
Supervised Learning:
”basic” learners: Decision

Trees Classifiers
and Regression Trees

1

We start by IGNORING the data complexity issue

● Let us assume our data are STRUCTURED (we have tables with either continuous or symbolic feature

values)

● Let’s assume we have «good enough» and sufficient structured data

● Furthermore, we restrict to supervised predictive tasks:

○ Data are feature-value tables, and the task is to learn predicting the value of a specific feature y

(symbolic or continuous)

○ We are provided with historical data, i.e. we can observe examples x∈ 𝑿 of past data for which the

value of the feature y to be predicted is known. We denote with D: <x,y> the training set of input-

output tuples extracted from historical data

○ Task is to learn a model f(x) and use this model to predict y=f(x) for unseen values of new instances

2

Outline

● Formal definition of Classifiers and

Regressors

● Tabular and geometric representation of

data

● Basic classifiers:

○ Decision Trees

○ Regression trees

○ Fine-tuning the tree

3

Supervised Classifiers and Regressors: definition of

the task
● Let D: <xi,yi> be a dataset representing historical data about a given domain

● Let’s assume that D is a list of records, called instances or samples or examples xi: (xi1…xin)

● Every xij represents the value of an attribute Xj, or feature, describing the istance (values can

be discrete or continuous)

● Y is the target attribute for which we want to learn a prediction model f(x)

● In classification tasks, the target is a discrete variable (binary or multi-valued), called the

«class» 𝐶 so the training set D includes tuples < 𝒙𝑖 , 𝑐𝑖>

● In classifiers, the prediction model to be learned is often denoted as c(x) rather than f(x)

4

How do we represent our structured data D?

● Tabular and geometric representation. Points represent the rows (instances) and the colour is the

value of the class variable (here, y=red n=green)

● Rows in the table (array) are denotes as feature vectors

● So, by x (bold) we denote a feature vector whose dimensions are the features and whose coordinates are

the feature values (e.g., the example 1 is geometrically represented by the vector x1: [32,20])

● Note that you can represent also symbolic features in the same way, but you need to «impose» an order

to the symbolic values (e.g. green, red, blue if feature is «colour»), which might create problems with

some algorithm (will see).

5

example age Bodymass index Risk of a

cardiac

event?

1 32 20 n

2 60 35 y

3 55 21 n

4 40 40 y

Illustrating the Classification
Task

Examples of Classification
Task

• Predicting tumor cells as benign or malignant
(class is, e.g., benign(x) with values pos and neg)

• Classifying credit card transactions
as legitimate or fraudulent (class is, e.g. fraudulent(x), with
values pos and neg)

• Classifying secondary structures of protein
as alpha-helical, beta-sheet, or random
coil

• Categorizing news stories as finance,
weather, entertainment, sports, etc (class is category(x) with
values weather, sport,finance..)

Decision trees

● Note: although Dtrees is a very old class of algorithms (on the other side, NN

are also very old) it is at the basis of top performance non-deep Ensamble

algorithms, such as Random Forest and Gradient Boosting –will se later

● These algorithms are often used as baselines, and in specific conditions still

turn out to be competitive vrs deep methods.

Decision Trees
● The model output is a tree structure. Every node represents a test on a feature’s value. Nodes

are labelled with the feature name. Below each node there is one branch for each possible value
of the feature. Branches are labelled with the value of the feature.

● Leaf nodes are “decisions”, they specify the class label.

● A decision tree can represent any boolean function c(x), i.e., a classification function over
discrete-valued feature vectors.

● The tree can be rewritten as a set of rules, i.e. disjunctive normal form (DNF). Example (for the
left tree):
➢ red ∧ circle → pos
➢ red ∧ circle → A

blue → B; red ∧ square → B
green → C; red ∧ triangle → C

color

red blue
green

shape

circle square triangle

neg pos

pos neg neg

color

red blue
green

shape

circle square triangle

B C

A
B C

General shape of a decision tree

10

➢ Every test node is a
test on the value (or
range) of one features.
For each possible
outcome of the test, an
edge is created that
links to a subsequent
test node or to a leaf
node.

➢ Leaf nodes are
decisions concerning
the value of the
classification.

