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The ML pipeline



Issues with data

What data? Where can I find it?

What type of data? Several classification 
dimensions (sequential/non sequential; 
symbolic/continuous; structured/unstructured)

How to represent/transform  my data (especially for 
unstructured data, such as images and texts)? 
➔feature transformation and engineering

How to «clean» my data: noise, missing elements, 
unbalanced distributions, feature selection and/or 
augmentation



Data pre-
processing

So far we assumed input data to be available in some form 
(feature vectors, pixel matrixes, graphs, sequences of 
continuous or discrete values)

However finding the appropriate data for a given problem is a 
relevant task, not always data is available.
Furthermore, data can be “not ready” for analysis and needs 
lots of cleaning and transformation (a process often called ETL, 
extraction transformation and load)

Therefore the responsibility of a machine learning engineer is:
➢Setting up the correct problem to be solved/optimized 

(this is far from straightforward in the real world, often 
requires expert knowledge deepending on application 
domain)

➢Identifying/Designing/extracting/representing  
relevant variables (features) to predict the unknown 
variable(s)

➢Finding relevant data  from which features can be 
extracted

➢Choosing a learning algorithm (or a family of algorithms)



From scratch 
or from 

available 
data?

• Ex 1: you have a problem (e.g., Huber 
wants to optimise the use of electric
bikes in a city) but you don’t know 
which types of data can be useful for 
your prediction and where to find them;

• Ex 2: you are given a dataset (e.g. 
patients health records on diabetes in a 
country) and a problem (early 
prediction of coronary complications). 
Are the attributes in your EHR dataset 
all useful? Do you need more/less data?



The data workflow
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Problem analysis and feature identification

• Given a ML problem (e.g. image classification, patient disease prediction, 
predicting successful football players..) often the very first issue is:  Which
kind of information would be helpful to accomplish the task? And where
can I find it?

• Often this is preliminary and more crucial than finding and processing the 
information, once available.

• Often there is not a SINGLE source of information, data may come from 
different sources, data can be 

• heterogeneous (structured, unstructured; csv, images, texts, signals) 

• semantically diverse (business data, social, metereological, traffic, health…) and 

• available from different sources (legacy data, open data, web data..)



Example 
problem 

analysis 1: 
Uber bike 

sharing 
optimisation

Task: Surge pricing- These algorithms 
monitor traffic conditions and journey 
times in real-time to predict and 
suggest prices as demand for rides 
changes, and traffic conditions mean 
journeys are likely to take longer.

Which variable should be predicted? 
Task is predicting the best price 
dinamically, optimizing global revenue



Dynamic pricing



Which data?

• Uber uses a mixture of legacy and 
external data to dynamically generate fares:

– street traffic data, 

– GPS data (preferred routes by users)

– external data like public transport
routes and weather data

– Historical data on users (from apps)

– User opinions (from social networks)

• Hetherogeneous data, from multiple sources: 
need preprocessing and integration before
they can be transformed into some of the 
«known» formats (vectors, matrixes, 
sequences..)



Example 
problem 

analysis  2

• The transfer fees of football players are getting 
higher and higher each year.

• Can ML help in predicting these values?

➢Problem 1  (feature identification):

Which information can support the decision 
system?

➢Problem 2  (data collection):

Where do I find the data?

➢Problem 3 (feature engineering):

Are my data ready for processing?



Let’s play: which features would
you use?



Using domain 
knowledge 

and 
open data 

sources we 
may come out 

with this 
(possible) list 
of relevant 
features: 

• Features (for each player):

➢Player’s basic information: team, age, height, 
weight. 

➢Market information: transfer fee, former team, 
duration of the contract, when the player joined the 
team, . . . 

➢Performance information: on-pitch time, 
actions at the ball, fouls, scores.

• But now the question is: Where can we find this data?

• Data sources:  Transfer Market, WhoScored, European 
Football Database, and Garter 



Finding good 
data sources

• Data can be legacy data of a 
company/entity

• Lots of open source data are 
available on the web

• Lots of data repositories on line 
(Kaggle perhaps the most well
known, but many other)

• In the era of big data finding data is
not the main problem. But we have
another problem: real world data are 
NOT ready for use!



Using on-line info (ex, web data)  is far from 
being easy (often you need scarpers..)

Whoscored: https://www.google.com/



Raw data: The dream



Raw data: The reality



A lot of cleaning and transformation is needed before
data are truly useful

Machine learning systems are  only as

good as the  data you feed it



Feature 
Engineering: 

3 related 
tasks

Feature Extraction:
Transformation of raw data (e,g, text) 
into features suitable (e.g., numbers) 
for processing

Feature Transformation:                                
Transformation of data to improve the 
accuracy of the algorithm (e.g., 
normalization, scaling..)

