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1. ML vrs traditional 
programming

2. The design cycle of ML 
systems

Data selection, preparation and pre-
processing

Model selection: types of ML algorithms

Model evaluation and fitting



Traditional Programming

Machine Learning

Computer
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Output

Computer
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Output

Program 
(Model)

Def: «A computer model is an abstract mathematic representations (some f(x) ) of a real-world event, system, behavior, or 

natural phenomenon (x).  A computer model is designed to behave just like the real-life system. »



Example

INPUT (DATA): 

Your web site

PROGRAM: 

Vulnerability management software

OUTPUT: 

List of vulnerabilities

INPUT (DATA): 

List of moves of 
chess game players

OUTPUT: 

Outcomes of games 
(win/defeat/parity)

PROGRAM (MODEL): 

A program that can play 
chess

Computer

Computer

Traditional Programming

Machine Learning



ML systems learn a (predictive, prescriptive, descriptive) MODEL either
from examples (historical data) or from experience

Historical data: tuple <xi, f(xi)>

xi : user, yi=f(xi) : his/her preference for a 

movie

Modello

y=f(x)

Model

y=f(x)

?5

«x» here is a vector of integers with empty values y here is the input were empty values are filled
f(x) is the function able to compute missing values
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Model selection:

• Traditional (non-

deep) models

• Deep models

Model fitting: 

Hyperparameter

optimization

Model generation

Model 

evaluation

ML systems: Design cycle

Designing/selecting a ML algorithm (able to learn a 

«model») is just one step of a very complex pipeline
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Data selection
and preparation

Which data, what for?

Where do I find my
data?

Are they ready for 
analysis? (usually NOT)



Which 
data, what 

for?

Data are the fuel of machine learning – the success of specific
algorithms often depends on the data they use (e.g., convolutional
neural netyworks are very effective on image data, long-short term
memory LSTM are tuned for sequential data like sensor signals, 
sequences of events..)

Not only the type of data matters, but also the quantity and quality, 
and how we represent it (e.g., how do we represent a free 
text?)

Often the same type of data can be represented in different ways 
(amenable for exploiting the features of different algorithms)

More often, heterogeneous types of data are needed (images, 
texts, tables..)



Example: medical
machine learning

• Several types of data
– Patients health records (sequences of diagnoses treatmets

clinical tests results)

– Info on medications/prescriptions and their effect (tables or 
texts)

– Behavioural data (signals from sensors)

– Social data (texts, images)

– Biological /genetic data (strings, networks)

– Clinical images 

• Several «formats»
– Tables (csv files)

– Graphs (matrixes)

– Sequences (values with timestamps)

– Unstructured, such as text, signals, videos, audio..

– …

• Other issues: privacy, representation standard, data 
quality, ethics & bias



Where do I 
find my
data?

• Lots of publicly available and legacy data:

– Social data (social networks, blogs): to mine user opinions, 
trending topics, market forecasts

– Sensors data (signals from devices e.g. vending machines, 
packages, wearable devices, sensor networks..): to detect 
anomalies (remember Magpie vaccines), learn trends..

– Clickstream data (cliklogs of web sites): for traffic and e-
commerce  analysis

– Environmental data (geolocations, metereological data): to 
produce recommendations, supply chain, market forecasts..

– Images, videos, signals (medical imaging,  landscapes, 
portraits): to detect anomalies, security, fraud detection.. 

– Audio (speech, sound): to mine opinions, fraud detection, 
environmental analysis



Are data ready 
for analysis?
(formatting
problems)

• Most of the time they are NOT: 
– not in a readily processable format, such as

images, signals, text
• Often heterogeneous data can be 

converted into a simplest form, such as
tables

• In some case, we can also process data 
«as they are» (e.g., pixels)

• «representation learning» is about
finding the best representation for our
data (given the objectives of data 
analytics) 

• Keep in mind: images are one of the 
«best» types of data, and the one on 
which deep algorithms work best. More 
recently, NLP systems got on the 
podium. But the world if full of other 
types of data (speech, human-entered
symbolic data, genetic data that have
the form of complex graphs..), and they
are dirty, incomplete, heterogeneous, 
inconsistent.. 

https://dl.acm.org/doi/10.1145/3331174


Tables (matrixes) are the «simplest» format – although very
rarely data are available in this ready-to-use format

Customer ID AGE INCOME EDUCATION DEFAULT

ID1 27 30.000 YES 1

ID2 50 45.000 NO 0

ID3 60 46.000 YES 0

……

ID1348 32 55.000 YES 0

Data set Features, attributes, dimensions, 

variables, descriptors….