Toy example

● Decision tree to decide whether to go home

by bus or walking

● Binary class: values are either walk or bus

● Decision is taken based on the values of just

3 features: weather (W), time (T), and hungry

(H)

● Features are either symbolic (sun-cloud-rain)

or discretized (e.g., >30m or <30m)

● The decision tree can be re-written in terms of

a decision function c(x) in first order logic:

c(x(W,T,H))=(IF(W=Sun AND T>30) THEN Walk)

OR (IF W=Sun AND T<30) THEN Bus) OR (IF

W=Cloud AND H=Yes) THEN Walk) OR (etc.

etc)

11

How do we learn a decision

tree?
● We use historical data for which the value of the

class is known (training set)

● The basic process is greedy recursive partition

of the decision space into regions – optimal

partition is one in which every region includes

only samples from one class

12

Sun

Cloud

Rain

30

BUS

WALK

Decision boundaries

minutes

IF y= Sun AND 0<=x< 30 THEN BUS

Toy dataset

13

Dimension Color shape class

Big Red Circle Positive (+)

Small Red Circle Positive (+)

Small Red Square Negative (-)

Big Blue Circle Negative (-)

14

How does it work: Top-Down
Decision Tree Induction

● Recursively build a tree top-down by divide and conquer.

<big, red, circle>: + <small, red, circle>: +

<small, red, square>: − <big, blue, circle>: −

red

blue

green

<big, red, circle>: +

<small, red, circle>: +

<small, red, square>: −

At each step, we aim to find the “best split” of our data. What is a good split?
One which reduces the uncertainty of classification for “some” split!
Learning best splits (best ordering of tests on features, and best split over its
values) is learning the DT parameters.

Subset of
examples in D
in which
color=red

Initial learning
set D

Begin by
considering the
feature “color”

color

15

shape

circle square triangle

Top-Down Decision Tree Induction

• Recursively build a tree top-down by divide and conquer.

<big, red, circle>: + <small, red, circle>: +

<small, red, square>: − <big, blue, circle>: −

<big, red, circle>: +

<small, red, circle>: +

<small, red, square>: −

color

red blue
green

<big, red, circle>: +

<small, red, circle>: +

pos
<small, red, square>: −

neg pos

<big, blue, circle> −neg

neg

The process ends when we can output decisions (= the class labels), but: How do we
decide the order in which we test attributes?
How do we decide the class of nodes for which we have no examples?

Let’s ignore for now these 2 issues and describe the algorithm first

16

Decision Tree Induction Pseudocode
Algorithm DTree(examples D, features F) returns a tree:

a) If all examples D are in one category, return a leaf node with that
category label
b) Else if the set of features F is empty, return a leaf node with the
category label that is the most common in examples.

Else pick a feature f in F and create a node R for it
For each possible value xi of f:

Let si be the subset of examples that have value xi for f
Add an outgoing edge E to node R labeled with the value xi.

If si is empty
then attach a leaf node to edge E labeled with the

category that is the most common in examples
else call DTree(si , features – {f}) and attach the resulting tree as
the subtree under edge E.

Return the subtree rooted at R.

a) and b) are the termination conditions

e.g. color=red

color

red

<big, red, circle>: +

<small, red, circle>: +

<small, red, square>: −

17

Example

Instances:

<big, red, circle>: + <small, red, circle>: +

<small, red, square>: − <big, blue, circle>: −

color

red

<big, red, circle>: +

<small, red, circle>: +

<small, red, square>: −

Features:
● dimension, shape,color

1. Pick a feature f and create a node R for it, eg. Color

2. For each possible value xi of f (red for example):

1. Let si be the subset of examples that have value vi

for f.
2. Add an outgoing edge E to node R labeled with

the valuex.

3. if (…) else call DTree(example(si) , features – {f}) and
attach the resulting tree as the subtree under edge E.

Dtree(, <dimension,shape>)
<big, red, circle>: +

<small, red, circle>: +

<small, red, square>: −

COLOR

call the algorithm on the
subset for the feature red:

1

Example

18

color

red

shape

circle

<big, red, circle>: +

<small, red, circle>: +
positive

<small, red, square>: −

negative

square
triangle

positive

4. Pick a feature f and create a node R for it, eg. shape

5. If all si are in one category, return a leaf node with that category label.
6. If si is empty. then attach a leaf node to edge E labeled with the

category that is the most common in examples.