Feature Selection:                                                  
Removing unnecessary features



Feature 
extraction

• In practice, data rarely comes in the form of 
ready-to-use feature-value matrices (as for the 
decision-tree and perceptron examples). 

• That's why every task begins with feature 
extraction. Sometimes, it can be enough to 
read the CSV file and convert it into an array, 
but this is a rare exception. 

• Popular types of data from which features can 
be extracted:

➢Texts

➢Images

➢Geospatial data

➢Date and time 

➢Time series, web data, etc.



1. Text

• Text is pervasive: web pages, social media messages, 
news, diagnostic reports, release notes..

• The first step is tokenization, i.e., splitting the text into 
units (hence, tokens).

➢“Before working with text, one must tokenize it”     
before,working,with,text,one,must,tokenize,it

• Next, stemming or lemmatization to normalize tokens 
(recent approaches avoid stemming):

➢befor,work,with,text,one,must,stem,it

• Finally, text encoding (bag of words is the simplest):

➢Build a vocabulary over all words in all documents 
(now dense word representations are used, called 
embeddings)

➢Encode every document in a sparse vector di where 
dij=1 iff word j of vocabulary is in di, else dij=0



1. Text:   
Example of text encoding

From free text to a list of tokens

Create a vocabulary ordering all tokens

The «simplest» document encoding strategy

assigns a binary value for presence absence

of a word in the document



1. Text: 
single words can be assigned a vector

representation, so-called one hot encoding

Dimension of the vector equals the dimension of the vocabulay. Here we assume a simple 7-words vocabulary



1. Text: 
Embeddings

• State of the art approach for text representation 
is word embeddings

• More in NLP courses, however, the idea is that
words, rather than being represented as a
binary value (or a real value, or a binary vector)
in a “sparse” document space with |V|
dimensions, are represented as “dense”
numeric vectors in a “reduced” semantic space

• Words with “close” vectors are 
(semantically) similar

• A survey on word embedding methods

https://ieeexplore.ieee.org/document/10100347


Sparse and dense representations



Word2vect embeddings: 2 training methods

• CBOW: given a context, learn
predicting a word;

• Skip-gram: given a word, learn
predicting the context

• In both cases, the result of 
training is an «encoder» able to 
associate to word’s one-hot 
vectors a «dense» representation, 
named embedding. 



Dense 
representations 
capture the 
«essence» of 
word meanings

Semantically similar words 
are closer in a “latent” space



Words are “projected” 
onto latent semantic 
spaces 

• The «dense» dimensions are “latent” 
(hidden) and learned by looking at word 
contexts. However, the meaning of 
dimensions is not explicit! (black boxes)

• NOTE: We are unaware that 
dimension 1 is, e.g., “royalty”.  

• Learned dimensions depend on the 
source texts used for learning – kings, 
queen, and princesses have different 
vectors if learned from fairy tales or 
gossips newspapers!



Example of embeddings



More on embeddings

• Embeddings are now widely applied not only to textual data 
but to any vectorial representation of data (including images 
and graphs)

• They capture «latent» similarities in the data and allow better
generalization during the learning phase

• They also «compress» the representation of data items since
they project surface features into a «denser» semantic space
(see later on dimensionality reduction)

• More here

https://cloud.google.com/architecture/overview-extracting-and-serving-feature-embeddings-for-machine-learning


2. Images
• Images are usually represented at the 

pixel level
• Note that the entire pipeline of a CNN 

(except for the final classification 
layer) can be regarded as a way to 
compress the features of an image 
into a more compact representation.

• Even in this case, the 
latent “semantics” discovered
by hidden layers is not available!



2. Images

• Nevertheless, we should not focus too 
much on neural network techniques. 
Simpler features are still very useful for 
image representation

• For example, to «predict» if an image 
represents a lion or a frog, a cromaticity 
histograms is more than enough! 



3. Geospatial 
data



3. Geospatial 
Data

• Geospatial data are very useful in many 
applications where location is relevant 
(e.g. recommender systems, and many 
other location-dependent optimization 
problems, e.g., supply chain management)

• Geospatial data is often presented in the 
form of addresses or coordinates (latitude, 
longitude) 

• Depending on the task, you may need two 
mutually-inverse operations: 
➢Geocoding  (recovering a point of 

interest from an address) 
➢Reverse geocoding (recovering an 

address from a point).
• Both operations are accessible in practice 

via external APIs from Google Maps or 
OpenStreetMap. 



3. Geospatial 
Data

CAVEAT:
• Textual addresses may contain typos, 

which makes the data cleaning step 
necessary (see later). 

• Coordinates contain fewer misprints, but 
its position can be incorrect due to GPS 
noise or bad accuracy in places like 
tunnels, downtown areas, etc. 

• If the data source is a mobile device, the 
geolocation may not be determined by 
GPS but by WiFi networks in the area. 
While traveling along in Manhattan, there 
can suddenly be a WiFi location from 
Chicago.



