
Classification
and Workflow
of ML systems

Outline

1. ML vrs traditional
programming

2. The design cycle of ML
systems

Data selection, preparation and pre-
processing

Model selection: types of ML algorithms

Model evaluation and fitting

Traditional Programming

Machine Learning

Computer
Data

Program
Output

Computer
Data

Output

Program
(Model)

Def: «A computer model is an abstract mathematic representations (some f(x)) of a real-world event, system, behavior, or

natural phenomenon (x). A computer model is designed to behave just like the real-life system. »

Example

INPUT (DATA):

Your web site

PROGRAM:

Vulnerability management software

OUTPUT:

List of vulnerabilities

INPUT (DATA):

List of moves of
chess game players

OUTPUT:

Outcomes of games
(win/defeat/parity)

PROGRAM (MODEL):

A program that can play
chess

Computer

Computer

Traditional Programming

Machine Learning

ML systems learn a (predictive, prescriptive, descriptive) MODEL either
from examples (historical data) or from experience

Historical data: tuple <xi, f(xi)>

xi : user, yi=f(xi) : his/her preference for a

movie

Modello

y=f(x)

Model

y=f(x)

?5

«x» here is a vector of integers with empty values y here is the input were empty values are filled
f(x) is the function able to compute missing values

Data

collection

Data

Cleaning

and

transforma

tion

Data

selection

and

preparation

Feature

engineering

Feature

extraction

Feature

selection

Feature

construction

F

e

a

t

u

r

e

s

Model selection:

• Traditional (non-

deep) models

• Deep models

Model fitting:

Hyperparameter

optimization

Model generation

Model

evaluation

ML systems: Design cycle

Designing/selecting a ML algorithm (able to learn a

«model») is just one step of a very complex pipeline

Feature

engineering

Feature

extraction

Feature

selection

Feature

construction

F

e

a

t

u

r

e

s

Data selection
and preparation

Which data, what for?

Where do I find my
data?

Are they ready for
analysis? (usually NOT)

Which
data, what

for?

Data are the fuel of machine learning – the success of specific
algorithms often depends on the data they use (e.g., convolutional
neural netyworks are very effective on image data, long-short term
memory LSTM are tuned for sequential data like sensor signals,
sequences of events..)

Not only the type of data matters, but also the quantity and quality,
and how we represent it (e.g., how do we represent a free
text?)

Often the same type of data can be represented in different ways
(amenable for exploiting the features of different algorithms)

More often, heterogeneous types of data are needed (images,
texts, tables..)

Example: medical
machine learning

• Several types of data
– Patients health records (sequences of diagnoses treatmets

clinical tests results)

– Info on medications/prescriptions and their effect (tables or
texts)

– Behavioural data (signals from sensors)

– Social data (texts, images)

– Biological /genetic data (strings, networks)

– Clinical images

• Several «formats»
– Tables (csv files)

– Graphs (matrixes)

– Sequences (values with timestamps)

– Unstructured, such as text, signals, videos, audio..

– …

• Other issues: privacy, representation standard, data
quality, ethics & bias

Where do I
find my
data?

• Lots of publicly available and legacy data:

– Social data (social networks, blogs): to mine user opinions,
trending topics, market forecasts

– Sensors data (signals from devices e.g. vending machines,
packages, wearable devices, sensor networks..): to detect
anomalies (remember Magpie vaccines), learn trends..

– Clickstream data (cliklogs of web sites): for traffic and e-
commerce analysis

– Environmental data (geolocations, metereological data): to
produce recommendations, supply chain, market forecasts..

– Images, videos, signals (medical imaging, landscapes,
portraits): to detect anomalies, security, fraud detection..