Dtree(, <dimension,shape>)
<big, red, circle>: +

<small, red, circle>: +

<small, red, square>: −

2

19

shape

circle square triangle

Example:
Backtrack to color (blue)

<big, blue, circle>: −

<big, red, circle>: +

<small, red, circle>: +

<small, red, square>: −

color

red blue
green

<big, red, circle>: +

<small, red, circle>: +

pos
<small, red, square>: −

neg pos

<big, blue, circle>: −

neg neg

Now we know how to decide the class when we have no
examples, but how do we decide the order in which we create
nodes?

3

20

Picking a Good Split Feature

● The goal is to have the resulting tree be as small as
possible, per Occam’s razor.

● Finding a minimal decision tree (nodes, leaves, or depth) is
an NP-hard optimization problem.

● The top-down divide-and-conquer method does a greedy
search for a simple tree but does not guarantee to find the
smallest.
○ The general lesson in ML: “Greed is good.”

● Want to pick a feature that creates subsets of examples
that are relatively “pure” in a single class so they are
“closer” to being leaf nodes.

● There are a variety of methods for picking a good test, a
popular one is based on information gain that originated
with the ID3 system of Quinlan (1979). The choice of the
method to be used is an hyperparameter of the DT model

About “purity”

21

● Look at the image below and think which group can be
described easily. Intuitively, the answer is C because it
requires less information, as all values are similar (=blue).

● On the other hand, B requires more information to describe
it, and A requires the maximum information. In other words,
we can say that C is a “pure” node, B is impure and A is
more impure than B.

22

How to measure purity

● Entropy (disorder, impurity) of a set of examples, D, relative
to binary classification is:

● where p1 is the fraction of positive examples in D and p0 is
the fraction of negatives. (Notice that if S is a sample of a
population, Entropy(S) is an estimate of the population
entropy).

● If all examples are in one category (as for node C of the
previous example), entropy is zero (we define 0⋅log(0)=0).

● If examples are equally mixed (p1=p0=0.5), entropy is a
maximum of 1.

23

● Entropy can be viewed as the number of bits required on
average to encode the class of an example in D. It is also
an estimate of the initial “disorder” or “uncertainty” about a
classification, given the set D.

● General Formula of Entropy: For multi-class problems with
C category values, entropy generalizes to:

Entropy and Binary Entropy

Example:
Entropy Computation

24

● We have two class labels, blue and yellow.

● In group C, we have 18 objects, and they are all blue:

● In group A, we have 20 objects, 9 are yellow, 11 are blue

25

Entropy Plot for Binary
Classification (only 2 class labels)

26

Information Gain

The Information Gain (IG, Gain) of a feature f is the expected
reduction in entropy resulting from splitting on this feature.

➢ where Dv is the subset of D having value v for feature f
(e.g, if f=color and v=red)

Example of Gain computation

27

D=13 examples, 7 positive 6 negative

Let’s pick a binary feature f with values a and b, and let’s suppose that we

Have 7 instances out of 13 for which f=a, and 6 for which f=b

𝐷𝑓=𝑎
𝐷

=
7

13

𝐷𝑓=𝑏
𝐷

=
6

13

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐷 = −
7

13
log(

7

13
) −

6

13
𝑙𝑜𝑔

6

13

𝐺𝑎𝑖𝑛 𝐷, 𝑓 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐷 −
7

13
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑒𝑡1) −

6

13
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑒𝑡2)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆𝑒𝑡1 = −
3

7
log(

3

7
) −

4

7
𝑙𝑜𝑔

4

7

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆𝑒𝑡2 = −
3

6
log(

3

6
) −

2

6
𝑙𝑜𝑔

2

6

28

Information Gain

● Entropy of each resulting subset weighted by its relative
size...