4. Time 
series

• Sequential data are quite common  (e.g. stock market 
data, personal patient records (trajectories),  sensor 
data..)

• In many cases, before you can feed your ML system with 
time series data,  you need to eliminate trends, to 
average over selected time spans, and to normalize
(especially if you have different types of time series in 
your data).

Example: these time series of «umbrella sales» behave similarly, however without

normalization, the similarity cannot be captured.

https://machinelearningmastery.com/time-series-trends-in-python/


4. Times 
series:  

extracting 
features

• There are libraries (link) to automatically extracts a large 
number of time series features.

http://tsfresh.readthedocs.io/en/latest/


5. Other 
domains

In other domains, you can come up 
with your features based on intuition
about the nature of the data, based
on available information, and the 
classification/regression task that has
been set

But almost NEVER your data are 
«ready-to-use»!



Feature 
Engineering: 

3 related 
tasks

Feature Extraction:
Transformation of raw data (e,g, text) 
into features suitable (e.g., numbers) 
for processing

Feature Transformation:                                
Transformation of data to improve the 
accuracy of the algorithm (e.g., 
normalization, scaling..)

Feature Selection:                                                  
Removing unnecessary features



Feature 
transformation 

methods

1. Normalization 

• Scaling and centering, Change of bases, 
Categorical to numeric…

2. Missing values

• Removal, regression imputation, k-neares 
neighbours…

3. Data augmentation (add more features)

4. Imbalanced categories

• Oversampling, undersampling, smote, anomaly 
detection, cost-sensitive learning



Normalization 
and 

changing 
distribution

• Certain algorithms –and platforms-
require a specific format for data 
(E.g., decision trees allow for 
categorical data, other methods do 
not)

• Similarly, some algorithms suffer for 
unbalanced scaling of features 
(e.g. one feature with range [0,1] 
and others                                                                
with range [-10000.. +1000..])



Normalization: 
Scaling & 
Centering

• The reason for centering and scaling is that it places 
all features on equal standing. 

• Some ML algorithms project instances onto a multi-
dimensional space and examine the distances 
between different data points (e.g., clustering). In 
such methods, features with large absolute 
differences in values will be more important (will 
“affect” more than others the computation of 
distance). 

• Yet generally such absolute differences in values 
reflects nothing more than the metric chosen to 
measure the variable, and a priori it is 
unreasonable that one variable should be more 
important than others



Example: predicting the sell price of 
houses Here , the 

feature
“number of 

rooms” does
not allow any

useful
separation
between

datapoints



Feature normalization also helps gradient
descent converge faster!
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2w Loss L
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Credits: https://speech.ee.ntu.edu.tw



Why gradient converges faster with normalized
features

• Remember the «basic» weight updating rule:

∆𝑤𝑖𝑗 = 𝜂
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤𝑖𝑗
= 𝜂𝛿𝑗

𝜕(𝑛𝑒𝑡𝑗)

𝑤𝑖𝑗
= 𝜂𝛿𝑗𝑥𝑖

• Larger signals travelling on a synaptic connection cause 
greater updates

• This applies both to input features and to the features 
computed in the internal layers of a deep NN



Feature Normalization 

…
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𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝒓 𝒙𝑹

• compute mean: μ𝑖

• compute standard 
deviation: 𝜎𝑖
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With normalized values, the 
means of all dimensions 𝑖 are 0, 
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Note: we are «forcing» a gaussian distribution of all features
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Feature 
Normalization

෥𝒙𝟏

෥𝒙𝟐

෥𝒙𝟑

Also need 
normalization

Different dimensions have different ranges.

Also difficult to optimize 

In deep architectures normalization is needed also in the internal
layers

Credits: https://speech.ee.ntu.edu.tw



Batch normalization (2 steps)

𝑊1
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Credits: https://speech.ee.ntu.edu.tw

𝜷 and𝜸 hyperparameters



Why batch normalization works

• It normalizes not only the input features but also further values in the 
hidden units to take on a similar range of values that can speed up 
learning (faster gradient descent, as we have seen).

• The second reason why batch norm works, is it makes weights, later or 
deeper in the network you have, more robust to changes of weights in 
earlier layers of the neural network (eg. in layer one). 

• What batch norm ensures is that no matter how the parameters of the 
neural network update, their mean and variance will at least stay the 
same mean and variance, causing the input values to become more stable

49



Gradients 
with batch 
norm are 
smoother

https://towardsdatascience.com/batch-norm-explained-visually-why-does-it-

work-90b98bcc58a0



Normalization: 
Changes of 

Bases

• Input features values are usually 
distributed according to some 
distribution, e.g., a normal (Gaussian) 
distribution for continuous variables

• The “skewness” is an asymmetry in a 
statistical distribution, in which the 
curve appears distorted or skewed 
either to the left or to the right

• Skewness can be quantified to define 
the extent to which a distribution 
differs from a normal (Gaussian) 
distribution



Skewed data example

• If data are «skewed» the 
tail region may act as an 
«outlier» for the model and 
outliers may adversely affect
the model's performance, 
especially regression-based
models - since the «most
common» data may no 
longer be around the mean. 