– Audio (speech, sound): to mine opinions, fraud detection,
environmental analysis

Are data ready
for analysis?
(formatting
problems)

• Most of the time they are NOT:
– not in a readily processable format, such as

images, signals, text
• Often heterogeneous data can be

converted into a simplest form, such as
tables

• In some case, we can also process data
«as they are» (e.g., pixels)

• «representation learning» is about
finding the best representation for our
data (given the objectives of data
analytics)

• Keep in mind: images are one of the
«best» types of data, and the one on
which deep algorithms work best. More
recently, NLP systems got on the
podium. But the world if full of other
types of data (speech, human-entered
symbolic data, genetic data that have
the form of complex graphs..), and they
are dirty, incomplete, heterogeneous,
inconsistent..

https://dl.acm.org/doi/10.1145/3331174

Tables (matrixes) are the «simplest» format – although very
rarely data are available in this ready-to-use format

Customer ID AGE INCOME EDUCATION DEFAULT

ID1 27 30.000 YES 1

ID2 50 45.000 NO 0

ID3 60 46.000 YES 0

……

ID1348 32 55.000 YES 0

Data set Features, attributes, dimensions,

variables, descriptors….

Entity, Feature vector, Instance,

Object, Record…

Class, prediction,

output..

Example: (excerpt of) historical data on bank customers who applied for credit. The «DEFAULT» attribute

tells us if they have been defaulters or non defaulters. ML task is learning to predict future defaulters to inform about

the risk of granting a credit to a new customer.

Are data ready
for analysis?
(cleaning and

transformation)

Data may need a lot of cleaning
(transformations):

• Get rid of errors, noise, missing values

• Removal of redundancies

• Check for bias and inconsistencies

Data may need a lot of preprocessing:

• Renaming

• Rescaling

• Normalization

• Discretization

• Abstraction

• Aggregation

• New attributes (augmentation)

Will see later (data preparation pipeline)
examples of data preprocessing

Feature
engineering

The descriptors (features) of our data can be too many (e.g. the words of a
document archive) in general, or for the objectives of our analysis; but they can
also be too few

Feature identification and engineering is about finding the best descriptors

To reduce the number of features, we can use dimensionality reduction:
algorithms to compress low level features into higher level «semantic»
descriptors (e.g., from words to sentiment, from words to «meanings»..)

But we may also want to augment our data: so-called generative methods can be
used for this purpose. For example, we have too few patient records for, say, some
rare disease and we want to generate «realistic» synthetic data

Will see all that later

Example (feature identification)

Task: determine the “sentiment” of Twitter
messages – we don’t’ need to consider all words!

Example 2 (feature identification)

If the task is recognizing frogs vrs lions, we don't need representing data at

the pixel level! A colour histogram would do..(Occam razor: entia non sunt
multiplicanda praeter necessitatem)

Model selection
• Remember: model learning= devising an

algorithm (implemented with a program) to
learn a function (the model) y=f(x) where x is
an instance of input data

• What are the different types of ML systems?

• ML systems can be classified according to:

➢How they learn

➢What kind of function they learn

Classification
of ML

algorithms

Types of learning (how
do we train?)

Types of
predictions function (the
model f(x)) we learn)

Classification
of ML

learning
systems

according to
the training

method

• Four categories of ML algorithms:

• Supervised (inductive) learning

• Learning from "teachers": Training data

includes examples of (correct/desired)

outputs

• Unsupervised learning

• Training data does not include output labels

• Semi-supervised learning

• Training data includes a few output labels

• Reinforcement learning

• Learning by doing: start with random

strategies and adjust based on results wrt a

stated objective

Supervised/Unsupervised/Reinforcement

Compare with
the correct output

values

A program that,
given a new (unseen,

unlabeled) input,
predicts the output

label

A program that
partitions input into

clusters, and given an
unseen instance,

assigns it to one or
more clusters

A program that,
given a task (e.g.

driving from A to B),
provides a strategy
(set of actions) to
execute it at best

Evaluation
function

Input data paired
with output labels

Input Input

f(x)

x x
x

f(x)f(x)f(x)f(x) f(x)

Classification
of ML systems
according to
the type of

learned
function

y=f(x)

• Range of f(x) is DISCRETE ➔ Classifier

• Range of f(x) is CONTINUOUS ➔
Regressor

• Note: the domain of f(x) can be
discrete or continuous or both if x
is multivariate (x: x1,x2..xn)

