
Supervised Learning:
”basic” learners: Decision 

Trees Classifiers
and Regression Trees
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We start by IGNORING the data complexity issue 

● Let us assume our data are STRUCTURED (we have tables with either continuous or symbolic feature 

values)

● Let’s assume we have «good enough» and sufficient structured data 

● Furthermore, we restrict to  supervised predictive tasks: 

○ Data are feature-value tables, and the task is to learn predicting the value of a specific feature y 

(symbolic or continuous)

○ We are provided with historical data, i.e. we can observe examples x∈ 𝑿 of past data for which the 

value of the feature y to be predicted is known. We denote with D: <x,y> the training set of  input-

output tuples extracted from historical data

○ Task is to learn a model f(x) and use this model to predict y=f(x)  for unseen values of new instances
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Outline

● Formal definition of Classifiers and 

Regressors

● Tabular and geometric representation of 

data

● Basic classifiers:

○ Decision Trees

○ Regression trees

○ Fine-tuning the tree
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Supervised Classifiers and Regressors: definition of 

the task 
● Let D: <xi,yi> be a dataset representing historical data about a given domain 

● Let’s assume that D is a list of records, called instances or samples or examples xi: (xi1…xin)

● Every xij represents the value of an attribute Xj, or feature, describing the istance (values can 

be discrete or continuous)

● Y is the target attribute for which we want to learn a prediction model f(x)

● In classification tasks, the target is a discrete variable (binary or multi-valued), called the 

«class» 𝐶 so the training set D includes tuples < 𝒙𝑖 , 𝑐𝑖>

● In classifiers, the prediction model to be learned is often denoted as c(x) rather than f(x)
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How do we represent our structured data  D?

● Tabular and geometric representation. Points represent the rows (instances) and the colour is the 

value of the class variable (here, y=red n=green)

● Rows in the table (array) are denotes as feature vectors

● So, by x (bold) we denote a feature vector whose dimensions are the features and whose coordinates are 

the feature values (e.g., the example 1 is geometrically represented by the vector x1: [32,20] )

● Note that you can represent also symbolic features in the same way, but you need to «impose» an order

to the symbolic values (e.g. green, red, blue if feature is «colour»), which might create problems with 

some algorithm (will see).
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example age Bodymass index Risk of a 

cardiac

event?

1 32 20 n

2 60 35 y

3 55 21 n

4 40 40 y



Illustrating the Classification 
Task



Examples of Classification 
Task

• Predicting tumor cells as benign or malignant
(class is, e.g., benign(x) with values pos and neg)

• Classifying credit card transactions 
as legitimate or fraudulent (class is, e.g. fraudulent(x), with 
values pos and neg)

• Classifying secondary structures of protein 
as alpha-helical, beta-sheet, or random 
coil

• Categorizing news stories as finance, 
weather, entertainment, sports, etc (class is category(x) with 
values weather, sport,finance.. )



Decision trees 

● Note: although Dtrees is a very old class of algorithms (on the other side, NN 

are also very old) it is at the basis of top performance non-deep Ensamble

algorithms, such as Random Forest and Gradient Boosting –will se later

● These algorithms are often used as baselines, and in specific conditions still

turn out to be competitive vrs deep methods.



Decision Trees
● The model output is a tree structure.  Every node represents a test on a feature’s value. Nodes 

are labelled with the feature name. Below each node there is one branch for each possible value 
of the feature. Branches are labelled with the value of the feature.

● Leaf nodes are “decisions”, they specify the class label.

● A decision tree can represent any boolean function c(x),  i.e., a classification function over 
discrete-valued feature vectors.

● The tree can be rewritten as a set of rules, i.e. disjunctive normal form (DNF).  Example (for the 
left tree):
➢ red ∧ circle → pos
➢ red ∧ circle → A

blue → B;  red ∧ square → B
green → C;   red ∧ triangle → C

color

red blue
green

shape

circle square triangle

neg pos

pos neg neg

color

red blue
green

shape

circle square triangle

B C

A
B C



General shape of a decision tree
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➢ Every test node is a
test on the value (or
range) of one features.
For each possible
outcome of the test, an
edge is created that
links to a subsequent
test node or to a leaf
node.

➢ Leaf nodes are
decisions concerning
the value of the
classification.



