w_{i} + \Delta w_{i} = w_{i} + \eta \operatorname{Err}_{j} x_{ji} = w_{i} + \eta (y_{j} - o_{j})$$

$$\theta_{j} := \theta_{j} + \eta \operatorname{Err}_{j} = \theta_{j} + \eta (y_{j} - o_{j})$$

- It is equivalent to **the** rules:
 - > If $\mathbf{o_j} = \mathbf{y_j}$ (i.e. for $\langle x_j, y_j \rangle$ in D the predicted output is **correct**) ⇒ Err_i=0: **no update**
 - $ightharpoonup ext{If } extbf{o}_j > extbf{y}_j ext{ (i.e. } o_j = 1, ext{ } y_j = 0 \Rightarrow ext{Err}_j = -1) ext{: output is higher than the correct one, so we$ **decrease the weights** $on the active inputs of the quantity <math>\eta ext{ } x_{ii} ext{ (} x_{ii} ext{ is the current signal on synapsis i)}$
 - > If $o_j < y_j$ (i.e. $o_j = 0$, $y_j = 1 \Rightarrow Err_j = +1$): output is smaller than the correct one, so we **increases weights/threshold** on the active inputs of the quantity $η x_{ii}$

Perceptron cannot learn everything!

- Cannot learn **non-linearly separable** functions! f(x) is a (hyper-)line
- If our data (the learning set) are not separable by a line (or by an hyper-plane, if many dimensions), then we need a more complex (polynomial?) decision boundary

Perceptron leaning as Hill Climbing

- The hypothesis space being searched is a set of **weights and a threshold**. (the w_{ij} and θ)
- The objective is to minimize the classification error on the training set (an optimization problem, as for all ML algorithms).

Perceptron effectively does hill-climbing (**gradient descent**) in this space, changing the weights of a small amount at each step ($\Delta w_i = \eta \operatorname{Err}_j x_{ji}$), to decrease the error observed on the training set (will learn more in future lessons on gradient descent for those who don't know)

• For a **single neuron**, the search space is well behaved with a **single minimum**

- In practice, results converge only for linearly (or nearly lineary) separable data.
- Unfortunately, this is too simple model (like DT and RT) for many tasks, and sub-optimal (a better linear separator is <u>SVM</u>)
- With Multilayer perceptron networks MPN, convolutional neural networks and recurrent neural networks, things will get more complicated..
- Perceptrons are the "building blocks" of MPN and NN in general