• Furthermore:
– f(x) can be a logic, algebraic or

probabilistic function

Classifiers/regressors

• Classifier: given input data, the
system learns a categorical (e.g.,
boolean) function. For example, given
a (vectorial) representation of a
patient, returns 0 if the patient is
predicted not at risk of cardiovascular
event, 1 is at risk

• Regressor: given input data, the
system returns real value(s). For
example, given a sequence of stock
market values at time 𝑡1 𝑡2.. 𝑡𝑛, it is
able to predict the value at 𝑡𝑛+1

x

y

y=f(x)

y= X , O binary

x1

x2

x : <x1,x2>

f(x)

IF f(xi)>0 THEN X

IF f(xi)<0 THEN O

Examples

(training set)

X , O Examples

(training set)

(more on) Classifiers vrs Regressors
Output : DISCRETE

Objective: find decision boundary f(x)

Example: will the weather

tomorrow be CLEAR or CLOUDY?

Output : CONTINUOUS

Objective: find best-fit curve f(x)

Example: what will be the

temperature tomorrow?

humidity

temperat

ure

humidity

temperat

ure

The term «predictor» indicates

either a classifier or a regressor

Example of binary classifier: movie reviews
classification

• Points (training examples) are
some geometric representation of
a movie review (e.g. x=number of
positive adjectives in the review
and y= number of emoticons in the
review).

• Colors are the classification labels
(positive or negative) in the training
data

• Once a model is learned (the
decision boundary f(x), purple line),
a new «point» (e.g., the red point
in figure) is classified depending on
its position wrt the boundary line
(below➔negative, above
➔positive)

Financial forecasting: regressors

Input are the price values of a stock (black points), need to learn a function y=f(x) that predicts future values.

The blue line is the learned f(x), trained over historical data (black dots); the light blue strip model the uncertainty. The blue line

Is «fitted» using past data, and then can be used to predict the future trend (circled area)

Binary vrs
Multi-class

classification

The 3 phases of supervised ML

Input data ML Algorithm Model TRAINING PHASE

Test

data
Model predictions evaluation TESTING PHASE

Model

New

data
Model predictions PREDICTION

(OPERATIONAL) PHASE

During the prediction phase, the model computes a function
f(x) that, given an instance x (in our case, a patient with its
descriptors), generates a label y = f(x) for example, a risk
probability

Example: cardiovascular risk prediction
(is a patient at risk of a heart attak?)

During the training phase, a machine learning algorithm use
historical data on past patients’ visits and diagnoses (the training
set) to learn a classification model.

Machine
Learning

Algorithm

MODEL

Supervised Learning: formal definition
• Given examples (xi,yi) of an unknown function y = f(x)

Learn f(x) to predict its values for unseen examples x

➢If f(x) is discrete: Classification Problem

➢If f(x) is continuous: Regression Problem

➢If f(x) represents a Probability (continuos and 0<=y<=1):
Probability Estimation

f(x)= yesf(x)= 1,307Pr(f(x)= yes)=0.67Input with labels
Sup.
ML

Note: we don’t know the
function, of course, but

only the VALUES for
selected input!

Unsupervised
ML
• In unsupervised learning, data are
unlabeled. No “ground truth” is
provided for the output. One common
type of unsupervised learning is
clustering. The algorithm must learn
a model to group instances according
to their “similarity”. Groups are called
“clusters”.

• During the training phase, the
system learns the clusters
(model)

• During the prediction phase, the
system assigns any new, unseen
instance to a cluster (output is a
class label, or a probability)

• Problem is testing: no ground
truth, so usually a number of
cluster quality measures are used

Clustering is a hard task

• Often, data cannot be easily separated (especially multi-dimensional data)

Example: group people
according to their traits

• Far more complex
than supervised
learning

• What means “similar”?

• How many groups can

we have?
Very ill-formed problem:
There are several ways of grouping depending on
the chosen similarity function
(e.g. Bold/hairy, female/male, hair color, age, etc.)

Are they similar?