Toy example

● Decision tree to decide whether to go home 

by bus or walking

● Binary class: values are either walk or bus 

● Decision is taken based on the values of just 

3 features: weather (W), time (T), and hungry

(H)

● Features are either symbolic (sun-cloud-rain) 

or discretized (e.g., >30m or <30m)

● The decision tree can be re-written in terms of 

a decision function c(x) in first order logic:

c(x(W,T,H))=(IF(W=Sun AND T>30) THEN Walk) 

OR (IF W=Sun AND T<30) THEN Bus) OR (IF 

W=Cloud AND H=Yes) THEN Walk) OR (etc. 

etc)
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How do we learn a decision

tree?
● We use historical data for which the value of the 

class is known (training set)

● The basic process is greedy recursive partition

of the decision space into regions – optimal

partition is one in which every region includes

only samples from one class
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Sun

Cloud

Rain

30

BUS

WALK

Decision boundaries

minutes

IF y= Sun AND  0<=x< 30  THEN  BUS 



Toy dataset
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Dimension Color shape class

Big Red Circle Positive (+)

Small Red Circle Positive (+)

Small Red Square Negative (-)

Big Blue Circle Negative (-) 
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How does it work: Top-Down 
Decision Tree Induction

● Recursively build a tree top-down by divide and conquer.

<big, red, circle>: +       <small, red, circle>: +

<small, red, square>: −  <big, blue, circle>: −

red

blue

green

<big, red, circle>: +       

<small, red, circle>: +

<small, red, square>: −  

At each step,  we aim to find the “best split” of our data. What is a good split? 
One which reduces the uncertainty of classification for “some” split!
Learning best splits (best ordering of tests on features, and best split over its 
values) is learning the DT parameters. 

Subset of 
examples in D
in which
color=red

Initial learning 
set D

Begin by 
considering the
feature “color”

color
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shape

circle square triangle

Top-Down Decision Tree Induction

• Recursively build a tree top-down by divide and conquer.

<big, red, circle>: +       <small, red, circle>: +

<small, red, square>: −  <big, blue, circle>: −

<big, red, circle>: +       

<small, red, circle>: +

<small, red, square>: −  

color

red blue
green

<big, red, circle>: +       

<small, red, circle>: +

pos
<small, red, square>: −  

neg pos

<big, blue, circle> −neg

neg

The process ends when we can output decisions (= the class labels), but: How do we 
decide the order in which we test attributes? 
How do we decide the class of nodes for which we have no examples?

Let’s ignore for now these 2 issues and describe the algorithm first
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Decision Tree Induction Pseudocode
Algorithm DTree(examples D, features F) returns a tree:

a) If all examples D are in one category, return a leaf node with that 
category label
b) Else if the set of features F is empty, return a leaf node with the 
category label that is the most common in examples.

Else pick a feature f in F and create a node R for it
For each possible value xi of f:

Let si be the subset of examples that have value xi for f
Add an outgoing edge E to node R labeled with the value xi.

If si is empty 
then attach a leaf node to edge E labeled with the 

category that is the most common in examples
else call DTree( si , features – {f}) and attach the resulting tree as 
the subtree under edge E.

Return the subtree rooted at R.

a) and b) are the termination conditions 

e.g. color=red

color

red

<big, red, circle>: +       

<small, red, circle>: +

<small, red, square>: −  
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Example

Instances:

<big, red, circle>: +       <small, red, circle>: +

<small, red, square>: −  <big, blue, circle>: −

color

red

<big, red, circle>: +       

<small, red, circle>: +

<small, red, square>: −  

Features:
● dimension, shape,color

1. Pick a feature f and create a node R for it, eg. Color

2. For each possible value xi of f (red for example):

1. Let si be the subset of examples that have value vi

for f.
2. Add an outgoing edge E to node R labeled with

the valuex.

3. if (…) else call DTree(example(si ) , features – {f}) and
attach the resulting tree as the subtree under edge E.

Dtree(                                  , <dimension,shape>)
<big, red, circle>: +       

<small, red, circle>: +

<small, red, square>: −  

COLOR

call the algorithm on the 
subset for the feature red:

1



Example
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color

red

shape

circle

<big, red, circle>: +       

<small, red, circle>: +
positive

<small, red, square>: −  

negative

square
triangle

positive

4. Pick a feature f and create a node R for it, eg. shape

5. If all si are in one category, return a leaf node with that category label.
6. If si is  empty. then attach a leaf node to edge E labeled with the 

category that is the most common in examples.