Entity, Feature vector, Instance, 

Object, Record…

Class, prediction,

output..

Example: (excerpt of) historical data on bank customers who applied for credit. The «DEFAULT» attribute

tells us if they have been defaulters or non defaulters.  ML task is learning to predict future defaulters to inform about

the risk of granting a credit to a new customer.



Are data ready 
for analysis?
(cleaning and 

transformation)

Data may need a lot of cleaning 
(transformations):

• Get rid of errors, noise, missing values

• Removal of redundancies

• Check for bias and inconsistencies

Data may need a lot of preprocessing:

• Renaming

• Rescaling

• Normalization

• Discretization

• Abstraction

• Aggregation

• New attributes  (augmentation)

Will see later (data preparation pipeline) 
examples of data preprocessing



Feature 
engineering

The descriptors (features) of our data can be too many (e.g. the words of a 
document archive) in general, or for the objectives of our analysis; but they can 
also be too few

Feature identification and engineering is about finding the best descriptors

To reduce the number of features, we can use dimensionality reduction: 
algorithms to compress low level features into higher level «semantic» 
descriptors (e.g., from words to sentiment, from words to «meanings»..)

But we may also want to augment our data: so-called generative methods can be 
used for this purpose. For example, we have too few patient records for, say, some 
rare disease and we want to generate «realistic» synthetic data

Will see all that later



Example (feature identification)

Task: determine the “sentiment” of Twitter 
messages – we don’t’ need to consider all words!



Example 2 (feature identification)

If the task is recognizing frogs vrs lions, we don't need representing data at

the pixel level! A colour histogram would do..(Occam razor: entia non sunt
multiplicanda praeter necessitatem)



Model selection
• Remember: model learning= devising an 

algorithm (implemented with a program) to 
learn a function (the model)  y=f(x)  where x is 
an instance of input data

• What are the different types of ML systems?

• ML systems can be classified according to:

➢How they learn

➢What kind of function they learn



Classification
of ML 

algorithms

Types of learning (how
do we train?)

Types of 
predictions function (the 
model f(x)) we learn)



Classification 
of ML 

learning 
systems 

according to 
the training 

method

• Four categories of ML algorithms:

• Supervised (inductive) learning

• Learning from "teachers": Training data 

includes examples of (correct/desired) 

outputs

• Unsupervised learning

• Training data does not include output labels

• Semi-supervised learning

• Training data includes a few output labels

• Reinforcement learning

• Learning by doing: start with random 

strategies and adjust based on results wrt a 

stated objective



Supervised/Unsupervised/Reinforcement

Compare with 
the correct output

values

A program that, 
given a new (unseen, 

unlabeled) input, 
predicts the output 

label

A program that 
partitions input into 

clusters, and given an 
unseen instance, 

assigns it to one or 
more clusters

A program that, 
given a task (e.g. 

driving from A to B), 
provides a strategy
(set of actions) to 
execute it at best

Evaluation 
function

Input data paired 
with output labels

Input Input

f(x)

x x
x

f(x)f(x)f(x)f(x) f(x)



Classification
of ML systems 
according to 
the type of 

learned
function

y=f(x)

• Range of f(x) is DISCRETE ➔ Classifier

• Range of f(x) is CONTINUOUS ➔
Regressor

• Note: the domain of f(x) can be 
discrete or continuous or both if x 
is multivariate (x: x1,x2..xn)

• Furthermore:
– f(x) can be a logic, algebraic or 

probabilistic function



Classifiers/regressors

• Classifier: given input data, the 
system learns a categorical (e.g., 
boolean) function. For example, given
a (vectorial) representation of a  
patient, returns 0 if the patient is 
predicted not at risk of cardiovascular
event, 1 is at risk