Outliers: instances that are 

significantly "diverse" from 

average population



Normalization: 
Changes of 

Bases

• To reduce the skewness of the 
distribution of a feature’s values
in a dataset, we can perform a log 
transformation

• For more “sparse” distributions, 
other more complex methods are 
possible (e.g.  qqnorm). 



Example

The original distribution of values
and the distribution after applying 

a log transformation 



Normalization: 
Categorical 
into numeric

• Certain features can take categorical values 
(e.g., Spotify dataset:  artist, track name..). 

• Categories may be nominal (sport, politics, 
finance..) or ordinal (e.g., dates or weekdays). 
Ordinal levels follow a logical order. In 
nominal categories often there is no order 
(e.g., city names)

• Some algorithms do not accept categorical 
data, therefore we need some 
transformation. 



Normalization: 
Categorical into numeric

• One-hot encoding is the default way of turning
categorical data into numeric. With this method, we
encode the categorical variable as a one-hot vector,
i.e. a vector where only one element is non-zero, or
"hot".

• With one-hot encoding, a categorical feature
becomes an array whose size is the number of
possible choices for those features. With N values,
the dimension of the vectors is N

One hot encoding



Normalization: 
Categorical 
into numeric

• However, if N is large, one-hot encoding may 
be a bad idea.

• Another approach to encoding categorical 
values is to use a technique called label 
encoding. Label encoding is simply 
converting each categorical value to a 
number

• But, in those algorithms where the “weight” of 
each attribute value matters (regressors), 
label encoding introduces an unjustified bias 
towards higher values

• An intermediate alternative is label 
binarization which introduces log2(N) values.



Example 
(label and binary encoding)

Binary encoding

label encoding



Feature 
transformation 

methods

1. Normalization 

• Scaling and centering, Change of bases, 
Categorical to numeric…

2. Missing values

• Removal, regression imputation, k-nearest 
neighbours…

3. Data augmentation (add more features)

4. Imbalanced categories

• Oversampling, undersampling, smote, anomaly 
detection, cost-sensitive learning



Missing values

• Real-world data often has missing 
values

• Data can have missing values for 
several reasons such as observations 
that were not recorded or data 
corruption

• Handling missing data is important 
since many machine learning 
algorithms do not support data with 
missing values (or they perform worst, 
or a particular feature is useful and we 
would like to recover the most of what 
we have)



Missing values

The first thing to do is to count how many missing
values you have and try to visualize their
distributions (methods are provided e.g. see the
missingno package in Python). The white 

spaces are 
missing 
values



Missing 
values

• The simplest thing to do is the 
removal of instances with missing 
values (if missing <10%), or removal of 
the attribute (if missing >50%). This is 
rather brute-force, since we loose 
information.

• For numerical values, a standard and 
often very good approach is to 
replace the missing values with 
mean, median or mode in the entire 
distribution of values for a given 
feature

• With categorical values, the standard 
is to replace with the most probable 
value 

(although it might be dangerous..)



Missing values: 
better methods

• Correlation matrices
among features can help to 
design the regression
model (what are the most
helpful features that could
predict the missing value of 
a feature)

Regression imputation: 
A regression model is 
estimated to predict the 
observed values of a feature 
xj based on other features 
(xk..xn), and the model is 
then used to impute values
where that variable is 
missing. (we can use a NN)



Missing values: 
other methods

• Imputation with K-
Nearest Neighbours:
If j-th feature xj

i is
missing on instance xi, 
we can consider the K
most similar instances
that have no missing
value in j-th feature.

• Then impute the
missing value with the
most frequent value
(the mode) amongst
the j-th features of
these K instances.



Feature 
transformation 

methods

1. Normalization 

• Scaling and centering, Change of bases, 
Categorical to numeric…

2. Missing values

• Removal, regression imputation, k-nearest 
neighbours…

3. Data augmentation (add more features)

4. Imbalanced categories

• Oversampling, undersampling, smote, anomaly 
detection, cost-sensitive learning



Feature  
Augmentation

• Feature  augmentation refers to methods that 
add more features to available data

• The objective is enhancing the quality of 
models by adding informative features to the 
original data

• For image data-sets, you can rotate, scale, 
translate, interpolate

• For other types of datasets, you can add new 
features that can be inferred from other 
features

• For example, in a database of football 
matches, you may want to add for each team 
the time elapsed between the current match 
and the last victorious match