Dtree(                                  , <dimension,shape>)
<big, red, circle>: +       

<small, red, circle>: +

<small, red, square>: −  

2
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shape

circle square triangle

Example:
Backtrack to color (blue)

<big, blue, circle>: −

<big, red, circle>: +       

<small, red, circle>: +

<small, red, square>: −  

color

red blue
green

<big, red, circle>: +       

<small, red, circle>: +

pos
<small, red, square>: −  

neg pos

<big, blue, circle>: −

neg neg

Now we know how to decide the class when we have no
examples, but how do we decide the order in which we create
nodes?

3
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Picking a Good Split Feature

● The goal is to have the resulting tree be as small as 
possible, per Occam’s razor.

● Finding a minimal decision tree (nodes, leaves, or depth) is 
an NP-hard optimization problem.

● The top-down divide-and-conquer method does a greedy 
search for a simple tree but does not guarantee to find the 
smallest.
○ The general lesson in ML:  “Greed is good.”

● Want to pick a feature that creates subsets of examples 
that are relatively “pure” in a single class so they are 
“closer” to being leaf nodes.

● There are a variety of methods for picking a good test, a 
popular one is based on information gain that originated 
with the ID3 system of Quinlan (1979).  The choice of the 
method to be used is an hyperparameter of the DT model



About “purity”
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● Look at the image below and think which group can be 
described easily. Intuitively, the answer is C because it 
requires less information, as all values are similar (=blue).

● On the other hand, B requires more information to describe 
it, and A requires the maximum information. In other words, 
we can say that C is a “pure” node, B is impure and A is 
more impure than B.
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How to measure purity

● Entropy (disorder, impurity) of a set of examples, D, relative 
to binary classification is:

● where p1 is the fraction of positive examples in D and p0 is
the fraction of negatives. (Notice that if S is a sample of a
population, Entropy(S) is an estimate of the population
entropy).

● If all examples are in one category (as for node C of the 
previous example), entropy is zero (we define 0⋅log(0)=0).

● If examples are equally mixed (p1=p0=0.5), entropy is a 
maximum of 1.
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● Entropy can be viewed as the number of bits required on 
average to encode the class of an example in D. It is also 
an estimate of the initial “disorder” or “uncertainty” about a 
classification, given the set D.

● General Formula of Entropy: For multi-class problems with 
C category values, entropy generalizes to:

Entropy and Binary Entropy



Example:
Entropy Computation
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● We have two class labels, blue and yellow.

● In group C, we  have 18 objects, and they are all blue:

● In group A, we have 20 objects, 9 are yellow, 11 are blue
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Entropy Plot for Binary 
Classification (only 2 class labels)
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Information Gain

The Information Gain ( IG, Gain) of a feature f is the expected
reduction in entropy resulting from splitting on this feature.

➢ where Dv is the subset of D having value v for feature f
(e.g, if f=color and v=red)



Example of Gain computation
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D=13 examples, 7 positive 6 negative

Let’s pick a binary feature f with values a and b, and let’s suppose that we

Have 7 instances out of 13  for which f=a, and 6 for which f=b

𝐷𝑓=𝑎
𝐷

=
7

13

𝐷𝑓=𝑏
𝐷

=
6

13

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐷 = −
7

13
log(

7

13
) −

6

13
𝑙𝑜𝑔

6

13

𝐺𝑎𝑖𝑛 𝐷, 𝑓 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐷 −
7

13
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑒𝑡1) −

6

13
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑒𝑡2)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆𝑒𝑡1 = −
3

7
log(

3

7
) −

4

7
𝑙𝑜𝑔

4

7

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆𝑒𝑡2 = −
3

6
log(

3

6
) −

2

6
𝑙𝑜𝑔

2

6
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Information Gain

● Entropy of each resulting subset weighted by its relative
size...