• Regressor: given input data, the
system returns real value(s). For 
example, given a sequence of stock 
market values at time 𝑡1 𝑡2.. 𝑡𝑛, it is 
able to predict the value at 𝑡𝑛+1



x

y

y=f(x)

y= X , O  binary

x1

x2

x : <x1,x2>

f(x)

IF f(xi)>0 THEN X

IF f(xi)<0 THEN O

Examples

(training set)

X , O Examples

(training set)



(more on) Classifiers vrs Regressors
Output : DISCRETE

Objective: find decision boundary f(x)

Example: will the weather

tomorrow be CLEAR or CLOUDY? 

Output : CONTINUOUS

Objective: find best-fit curve f(x)

Example: what will be the

temperature tomorrow?

humidity

temperat

ure

humidity

temperat

ure

The term «predictor» indicates

either a classifier or a regressor



Example of binary classifier: movie reviews 
classification

• Points (training examples) are 
some geometric representation of 
a movie review (e.g. x=number of 
positive adjectives in the review 
and y= number of emoticons in the 
review).

• Colors are the classification labels 
(positive or negative) in the training 
data

• Once a model is learned (the 
decision boundary f(x), purple line), 
a new «point» (e.g., the red point 
in figure) is classified depending on 
its position wrt the boundary line 
(below➔negative, above
➔positive)



Financial forecasting: regressors

Input are the price values of a stock (black points), need to learn a function y=f(x) that predicts future values.

The blue line is the learned f(x), trained over historical data (black dots); the light blue strip model the uncertainty. The blue line 

Is «fitted» using past data, and then can be used to predict the future trend (circled area)



Binary vrs 
Multi-class 

classification



The 3 phases of supervised ML

Input data ML Algorithm Model TRAINING PHASE

Test 

data
Model predictions evaluation TESTING PHASE

Model

New 

data
Model predictions PREDICTION 

(OPERATIONAL) PHASE



During the prediction phase, the model computes a function 
f(x) that, given an instance x (in our case, a patient with its 
descriptors), generates a label y = f(x) for example, a risk 
probability

Example: cardiovascular risk prediction 
(is a patient at risk of a heart attak?)

During the training phase, a machine learning algorithm use
historical data on past patients’ visits and diagnoses (the training 
set) to learn a classification model.

Machine 
Learning

Algorithm

MODEL



Supervised Learning: formal definition
• Given examples (xi,yi) of an unknown function y = f(x) 

Learn f(x) to predict its values for unseen examples x

➢If f(x) is discrete: Classification Problem

➢If f(x) is continuous: Regression Problem

➢If f(x) represents a Probability (continuos and 0<=y<=1): 
Probability Estimation

f(x)= yesf(x)= 1,307Pr(f(x)= yes)=0.67Input with labels
Sup.
ML

Note: we don’t know the 
function, of course, but 

only the VALUES for 
selected input!



Unsupervised 
ML
• In unsupervised learning, data are 
unlabeled. No “ground truth” is 
provided for the output. One common 
type of unsupervised learning is 
clustering. The algorithm must learn 
a model to group instances according 
to their “similarity”. Groups are called 
“clusters”.

• During the training phase, the 
system learns the clusters  
(model)

• During the prediction phase, the 
system assigns any new, unseen 
instance to a cluster (output is a 
class label, or a probability)

• Problem is testing: no ground 
truth, so usually a number of 
cluster quality measures are used



Clustering is a hard task

• Often, data cannot be easily separated (especially multi-dimensional data)



Example: group people 
according to their traits

• Far more complex 
than supervised 
learning

• What means “similar”?

• How many groups can 

we have?
Very ill-formed problem:
There are several ways of grouping depending on 
the chosen similarity function
(e.g. Bold/hairy, female/male, hair color, age, etc.)



Are they similar?



Reinforcement 
learning: a.k.o. 