Example:
<big, red, circle>: + <small, red, circle>: +

<small, red, square>: − <big, blue, circle>: −

2+, 2 −: E=1

size

big small

1+,1− 1+,1−

Ebig=1

Esmall=1

Gain=1−(0.5⋅1 + 0.5⋅1) = 0

2+, 2 − : E=1

color

red blue

2+,1− 0+,1−

Ered=0.918 Eblue=0

Gain=1−(0.75⋅0.918 +

0.25⋅0) = 0.311

2+, 2 − : E=1

shape

circle square

2+,1− 0+,1−

Ecircle=0.918 Esquare=0

Gain=1−(0.75⋅0.918 +

0.25⋅0) = 0.311

Initial Entropy is 1

New pseudo-code

29

DTree(examples, features) returns a tree

a) If all examples are in one category, return a leaf node with that category
label.

b) Else if the set of features is empty, return a leaf node with the category
label that is the most common in examples.

Else pick the best feature f according to IG and create a node R for it
For each possible value xi of f :

Let si be the subset of examples that have value xi for f
Add an outgoing edge E to node R labeled with the value xi.

If si is empty
then attach a leaf node to edge E labeled with the

category that is the most common in examples.
else call DTree(si , features – {f}) and attach the resulting

tree as the subtree under edge E.
Return the subtree rooted at R.

A complete example

A Decision Tree example: “play Tennis”
● Data Example: “When do you play tennis?”

instance Outlook Temperature Humidity Windy Play

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

Sunny

Sunny

Overcast

Rainy

Rainy

Rainy

Overcast

Sunny

Sunny

Rainy

Sunny

Overcast

Overcast

Rainy

Hot

Hot

Hot

Mild

Cool

Cool

Cool

Mild

Cool

Mild

Mild

Mild

Hot

Mild

High

High

High

High

Normal

Normal

Normal

High

Normal

Normal

Normal

High

Normal

High

False

True

False

False

False

True

True

False

False

False

True

True

False

True

No

No

Yes

Yes

Yes

No

Yes

No

Yes

Yes

Yes

Yes

Yes

No

The Process of Constructing
a Decision Tree

• Select an attribute to place at the root of
the decision tree and make one branch for
every possible value.

• Repeat the process recursively for each
branch.

Information Gained by
knowing the Result of a Decision

• In the “play tennis” example, there are 9 instances of
which the decision to play is “yes” and there are 5
instances of which the decision to play is “no’. Then, the
initial data entropy is:

The information initially required to correctly separate the data is 0.940 bits

Information further required if
“Outlook” is placed at the root

Outlook

yes

yes

no

no

no

yes

yes

yes

yes

yes

yes

yes

no

no

sunny overcast rainy0.971 is the
entropy of 5
instances of
which 3 have
a label and 2
have the other
label

0 is the
entropy of a
dataset
where
all instances
have the
same class
label

Probability
of outlook=

sunny

Information Gained by Placing
Each of the 4 Attributes

● Gain(outlook) = 0.940 bits – 0.693 bits = 0.247 bits.

● Gain(temperature) = 0.029 bits.

● Gain(humidity) = 0.152 bits.

● Gain(windy) = 0.048 bits.

The Strategy for Selecting an
Attribute to Place at a Node

● Select the attribute that gives us the
largest information gain.

● In this example, it is the attribute “Outlook”.

Outlook

2 “yes”

3 “no”

4 “yes” 3 “yes”

2 “no”

sunny overcast rainy

The Recursive Procedure for
Constructing a Decision Tree

● Apply to each branch recursively to construct the decision
tree.

● For example, for the branch “Outlook = Sunny”, we evaluate
the information gained by applying each of the remaining 3
attributes.

➢Gain(Outlook=sunny;Temperature) = 0.971 – 0.4 = 0.571

➢Gain(Outlook=sunny;Humidity) = 0.971 – 0 = 0.971

➢Gain(Outlook=sunny;Windy) = 0.971 – 0.951 = 0.02

Recursive selection

• Similarly, we also evaluate the information gained by
applying each of the remaining 3 attributes for the branch
“Outlook = rainy”.