• Note: adding new features is different from 
adding more data, an issue that we consider 
next



Feature 
transformation 

methods

1. Normalization 

• Scaling and centering, Change of bases, 
Categorical to numeric…

2. Missing values

• Removal, regresion imputation, k-neares 
neighbours…

3. Data augmentation (add more features)

4. Imbalanced categories

• Oversampling, undersampling, smote, anomaly 
detection, cost-sensitive learning



Imbalanced Categories

• Class imbalance is when each class does not make up 
an equal portion of your data-set

• For example, suppose you have two classes—A and B 

• Class A is 90% of your data-set and class B is the other 
10%, but you are most interested in identifying 
instances of class B

• You can reach an accuracy of 90% by simply predicting 
class A every time, but this provides a useless classifier 
for your intended use case



Why 
imbalance is 

a critical 
issue

• Receiving significantly more examples from 
one or more classes, the model could be 
biased towards those particular classes; 

• In some cases, models trained on unbalanced
datasets could actually completely ignore the 
minority classes.

• There are cases where we are actually
interested in predicting the minority class, e.g. 
risk prediction (in health, fraud, and other 
applications) and in all anomaly detection
applications (behavioural anomalies, fake news 
detection..)



Imbalanced 
Categories:  
Sampling

Sampling: A simple way to fix imbalanced data-sets is 
simply to balance them, either by oversampling instances 
of the minority class or undersampling instances of the 
majority class



Disadvantages 
of under/over 

sampling

• Undersampling may discard potentially
useful data;

• Oversampling creates exact copies of 
existing examples and may cause 
overfitting;

• Another disadvantage of oversampling is 
that increasing the number of training 
examples also increases the learning time.



Imbalanced Categories:
SMOTE

A more powerful sampling method is SMOTE  Synthetic 
Minority Oversampling Technique , which creates new 
instances of the minority class by forming convex 
combinations of neighboring instances (link).

• As the graphic shows, it effectively draws lines 
between minority points in the feature space and 
samples along these lines.

• If features are categorical, SMOTE can’t be used. 
Recent data augmentation approaches relate on 
generative methods such as   GANs that may be 
also applied to sequential data.

convex combination is a linear combination of points where all

coefficients are non-negative and sum to 1.

https://www.researchgate.net/publication/220543125_SMOTE_Synthetic_Minority_Over-sampling_Technique
https://www.researchgate.net/publication/361298537_Efficient_Approaches_for_Data_Augmentation_by_Using_Generative_Adversarial_Networks


Example of re-
sampling with 
SMOTE



Imbalanced Categories:
Anomaly Detection

Anomaly Detection: we assume that there is a “normal”
distribution(s) of data-points, and anything that sufficiently
deviates from that distribution(s) is an anomaly.

• When we reframe our classification
problem into an anomaly detection
problem (see lesson on denoising
autoencoders) where we treat the
majority class as the “normal”
distribution of points, and the
minority as anomalies

• We can also simply ignore
anomalies (however, it depends on
the application: if anomalies are,
e.g. fraudulent behaviors, then this
is exactly what we may be looking
for!)



Imbalanced Categories:
Cost-Sensitive Learning

In regular learning, we treat all misclassifications equally
(regardless of the class which is misclassified), which causes
issues in imbalanced classification problems, as there is no extra
reward for identifying the minority class over the majority class.

• Cost-sensitive Learning: Cost-sensitive learning changes this,
and uses a function C(p, t) (usually represented as a matrix)
that specifies the cost of misclassifying an instance of class t as
class p.

• The algorithm, in the attempt
of minimizing the cost of
wrong decisions, will pay
more attention to the minority
elements



Feature 
Engineering: 

3 related 
tasks

Feature Extraction:
Transformation of raw data (e,g, text) 
into features suitable (e.g., numbers) 
for processing

Feature Transformation:                                
Transformation of data to improve the 
accuracy of the algorithm (e.g., 
normalization, scaling..)

Feature Selection:                                                  
Removing unnecessary features



Feature Selection
How many? Are there enough? Are there too many?

• For any ML task, we can easily come up with thousands
of features and extract them from various external 
sources.

