
Another «simple»
classifier: Perceptron

1

Perceptron
is a
«building
block» of
Neural
Networks

• NN is a class of ML algorithms belonging to both
the categories of supervised and semi-
supervised models (depending on specific
implementations/algorithms)

• The learned model f(x) is an algebraic function
(or a set of functions), rather than a boolean
function, as for DTrees. The learned function is
linear for Perceptron algorithm, non-linear for
the majority of other NN algorithms.

• In general, both features and output function(s)
are allowed to be real-valued (rather than only
discrete, as in Dtrees). So, with neural networks
we can train regressors.

• The simple Perceptron model is, however, a binary
classifier.

• By establishing a cut-off value on a continuous
output, we can still obtain a classifiers (e.g. if y<yc
then c=positive, else c=negative)

2

History of
Neural
Network
models

● NNs are similar to biological neural systems which
are the most robust learning systems we know.

● Initially, it was an attempt to understand natural
biological systems through computational
modeling.

● Allow massive parallelism for computational
efficiency.

● Help to understand the “distributed” nature of
neural computation (rather than “localist”), that
allow robustness and graceful degradation.

● Intelligent behaviour is due to an
“emergent” property of a large number of
simple units rather than from explicitly
encoded symbolic rules and algorithms.

● Problem is, as we will see, that this emergent
behaviour cannot be explained (black box),
contrary to Dtrees and regression trees.

3

Neural
Network
Learning

● Learning approach of NN algorithm
based on modeling adaptation in
biological neural systems.

● History of algorithms:
➢Perceptron: Initial algorithm for learning

simple neural networks (single layer)
developed in the 1950’s.

➢Backpropagation: a more complex
algorithm for learning multi-layer neural
networks developed in the 1980’s.

➢Convolutional Neural Networks,
Recurrent Neural Networks (since past
10 years more or less), still mostly based on
«old» backpropagation principle + other
mechanisms to meet the challenge of large,
complex data such as images and text

4

Real Neurons

Cell structures:

➢Cell body

➢Dendrites

➢Axon

➢Synaptic terminals

5

Neural
Communication
• The electrical potential across cell membrane

exhibits spikes called action potentials.

• Spike originates in the cell body, travels down
axon, and causes synaptic terminals to
release neurotransmitters.

• Chemical diffuses across the synapse to
dendrites of other neurons (synaptic
terminals, dendrites).

• Neurotransmitters can be excitatory or
inhibitory.

• If net input of neurotransmitters to a neuron from
other neurons is excitatory and exceeds some
threshold, it fires an action potential.

6

Neural connections

7

Real Neural
Learning

● Synapses change size and strength
with experience (evolving structure).

● Hebbian learning: When two
connected neurons are firing at the
same time, the strength of the synapse
between them increases.

● “Neurons that fire together, wire
together.”

8

The computational model of a neuron (perceptron):
● The network model of a single neuron is a graph with cells as

nodes, and synaptic connections as weighted edges from node xi to

neuron node n

● First, the perceptron computes a linear combination (convolution) of

the input (x):

● Next, the output function is computed:

9

net𝜃
0

1
o=𝜑 𝑛𝑒𝑡 𝑥 =0 if net(x) < 𝜃

o= 𝜑 𝑛𝑒𝑡 𝑥 =1 if net(x) ⪰ 𝜃

𝜃 i is a constant called threshold or

bias

𝜑

o

w1

wn

∑ 𝜑(net(x))

x1

xn
net(x)

𝜃

o(x) …

Perceptron training phase = estimating edge weights wij and threshold 𝜃

xi are the features
values of instances x

Note: 𝜑()
is the step
function,
a binary
function.

𝑛𝑒𝑡 𝑥 = 𝑛𝑒𝑡 𝑥1, 𝑥2, … 𝑥𝑛 =෍

𝑖

𝑤𝑖𝑥𝑖

The threshold can be equivalently
incorporated
in the convolution or in the step function

output

output

∑ φ

∑ φ

𝜃

Perceptron learns a
Linear Decision Boundary

11

● This is a hyperplane in an n-dimensional space (n is the
number of features). What is learned are the coefficients
wi and 𝜃 (the parameters of the model):

● So, 𝜑 classifies the instance x (a feature vector*
<x1,x2..xn>) as positive (𝜑(x) =1) if:

➢ else it is classified as negative

Note: f(x) is the learned MODEL, the classification function is 𝜑(x)!!

𝜃

𝜃
Will interchageably use
feature vector or instance
to denote examples of objects
in a given domain, represented as
lists of feature values.