Example:
<big, red, circle>: +          <small, red, circle>: +

<small, red, square>: −     <big, blue, circle>: −

2+, 2 −: E=1

size

big          small

1+,1−     1+,1−

Ebig=1        

Esmall=1

Gain=1−(0.5⋅1 + 0.5⋅1) = 0

2+, 2 − : E=1

color

red          blue

2+,1−      0+,1−

Ered=0.918 Eblue=0

Gain=1−(0.75⋅0.918 +

0.25⋅0) = 0.311

2+, 2 − : E=1

shape

circle          square

2+,1−            0+,1−

Ecircle=0.918     Esquare=0

Gain=1−(0.75⋅0.918 + 

0.25⋅0) = 0.311

Initial Entropy is 1



New pseudo-code
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DTree(examples, features) returns a tree

a) If all examples are in one category, return a leaf node with that category 
label.

b) Else if the set of features is empty, return a leaf node with the category 
label that  is the most common in examples.

Else pick the best feature f according to IG and create a node R for it
For each possible value xi of f :

Let si be the subset of examples that have value xi for f
Add an outgoing edge E to node R labeled with the value xi.

If si is empty
then attach a leaf node to edge E labeled with the

category that is the most common in examples.
else call DTree(si , features – {f}) and attach the resulting

tree as the subtree under edge E.
Return the subtree rooted at R.



A complete example



A Decision Tree example: “play Tennis” 
● Data Example: “When do you play tennis?”

instance Outlook Temperature Humidity Windy Play

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

Sunny

Sunny

Overcast

Rainy

Rainy

Rainy

Overcast

Sunny

Sunny

Rainy

Sunny

Overcast

Overcast

Rainy

Hot

Hot

Hot

Mild

Cool

Cool

Cool

Mild

Cool

Mild

Mild

Mild

Hot

Mild

High

High

High

High

Normal

Normal

Normal

High

Normal

Normal

Normal

High

Normal

High

False

True

False

False

False

True

True

False

False

False

True

True

False

True

No

No

Yes

Yes

Yes

No

Yes

No

Yes

Yes

Yes

Yes

Yes

No



The Process of Constructing 
a Decision Tree

• Select an attribute to place at the root of
the decision tree and make one branch for
every possible value.

• Repeat the process recursively for each
branch.



Information Gained by 
knowing the Result of a Decision

• In the “play tennis” example, there are 9 instances of
which the decision to play is “yes” and there are 5
instances of which the decision to play is “no’. Then, the
initial data entropy is:

The information initially required to correctly separate the data is 0.940 bits



Information further required if 
“Outlook” is placed at the root

Outlook

yes

yes

no

no

no

yes

yes

yes

yes

yes

yes

yes

no

no

sunny overcast rainy0.971 is the
entropy of 5
instances of
which 3 have
a label and 2
have the other 
label

0 is the
entropy of a 
dataset 
where 
all instances
have the 
same class 
label

Probability 
of outlook=

sunny



Information Gained by Placing 
Each of the 4 Attributes

● Gain(outlook) = 0.940 bits – 0.693 bits = 0.247 bits.

● Gain(temperature) = 0.029 bits.

● Gain(humidity) = 0.152 bits.

● Gain(windy) = 0.048 bits.



The Strategy for Selecting an 
Attribute to Place at a Node

● Select the attribute that gives us the 
largest information gain.

● In this example, it is the attribute “Outlook”.

Outlook

2 “yes”

3 “no”

4 “yes” 3 “yes”

2 “no”

sunny overcast rainy



The Recursive Procedure for 
Constructing a Decision Tree

● Apply to each branch recursively to construct the decision 
tree.

● For example, for the branch “Outlook = Sunny”, we evaluate 
the information gained by applying each of the remaining 3 
attributes.

➢Gain(Outlook=sunny;Temperature) = 0.971 – 0.4 = 0.571

➢Gain(Outlook=sunny;Humidity) = 0.971 – 0 = 0.971

➢Gain(Outlook=sunny;Windy) = 0.971 – 0.951 = 0.02



Recursive selection 

• Similarly, we also evaluate the information gained by
applying each of the remaining 3 attributes for the branch
“Outlook = rainy”.