• However, the number and complexity of needed
features often depend on the specific task addressed

• For example, if you need to 
distinguish city landscapes
from mountain landscapes
you don’t need pixel features 
(a color histogram would do)



Feature 
Selection

• In many practical cases, one may come out with 
very many– potentially useful features (so the 
“too many” is the most frequent case)

• Not easy to say what is truly useful, nor if some 
features are correlated:

➢Adding many potentially correlated features 
can decrease model performance

➢“Too many” features make models less 
interpretable and less generalizable

• So, we need automatic tools for feature 
selection (filtering) 



Feature selection: why it is important

• Ovals represent the (hidden, i.e. unknown) space of positive (squares) and negative 
(circles) examples

• Dashed lines are the "models" (classification functions learned from available data,  
that separate positive examples from negative)

• In the reality, as shown by the figures above,  only feature x1 is useful to predict the 
class value of examples (Figure i) but given the examples, a ML algorithm may come 
out with any of the 3 models (i) (ii) and (iii). However, model (ii) and (iii) would NOT 
generalize on unseen instances

• For example, istance will be mistakenly predicted as negative by model (ii) and 
instance would be mistakenly predicted as positive by model (iii)



Feature 
Selection 

Since the exhaustive search for an 
optimal feature subset is infeasible in 
most cases, many search strategies 
have been proposed in the literature, 
often classified in three types:

➢Filter Methods (A)

➢Wrapper Methods (B)

➢Embedded and hybrid methods (C)

➢To learn more: link

https://heartbeat.fritz.ai/hands-on-with-feature-selection-techniques-an-introduction-1d8dc6d86c16


Feature 
Selection vrs 

dimensionality 
reduction

• Feature selection is basically a process that selects
and excludes some features without
modifying them at all.

• The other strategy is Dimensionality reduction that
modifies or transforms features into a lower 
dimension, creating a whole new feature space that
looks approximately like the first one, but smaller in 
terms of dimensions.

• You will familiarize with some «classic»  
dimensionality reduction strategies (e.g., matrix
factorization, principal component analysis) in other 
courses

• As far as ML methods are concerned, Deep 
encoders are a way to reduce the dimensions of a 
feature set, projecting input vectors onto a latent
space.

• Note that also ensambles inherently limit the 
negative effect of irrelevant features, but they do 
not explicitly remove or replace them. 



Feature 
Selection:
A)   Filter 
Methods

• Filter methods select features based on a 
performance measure regardless of, and prior 
to,  the employed data classification 
algorithm

• Only after the best features are found, the ML 
algorithms can use them



Feature 
Selection:
A)   Filter 
Methods

• We can roughly classify the developed 
measures for feature filtering into: 
information, distance, consistency, 
similarity, and statistical measures

• Furthermore:

➢ univariate filters evaluate (and 
usually rank) a single feature

➢multivariate filters evaluate an 
entire feature subset



A list of 
common 
filter 
methods



Examples of filters: RELIEF

• Information Gain (information, univariate: we have seen it in DT)

• Relief(F) (distance, univariate): consider all features as independent ones and estimate the relevance
(quality) of each feature based on its ability to distinguish instances located near each other, but
belonging to different classes:
➢The algorithm iteratively selects a random instance x and then searches for its two nearest

neighbors in D: the nearest hit (from the same class, e.g., negative) and the nearest miss (from a
different class).

➢For each feature value xi of x, the estimation of the quality of the i-th feature (weight Wi) is updated
depending on the differences between the current instanceand its nearest hit and along the
corresponding feature i axis.

➢The weight Wi increases if the value of the near miss is «far» and the value of the near hit is «close»
➢The rationale is: to what extent this feature is able to differentiate two instances belonging to different

classes?
➢Several measures to compute difference (euclidean distance, Manhattan distance..)
➢Only good for numeric features



Relief 
Example



Correlation-
based 

feature 
selection

• Based on the following principles: If two or more variables
are correlated, only one can be selected 

• Spearman correlation, 𝜒 − 𝑠𝑞𝑢𝑎𝑟𝑒 test are common 
methods to identify correlated variables (and remove the 
dependent variable)

• Heatmaps can graphically identify correlation between
variables

https://www.sagepub.com/sites/default/files/upm-binaries/33663_Chapter4.pdf


Feature 
Selection 

Since the exhaustive search for 
optimal feature subset is infeasible in 
most cases, many greed search 
strategies have been proposed in the 
literature, often classified in three 
types:

➢Filter Methods (A)

➢Wrapper Methods (B)

➢Embedded and hybrid methods (C)

➢To learn more: link

https://heartbeat.fritz.ai/hands-on-with-feature-selection-techniques-an-introduction-1d8dc6d86c16


Feature 
Selection:

B)   
Wrappers

• Wrappers evaluates feature subsets by the quality of 
the performance on a specific ML algorithm, which is 
taken as a  “black box” evaluator



Feature 
Selection:

B)   Wrappers

• Thus, for classification tasks, a wrapper 
will evaluate subsets of features based on 
a ML method performance (e.g. 
Regression Trees or  Neural Networks)

• The evaluation is repeated for each 
subset, and the subset generation is 
dependent on the search strategy, in the 
same way as with filters  (e.g., random)

• Wrappers are much slower than filters in 
finding sufficiently good subsets because 
they depend on the considered algorithm



Feature 
Selection:

B)   Wrappers 
Methods

• Recursive feature elimination

• Sequential feature selection 
algorithms

• Genetic algorithms



Feature Selection:
Sequential feature selection algorithm

The task: Say we have features A, B, C, and a classifier M.
We want to predict T (the class) given the smallest
possible subset of features {A, B, C} while achieving
maximal performance (accuracy)

FEATURE SET CLASSIFIER      PERFORMANCE

{A,B,C}                  M 98%

{A,B} M 98%
{A,C}                   M 77%
{B,C} M 56%

{A}          M 89%

{B}                     M 90%

{C}                     M 91%

{.} M 85%



The set of all subsets of features is the power set and its
size is 2|V|. Hence for large V, we cannot do this
procedure exhaustively; instead, we rely on a heuristic
search of the space of all possible feature subsets.

{} 85

{A} 89

{B} 90

{A,B} 98

{A,B,C}98

{C} 91

{A,C} 77

{B,C} 56

start

{A,B}98

{B,C}56

{A,C}77
end

Feature Selection:
Sequential feature selection algorithm



A common example of heuristic search is hill climbing: keep adding
features one at a time until no further improvement can be achieved.
Evaluation is based,e.g., on a lookahead of one step.

{} 85

{A} 89

{B} 90

{A,B} 98

{A,B,C}98

{C} 91

{A,C} 77

{B,C} 56

start

{A,B}98

{B,C}56

{A,C}77
end

Feature Selection:
Sequential feature selection algorithm

Greedy search: Add a feature 
and evaluate performance, 

then select best (local) choice 

Numbers are «some»

performance measure, 

e.g., accuracy 98%



Feature 
Selection 

Since the exhaustive search for 
optimal feature subset is infeasible in 
most cases, many search strategies 
have been proposed in the literature, 
often classified in three types:

➢Filter Methods (A)

➢Wrapper Methods (B)

➢Embedded and hybrid methods (C)

➢To learn more: link

https://heartbeat.fritz.ai/hands-on-with-feature-selection-techniques-an-introduction-1d8dc6d86c16


Feature 
Selection:

C)   
Embedded 
methods

Embedded methods perform feature selection during the 
execution of the ML algorithm.

• In contrast with filter (a)  and wrapper (b) approaches, in 
embedded methods (c) the features selection part can not be 
separated from the learning part.

• Most embedded methods are model-dependent, i.e. they are 
specifically designed for the class of ML algorithms chosen



Feature 
Selection:

C)   
Embedded 
methods

• Any and all embedded methods work as
follows:

– First, these methods train a machine 
learning model.

– They then derive feature importance
from this model, which is a measure 
of how much is each feature 
important when making a prediction.

– Finally, they remove non-important
features using the derived feature 
importance.



Embedded 
methods (2)

1. The most Common embedded technique are the 
tree-based  algorithms like Random Forest.

2. Tree-based  algorithms select a feature in each 
recursive step of the tree growth process and 
divide the sample set into smaller subsets. 
Topmost features in the tree are the most 
relevant, as we have already learned.

3. Other Embedded Methods are regularization 
methods, such as the LASSO with the L1 penalty 
and Ridge with the L2 penalty for constructing a 
linear model. These two methods shrink many 
features to zero or almost near to zero. We 
discuss later regularization methods, since they 
are part of the “model fitting” strategies. 



The ML pipeline: model tuning (fitting)



Model 
tuning 
(fitting)

• Model fitting is a measure of how well a machine learning model 
generalizes to similar data to that on which it was trained. 

• A model that is well-fitted produces more accurate outcomes. A 
model that is overfitted matches the data too closely.

• An underfitted model makes bad predictions



Overfitting 
and 
underfitting
strategies

• techniques



(some ways of) 

Preventing 

overfitting 

• Approach 1: Get more data!

– Almost always the best bet if data is cheap 

and you have enough compute power to 

train on more data.

• Approach 2: Average many different models.

– Ensambles (see previous lessons)

• Approach 3: Early stopping

– Start with small weights and stop the 

learning before it overfits.

• Approach 4: Regularization methods 

– Lasso, Ridge regression, Drop-out



Regularization

• Regularization adds a penalty to the different
parameters of a model to reduce its freedom 
in the selection of best parameters. 

• This penalty is applied to the coefficient that
multiplies each of the features (e.g., the 
weights in a linear convolutional model), and 
is done to avoid overfitting, make the model 
robust to noise, and to improve its
generalization.