Reinforcement
learning: a.k.o.

“loosely” supervised

• The objective is to learn
a “policy” or strategy to
act in an environment

• No examples. Try and test

• The “agent” learns guided by
rewards/penalties
(rewards/penalties are a.k.o.
training information)

Example: robot learn to interact
with dangerous environments

Parameters and
Hyperparameter

optimization

• Learning = optimization problem The idea is to learn
a function that minimizes an error function (often
called «loss») over labeled data (supervised ML), or
one that maximizes some similarity function
(clustering) or rewards over penalties
(reinforcement).

• A model parameter is a configuration variable that is
internal to the model and whose value can be
estimated from available data during the training
phase (example: the order of tested features in
a decision tree).

• A model hyperparameter is a configuration variable
that is set prior to creating a model (example: the
number of neurons in a layer or the number of layers
in a deep NN)

• Given a selected predictive algorithm (e.g.,
convolutional neural networks, or decision trees..),
during the learning phase, parameters and hyper-
parameters need to be optimized (=set to the value
that produces the best performance in prediction)

• While parameter learning is achieved during the
training phase (model generation), hyperparameters
must be set prior to this phase. Different
hyperparameters may lead to different models,
with different performances.

Learning:
hyperparameter

tuning (model
fitting)

• Hyper-parameter is a parameter whose value must be set
before the learning process begins. For example, the
maximum depth of a decision tree, the number of hidden
layers in a neural network, the type of loss function, the type
of similarity function in clustering, etc.

• Hyperparameters determine how our model is structured in
the first place

• Hyper-parameters can significantly impact on
performance:

➢Suitable hyper-parameters must be determined for each
task

➢Needed in both supervised and unsupervised learning

• need for disciplined and automated optimization methods
(greed search, Bayesian optimization, etc..)

• Auto-ML (meta-learning) tries to automatize this process
(see, e.g. Google AutoML)

https://towardsdatascience.com/hyperparameters-optimization-526348bb8e2d
https://cloud.google.com/automl

Parameters and hyperparameters: an example

• You can think of a neural network as a multi-stage graph,
where edges are directed and weighted

• The model parameters (to be learned) are the weights of the edges

• The model hyperparameters (to be set prior to the training phase) are
the number of stages and the number of nodes in each stage

w=0,3

Common
methods for

hyperparameter
tuning

• Of course it depends on the specific ML
model and on the number of
hyperparameters

• This specific topic will be analyzed only in
labs

• Grid Search and Random Search are popular
methods. GS it is an exhaustive search of
the given hyperparameter space.

• For large number of hyperparameters,
practically unfeasible with standard
computational resources (other methods are
used) . To learn more, read here.

• Recent research area is meta-learning or
AutoML (a machine able to learn
automatically also its hyperparameters)

https://www.kaggle.com/willkoehrsen/intro-to-model-tuning-grid-and-random-search
https://www.automl.org/wp-content/uploads/2018/09/chapter1-hpo.pdf
https://arxiv.org/pdf/1908.00709.pdf,

Evaluation
It is important to estimate the «goodness» of a learned model
before we put it in operation

Evaluation is the process of estimating such «goodness»

The most common method is to learn the model on a fragment of
the original data (called training or learning set) , and evaluate its
performance on a sub-sample not used during training (test set).

Appropriate evaluation measures are also needed (accuracy,
precision, recall, AUC..)

Inappropriate measures can change the story quite a bit.. (as we
will see)

In real-life applications it is impossible to
learn «perfect» predictors

Classification errors Regression errors

MISCLASSIFIED

Classifiers may not identify perfectly the regions of each class; regressors can make erros in predicting past and future values of the

real (unknown) function.

Summary

1. Look for suitable data to learn to
solve a stated problem (disease
gene prediction, self-driving car..)

2. Clean and preprocess the data
3. Apply feature engineering

techniques
4. Choose a model (function type and

algorithm)
5. Choose model hyper-parameters

(parameter tuning)
6. Evaluate the performance (if not

satisfactory, start again at any of
previous points)