➢Gain(Outlook=rainy;Temperature) = 0.971 – 0.951 = 0.02

➢Gain(Outlook=rainy;Humidity) = 0.971 – 0.951 = 0.02

➢Gain(Outlook=rainy;Windy) =0.971 – 0 = 0.971

The Resulting Tree

39

Outlook

humidity windyyes

no yesyes no

sunny overcast rainy

high normal false true

DT can be represented
as a set of rules

40

Outlook

humidity windyyes

no yesyes no

sunny overcast rainy

high normal false true

IF Outlook = sunny AND humidity = high → no
IF Outlook = sunny AND humidity = normal→ yes
IF Outlook = overcast → yes
IF Outlook = rainy AND windy = false→ yes
IF Outlook = rainy AND windy = true→ no

Support and Confidence: not all
rules have the same relevance

41

• Let n be a root node, and R the rule that can be inferred
following the pattern from the root to n. Let 𝐷𝑣 be the set of
examples matching the left hand side of R, and 𝐷𝑣

′ be the
subset of examples that also match the right hand side (the
decision). Note that in general, 𝐷𝑣

′ ⊆ 𝐷𝑣
• Each rule has a support (or “cover”) represented by the

% of examples in 𝐷 that satisfy R.

• Each rule has also a confidence which might or might not

be equal to 1. The confidence is the %
𝐷𝑣
′

𝐷𝑣
of examples of the

set 𝐷𝑣 which is correctly classified by the rule (i.e. that
match both the RHS and LHS of R)

𝐷𝑣
′

𝐷

Computing the support and confidence of DT rules

42

GREEN BLACK ORANGE ORANGE

BLACK

f0

f1 f2

𝑆 𝑅 =
3

15
, 𝐶 𝑅 =

3

4

R: IF f0=B AND f2=G THEN

ORANGE

Support and Confidence

43

For example if we “consume” all features in a branch of the tree and
we remain with 5 examples, of which 3 positive and 2 negatives, we
append the decision “positive” to the tree branch (and its
associated rule), with support 3 (or 3/|D|) and confidence 3/5

Remember one of the 2 “exit” conditions in the algorithm:

• Else if the set of features is empty, return a leaf node with
the category label that is the most common in examples.

Hence if the set of examples |Dv| does not have a uniform
classification, but, say, |Dv+| positive and |Dv-| negative, if
|Dv+|>|Dv-|, we output the label “positive” and:

• support is

• confidence is

44

Issues of Decision Tree Learning

• Decision trees are among the first types of ML algorithms
developed

• Can handle symbolic (discrete) features, continuous features
can also be handled, if discretized beforehand by some data
preprocessing method;

• The feature to be predicted must be discrete

• The real advantage of Dtrees is explainability (they are
currently used as a post-prediction method for adding
explainability see e.g. this NEURIPS 22 paper)

• Other recent approaches combine deep neural networks with
decision trees to obtain models which are both interpretable
and accurate (see e.g., this Berkley’s univ. Paper 2020), but
other DT+NN based methods have been conceived recently

https://proceedings.neurips.cc/paper_files/paper/2022/file/500637d931d4feb99d5cce84af1f53ba-Paper-Conference.pdf
https://bair.berkeley.edu/blog/2020/04/23/decisions/

Neural-Backed Decision Trees

45

Here, predictions are made via a decision tree, preserving high-level interpretability.

However, each node in decision tree is a neural network making low-level decisions.

Regression Trees

● Regression trees handle both continuous features and non-categorical

classification functions (reading on reg-trees: link)

● Regression trees output values 𝒚 ∈ 𝕽, rather than class labels 𝒄𝒊 ∈ C={c1,c2,..cn}

46

Note that at each node related

to a continuous feature f,

we have a split over the range

of its values

http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf

Regression Trees

● In Dtrees we can discretize features,

but this is part of data pre-processing

● In RT, creating splits on continuous

features is part of the learning

process (RT parameters)

● Every branch of the tree defines a

region in the multi-dimensional space,

and the output y (leaf nodes of the tree)

is the mean value of the output y of

training data D in the defined region

47

e.g., 43.43 is the mean value that the feature y to be predicted has for all examples

in the training set for which Industry is <748 and Population < 190

Regression trees (3)
● These «regions» in theory could have any shape.

However, Rtrees divide the feature space into

high-dimensional rectangles or «boxes» (for

simplicity and ease of interpretation of the

resulting predictive model).