➢Gain(Outlook=rainy;Temperature) = 0.971 – 0.951 = 0.02

➢Gain(Outlook=rainy;Humidity) = 0.971 – 0.951 = 0.02

➢Gain(Outlook=rainy;Windy) =0.971 – 0 = 0.971



The Resulting Tree
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Outlook

humidity windyyes

no yesyes no

sunny overcast rainy

high normal false true



DT can be represented 
as a set of rules
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Outlook

humidity windyyes

no yesyes no

sunny overcast rainy

high normal false true

IF Outlook = sunny AND humidity = high → no
IF Outlook = sunny AND humidity = normal→ yes
IF Outlook = overcast → yes
IF Outlook = rainy AND windy = false→ yes
IF Outlook = rainy AND windy = true→ no



Support and Confidence: not all 
rules have the same relevance
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• Let n be a root node, and R the rule that can be inferred 
following the pattern from the root to n. Let 𝐷𝑣 be the set of 
examples matching the left hand side of  R, and 𝐷𝑣

′ be the 
subset of examples that also match the right hand side (the 
decision). Note that in general, 𝐷𝑣

′ ⊆ 𝐷𝑣
• Each rule has a support (or “cover”) represented by the 

% of examples in 𝐷 that satisfy R.

• Each rule has also a confidence which might or might not 

be equal to 1. The confidence is the % 
𝐷𝑣
′

𝐷𝑣
of examples of the 

set 𝐷𝑣 which is correctly classified by the rule (i.e. that 
match both the RHS and LHS of R)

𝐷𝑣
′

𝐷



Computing the support and confidence of DT rules
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GREEN BLACK ORANGE ORANGE

BLACK

f0

f1 f2

𝑆 𝑅 =
3

15
, 𝐶 𝑅 =

3

4

R: IF f0=B AND f2=G THEN 

ORANGE



Support and Confidence
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For example if we “consume” all features in a branch of the tree and
we remain with 5 examples, of which 3 positive and 2 negatives, we
append the decision “positive” to the tree branch (and its
associated rule), with support 3 (or 3/|D|) and confidence 3/5

Remember one of the 2  “exit” conditions in the algorithm:

• Else if the set of features is empty, return a leaf node with 
the category label that is the most common in examples.

Hence if the set of examples |Dv| does not have a uniform    
classification, but, say, |Dv+| positive and |Dv-| negative, if     
|Dv+|>|Dv-|, we output  the label “positive”  and:

• support is 

• confidence is 
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Issues of Decision Tree Learning

• Decision trees are among the first types of ML algorithms
developed

• Can handle symbolic (discrete) features, continuous features
can also be handled, if discretized beforehand by some data
preprocessing method;

• The feature to be predicted must be discrete

• The real advantage of Dtrees is explainability (they are
currently used as a post-prediction method for adding
explainability see e.g. this NEURIPS 22 paper)

• Other recent approaches combine deep neural networks with
decision trees to obtain models which are both interpretable
and accurate (see e.g., this Berkley’s univ. Paper 2020), but
other DT+NN based methods have been conceived recently

https://proceedings.neurips.cc/paper_files/paper/2022/file/500637d931d4feb99d5cce84af1f53ba-Paper-Conference.pdf
https://bair.berkeley.edu/blog/2020/04/23/decisions/


Neural-Backed Decision Trees
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Here, predictions are made via a decision tree, preserving high-level interpretability. 

However, each node in decision tree is a neural network making low-level decisions.



Regression Trees

● Regression trees handle both continuous features and non-categorical

classification functions (reading on reg-trees: link)

● Regression trees output values 𝒚 ∈ 𝕽, rather than class labels 𝒄𝒊 ∈ C={c1,c2,..cn}

46

Note that at each node related

to a continuous feature f,

we have a split over the range

of its values

http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf


Regression Trees

● In Dtrees we can discretize features, 

but this is part of data pre-processing

● In RT, creating splits on continuous

features is part of the learning 

process (RT parameters)

● Every branch of the tree defines a 

region in the multi-dimensional space, 

and the output y (leaf nodes of the tree) 

is the mean value of the output  y of 

training data D in the defined region
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e.g., 43.43 is the mean value that the feature y to be predicted has for all examples

in the training set for which Industry is <748 and Population < 190



Regression trees (3)
● These «regions» in theory could have any shape. 

However, Rtrees divide the feature space into

high-dimensional rectangles or «boxes» (for 

simplicity and ease of interpretation of the 

resulting predictive model). 