“loosely” supervised 

• The objective is to learn 
a “policy” or strategy to 
act in an environment

• No examples. Try and test

• The “agent” learns guided by 
rewards/penalties 
(rewards/penalties are a.k.o. 
training information)



Example: robot learn to interact 
with dangerous environments



Parameters and 
Hyperparameter

optimization

• Learning = optimization problem The idea is to learn 
a function that minimizes an error function (often 
called «loss») over labeled data (supervised ML), or 
one that maximizes some similarity function 
(clustering) or rewards over penalties 
(reinforcement).

• A model parameter is a configuration variable that is 
internal to the model and whose value can be 
estimated from available data during the training 
phase (example: the order of tested features in 
a decision tree).

• A model hyperparameter is a configuration variable 
that is set prior to creating a model (example: the 
number of neurons in a layer or the number of layers 
in a deep NN)

• Given a selected predictive algorithm (e.g., 
convolutional neural networks, or decision trees..), 
during the learning phase, parameters and hyper-
parameters need to be optimized (=set to the value 
that produces the best performance in prediction)

• While parameter learning is achieved during the 
training phase  (model generation), hyperparameters 
must be set prior to this phase. Different 
hyperparameters may lead to different models, 
with different performances. 



Learning: 
hyperparameter 

tuning (model 
fitting)

• Hyper-parameter is a parameter whose value must be set 
before the learning process begins. For example, the 
maximum depth of a decision tree, the number of hidden 
layers in a neural network, the type of loss function, the type 
of similarity function in clustering, etc.

• Hyperparameters determine how our model is structured in 
the first place

• Hyper-parameters can significantly impact on 
performance:

➢Suitable hyper-parameters must be determined for each 
task

➢Needed in both supervised and unsupervised learning

• need for disciplined and automated optimization methods
(greed search, Bayesian optimization, etc..)

• Auto-ML (meta-learning)  tries to automatize this process 
(see, e.g. Google AutoML)

https://towardsdatascience.com/hyperparameters-optimization-526348bb8e2d
https://cloud.google.com/automl


Parameters and hyperparameters: an example

• You can think of a neural network as a multi-stage graph, 
where edges are directed and weighted

• The model parameters (to be learned) are the weights of the edges

• The model hyperparameters (to be set prior to the training phase) are 
the number of stages and the number of nodes in each stage

w=0,3



Common 
methods for 

hyperparameter 
tuning

• Of course it depends on the specific ML 
model and on the number of 
hyperparameters

• This specific topic will be analyzed only in 
labs

• Grid Search and Random Search are popular
methods. GS it is an exhaustive search of 
the given hyperparameter space. 

• For large number of hyperparameters, 
practically unfeasible with standard 
computational resources (other methods are 
used) . To learn more, read here.

• Recent research area is meta-learning or 
AutoML (a machine able to learn
automatically also its hyperparameters) 

https://www.kaggle.com/willkoehrsen/intro-to-model-tuning-grid-and-random-search
https://www.automl.org/wp-content/uploads/2018/09/chapter1-hpo.pdf
https://arxiv.org/pdf/1908.00709.pdf,


Evaluation
It is important to estimate the «goodness» of a learned model 
before we put it in operation

Evaluation is the process of estimating such «goodness»

The most common method is to learn the model on a fragment of 
the original data (called training or learning set) , and evaluate its
performance on a sub-sample not used during training (test set).

Appropriate evaluation measures are also needed (accuracy, 
precision, recall, AUC..)

Inappropriate measures can change the story quite a bit.. (as we 
will see)



In real-life applications it is impossible to 
learn «perfect» predictors

Classification errors Regression errors

MISCLASSIFIED 

Classifiers may not identify perfectly the regions of each class; regressors can make erros in predicting past and future values of the 

real (unknown) function. 



Summary

1. Look for suitable data to learn to 
solve a stated problem (disease 
gene prediction, self-driving car..)

2. Clean and preprocess the data
3. Apply feature engineering 

techniques
4. Choose a model (function type and 

algorithm)
5. Choose model hyper-parameters               

(parameter tuning)
6. Evaluate the performance (if not 

satisfactory, start again at any of 
previous points)