● Note here for readability we show only two-

dimensional boxes, but they can have as many

dimensions as the features are (hyper-

rectangles)

● Our goal is to find boxes R1, . . . , RJ that

minimize the Residual Sum of Squares RSS

given by:

where ෞ𝑦𝑅𝑗 is the mean observed value of the

output 𝑦𝑖 of training samples xi lying in the box

Rj, and 𝑦𝑖 is the value of each single

observation in the box Rj

For example, given region R1, we compute the average

value of the output function y for all points xi in the

training set that fall into R1 (in simple terms, to minimize

RSS, we want thatall the examples in each region have

very «close» values of the output variable y)

Regression trees (3)

● It is computationally unfeasible to to consider every possible partition of the feature space

into N boxes.

● Thus, we take a top-down, greedy approach called recursive binary splitting, called

«top-down» since it begins at the top of the tree (all observations belong to a single

region) and then successively splits the feature space.

● Each split corresponds to two new branches further down on the tree (note RT are binary

trees).

● It is greedy since at each step of the tree building process, the best split is made at that

particular split (rather than looking ahead and picking a split that will lead to a better tree

in a future split).

● It still requires scanning all the observed values of the training set (or region) at each split

● You can learn more on RT algorithm at this link and this second link, but basically same

algorithm as for Dtrees, but different optimization criterion (RSS rather than IG)

49

http://www2.stat.duke.edu/~rcs46/lectures_2017/08-trees/08-tree-regression.pdf
https://sakai.unc.edu/access/content/group/2842013b-58f5-4453-aa8d-3e01bacbfc3d/public/Ecol562_Spring2012/docs/lectures/lecture35.htm

Algorithm

● Let the initial RSS (no split) be

● Step 1: Choose a feature f and a split point s on its values.

○ For continuous variables, identify a set of split points s1..sm and consider for each of them the generated

regions R1 and R2

● Step 2: For each possible partition calculate:

● Step 3 examine each feature fj and all possible split points s and choose the one for which RSS0 – RSS(split) is the

largest.

● Step 4: iterate on each new generated region

50

Recursive binary splitting (1)

51

Quiz

● Remember, we said that learning implies tuning the model

parameters and establishing an optimization problem.

● Which parameters we tune in DT and RT?

● What is the optimization function?

52

Regression trees visualized

53

Depth of the tree: 0

http://arogozhnikov.github.io/2016/06/24/gradient_boost

ing_explained.html

Tree depth: 1

54

Tree Depth: 2

55

Tree depth 5

56

Tree depth: 6

57

Summary so far

• Decision tree algorithm

• Ordering nodes (Information Gain)

• Regression Trees (Residual Sum of Squares)

• Fine-tuning the tree

58

Fine-tuning the tree
● Decision or regression trees are not optimal, they are obtained as the

result of a greedy process

● Remember: ML systems commonly approximate optimal solutions with

greedy search

● A common problem is that the resulting tree might be excessively bushy

– this is a general problem (for all types of ML algorithms) denoted as

OVERFITTING

● Overfitting happens when a model learns too many details and even

noise in the training data, causing a negative impact on the ability of the

model to generalize. This means that the model may perform poorly on

new data.

59

Overfitting decision trees

60

61

Overfitting
● Learning a tree that classifies the training data perfectly may not

lead to the tree with the best generalization to unseen data.
➢There may be noise in the training data that the tree is

erroneously fitting.
➢The algorithm may be making poor decisions towards the

leaves of the tree that are based on very little data and may
not reflect reliable trends (e.g. reliable rules should be
supported by “many” of examples, not just a handful).

● A hypothesis, h, is said to overfit the training data is there exists
another hypothesis, h´, such that h has less error than h´ on the
training data but a greater error on independent test data.

hypothesis complexity

ac
cu

ra
cy

on training data

on test data

Overfitting more in general

62

63

Overfitting Prevention in Dtrees:
(Pruning) Methods

• Two basic approaches for decision trees:

• Pre-pruning: Stop growing tree as some point during top-
down construction when there is no longer sufficient data
to make reliable decisions (e.g. |Dv|<k).

• Post-pruning: Grow the full tree, then remove sub-trees
that do not have sufficient evidence (support).

• Label leaf resulting from pruning with the majority class of
the remaining data, or a class probability distribution.

• This step has the effect of reducing confidence

Will see more on decision and regression

trees..

… when we will introduce Ensamble methods

64