● Note here for readability we show only two-

dimensional boxes, but they can have as many

dimensions as the features are (hyper-

rectangles)

● Our goal is to find boxes R1, . . . , RJ that

minimize the Residual Sum of Squares RSS 

given by:

where ෞ𝑦𝑅𝑗 is the mean observed value of  the 

output 𝑦𝑖 of training samples xi lying in  the box 

Rj, and 𝑦𝑖 is the value of each single 

observation in the box Rj

For example, given region R1, we compute the average

value of the output function y for all points  xi in the 

training set  that fall into R1 (in simple terms, to minimize

RSS, we want thatall the examples in each region have

very «close» values of the output variable y)



Regression trees (3)

● It is computationally unfeasible to to consider every possible partition of the feature space

into N boxes.

● Thus, we take a top-down, greedy approach called recursive binary splitting, called 

«top-down» since it begins at the top of the tree (all observations belong to a single 

region) and then successively splits the feature space.

● Each split corresponds to two new branches further down on the tree (note RT are binary

trees).

● It is greedy since at each step of the tree building process, the best split is made at that

particular split (rather than looking ahead and picking a split that will lead to a better tree

in a future split).

● It still requires scanning all the observed values of the training set (or region) at each split

● You can learn more on RT algorithm at this link and this second link, but basically same

algorithm as for Dtrees, but different optimization criterion (RSS rather than IG)

49

http://www2.stat.duke.edu/~rcs46/lectures_2017/08-trees/08-tree-regression.pdf
https://sakai.unc.edu/access/content/group/2842013b-58f5-4453-aa8d-3e01bacbfc3d/public/Ecol562_Spring2012/docs/lectures/lecture35.htm


Algorithm

● Let the initial RSS (no split) be 

● Step 1: Choose a feature f and a split point s on its values.

○ For continuous variables, identify a set of split points s1..sm and consider for each of them the generated 

regions R1 and R2

● Step 2: For each possible partition calculate:

● Step 3 examine each feature fj and all possible split points s and choose the one for which RSS0 – RSS(split) is the 

largest.

● Step 4: iterate on each new generated region

50



Recursive binary splitting  (1)

51



Quiz

● Remember, we said that learning implies tuning the model 

parameters and establishing an  optimization problem.

● Which parameters we tune in DT and RT?

● What is the optimization function? 
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Regression trees visualized
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Depth of the tree: 0

http://arogozhnikov.github.io/2016/06/24/gradient_boost

ing_explained.html



Tree depth: 1
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Tree Depth: 2
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Tree depth 5
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Tree depth: 6
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Summary so far

• Decision tree algorithm

• Ordering nodes (Information Gain)

• Regression Trees (Residual Sum of Squares)

• Fine-tuning the tree 

58



Fine-tuning the tree
● Decision or regression trees are not optimal, they are obtained as the 

result of a greedy process

● Remember: ML systems commonly approximate optimal solutions with 

greedy search

● A common problem is that the resulting tree might be excessively bushy

– this is a general problem (for all types of ML algorithms) denoted as

OVERFITTING

● Overfitting happens when a model learns too many details and even 

noise in the training data, causing a negative impact on the ability of the 

model to generalize. This means that the model may perform poorly on 

new data.
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Overfitting decision trees
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Overfitting
● Learning a tree that classifies the training data perfectly may not

lead to the tree with the best generalization to unseen data.
➢There may be noise in the training data that the tree is

erroneously fitting.
➢The algorithm may be making poor decisions towards the

leaves of the tree that are based on very little data and may
not reflect reliable trends (e.g. reliable rules should be
supported by “many” of examples, not just a handful ).

● A hypothesis, h, is said to overfit the training data is there exists
another hypothesis, h´, such that h has less error than h´ on the
training data but a greater error on independent test data.

hypothesis complexity

ac
cu

ra
cy

on training data

on test data



Overfitting more in general

62



63

Overfitting Prevention in Dtrees: 
(Pruning) Methods

• Two basic approaches for decision trees:

• Pre-pruning: Stop growing tree as some point during top-
down construction when there is no longer sufficient data
to make reliable decisions (e.g. |Dv|<k).

• Post-pruning: Grow the full tree, then remove sub-trees
that do not have sufficient evidence (support).

• Label leaf resulting from pruning with the majority class of 
the remaining data, or a class probability distribution. 

• This step has the effect of reducing confidence



Will see more on decision and regression

trees..

… when we will introduce Ensamble methods
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