12

Perceptron learns a
Linear Decision Boundary

Example in a two-dimensional space

x2

x1

?

➢ A line or a hyperplane in n-dimensional
space

x2= mx1+qw1x1 + w2x2 - 𝜃 = 0

We can compute the coordinates of x in the n-dimensional space:

w1

wn

∑ φ

x1

xn
net

𝜃

out

…

Note: the geometric representation of domain objects x in D as vectors, rather than records of a table,
allows a more intuitive representation of the data and of the learned prediction function

Note the different decision regions learned by
Dtrees (rectangual regions) and the Perceptron
(semiplanes)

If x is in R1 or R2 then positive, else if x is in R3 the negative
If x is in R1 then positive, if in R2
then negative

What if your training data is as in this
example?

Can we learn a percepton model?
Can we learn a decision tree?

Perceptron Training Algorithm

● Assume supervised training examples in the training dataset

D: <xj,yj> giving the desired output y=c(x), for a set of

known instances xj

● Each instance is represented by a feature vector. Feature values

are «fed» to the input nodes of the perceptron one at the time

(rather than all together like in Dtrees)

● Objective: Learn the synaptic weights (wi) «forcing» the

model to produce the correct output oj for each example xj (oj is

correct if equal to the provided label of xj in D, yj).

● Perceptron uses an iterative updating algorithm to learn a

«correct» set of weights and thresholds.

15

Perceptron Learning Algorithm
Set the weights and the threshold to random values
Until all instances, xj in D, are correctly classified

For each instance xj, <xj1 , xj2 ,..., xjn>, in D:
Compute the output: oj := 𝜑(netj - 𝜃 j)

Update weights and the threshold by:
wi := wi + 𝜟wi = wi + 𝜂 Errj xji = wi + 𝜂 (yj-oj) xji

𝜃 := 𝜃 + 𝜂 Errj = 𝜂 (yj-oj)

➢ Where 𝜂 is a constant (hyperparameter) called the “learning

rate”
➢ The «until» condition is a convergence condition
➢ Each iteration of the convergence condition is called epochNote: weights on edges are updated proportionally to the
observed error on the output (Errj) and to the intensity of the
signal xij traveling on the edges. 𝜂 controls the proportion of this

adjustment.

Perceptron iterative Learning
Rules

17

● It is equivalent to the rules:
➢ If oj = yj (i.e. for <xj,yj> in D the predicted output is correct) ⇒

Errj=0: no update
➢ If oj > yj (i.e. oj=1, yj=0 ⇒ Errj = -1): output is higher than the

correct one, so we decrease the weights on the active inputs of

the quantity 𝜂 xji (xji is the current signal on synapsis i)
➢ If oj < yj (i.e. oj=0, yj=1 ⇒ Errj=+1): output is smaller than the

correct one, so we increases weights/threshold on the active

inputs of the quantity 𝜂 xji

wi := wi + 𝜟wi = wi + 𝜂 Errj xji = wi + 𝜂 (yj-oj) xji

𝜃 j := 𝜃 j + 𝜂 Errj = 𝜃 j + 𝜂 (yj-oj)

𝜂 controls the amount of increase/decrease

x

Perceptron cannot learn
everything!

• Cannot learn non-linearly separable functions! f(x) is a (hyper-)line

• If our data (the learning set) are not separable by a line (or by an

hyper-plane, if many dimensions), then we need a more complex

(polynomial?) decision boundary

Perceptron leaning as Hill Climbing
● The hypothesis space being searched is a set of weights and a threshold. (the wij

and 𝜃)

● The objective is to minimize the classification error on the training set (an

optimization problem, as for all ML algorithms).

Perceptron effectively does hill-climbing (gradient descent) in this space, changing the
weights of a small amount at each step (𝜟wi =𝜂 Errj xji), to decrease the error observed

on the training set (will learn more in future lessons on gradient descent for those who
don’t know)

● For a single neuron, the search space is well behaved with a single minimum

wi0

Training error

𝜟wi

Perceptron
Performance

● In practice, results converge only
for linearly (or nearly lineary) separable
data.

● Unfortunately, this is too simple model
(like DT and RT) for many tasks, and
sub-optimal (a better linear separator is
SVM)

● With Multilayer perceptron networks
MPN, convolutional neural networks and
recurrent neural networks, things will
get more complicated..

● Perceptrons are the “building blocks” of
MPN and NN in general

20

https://see.stanford.edu/materials/aimlcs229/cs229-notes3.pdf