• The simplest regularization method is Lasso
(L1) for linear models – non linear models
use other regularization methods, e.g., Ridge 
regression

https://heartbeat.fritz.ai/deep-learning-best-practices-regularization-techniques-for-better-performance-of-neural-network-94f978a4e518
https://beta.vu.nl/nl/Images/werkstuk-fonti_tcm235-836234.pdf


What is regularization

• Red points are «examples» in 
the training dataset

• The green curve is an overfitting
example. In mathematical
terms, the green curve has «too
large» coefficients

• Regularization aims at reducing
the coefficients (e.g. the weight 
of a single convolutional layer) 
such as in the blue line



Lasso 
regularization

• As we said, embedded methods are strictly
dependent on the selected prediction model

• Lasso (L1) regularization is only applicable to 
algebraic linear models (regressors, 
perceptron..) that model the output as a linear 
combination of input features 𝑥𝑗𝑖 : 

𝑦𝑖 = 𝑤0 +෍
𝑖=1

𝑚

𝑤𝑖 𝑥𝑗𝑖

The output value 𝑦𝑖 for an input 𝑥𝑖 is predicted as
a linear combination of input features 𝑥𝑗𝑖
As we said, learning a predictive model requires
estimating the coefficients 𝑤𝑖, based on the known
< 𝑥𝑖, 𝑦𝑖 > pairs in the training  set (as we have seen
for the perceptron model)



Lasso 
regularization 

(2)

• We know that learning a model (e.g. learning a linear 
model) always imply to define an optimization 
problem to minimize some error function (called Loss
function). Model parameters (the 𝑤𝑖 in our current
linear model) are adjusted to minimize the error of 
predictions

• In linear models, a possible Loss function is  Residual
Sum of Squares:

RSS=σ 𝑦𝑗 − ෝ𝑦𝑗
2 = σ𝑗=1

𝑛 𝑦𝑗 − σ𝑖=1
𝑚 𝑤𝑖 𝑥𝑗𝑖

2

Where 𝑥𝑗𝑖 is the i-th feature of input j of the dataset, and 
𝑦𝑗 is the (known) true value of the output function

The optimization problem is to find all 𝑤𝑖 such that RSS 
is minimised



Lasso 
regularization 

(3)

• The Lasso regularization problem can be stated as
follows: 

MINIMIZE
RSS= σ𝑗=1

𝑛 𝑦𝑗 − σ𝑖=1
𝑚 𝑤𝑖 𝑥𝑗𝑖

2 +𝜆σ𝑖=1
𝑚 |𝑤𝑖|

• The red part is called l1 penalty (since it increases the 
RSS), and has the effect of forcing some of the 
coefficients 𝑤𝑖 to be exactly zero – in the attempt of 
minimazing RSS - when the 𝜆 parameter is sufficiently
large, so it performs feature selection.

• This process is bit “extreme” since it essentially 
eliminates those features from the model instead of 
minimizing their impacts.

• Similar to the Lasso regression, Ridge regression puts a 
similar constraint on the coefficients by introducing a 
penalty factor. However, while Lasso regression takes 
the magnitude of the coefficients, Ridge regression 
takes the square.

https://online.stat.psu.edu/stat857/node/155/


Drop out

• Dropout is another regularization method that approximates 
training a large number of neural networks with different 
architectures in parallel.

• During training, some number of layer outputs are randomly 
ignored or “dropped out.” This has the effect of making the 
layer treated like a layer with a different number of nodes and 
connectivity to the prior layer. 

• Each update to a layer during training is performed with a 
different “view” of the configured layer.



Why droput 
works

• When training a NN, a neuron’s synaptic 
weights may change in a way that “fixes up” the 
mistakes of the other units (remember the 
backpropagation formula!). 

• This leads to complex co-adaptations among 
weights, which in turn leads to the overfitting 
problem because this complex co-adaptation 
may fail to generalise on the unseen dataset.

• Dropout prevents these units to fix up the 
mistake of other units (since these are 
occasionaly removed during training), thus 
preventing “strong” co-adaptation, as in every 
iteration the presence of a unit is highly 
unreliable. 

• By randomly dropping a few units (nodes), we 
relax the dependence of each layer from the 
others.



Underfitting is when we have too few data
(some of the already seen methods to avoid overfitting or 

to cope with unbalanced data may help with this)

https://towardsdatascience.com/breaking-the-

curse-of-small-datasets-in-machine-learning

-part-1-36f28b0c044d

https://towardsdatascience.com/breaking-the-curse-of-small-
https://towardsdatascience.com/breaking-the-curse-of-small-


The ML pipeline: Hyperparameter tuning



Grid search

• The grid search is an exhaustive 
search through a set of manually 
specified set of values of 
hyperparameters. 

• It means you have a set of models 
(which differ from each other in their 
parameter values, which lie on a grid). 

• We train each of the models and 
evaluate it. We then select the one 
that performed best.

• For many hyperparameters, 
exhaustive grid search is  not 
feasible



Random 
search

• Set up a grid of 
hyperparameter values and 
select random combinations 
to train the model and score 
it. 

• The number of search 
iterations is set based on 
time/resources.



Automated Hyperparameter Tuning

• Bayesian Optimization (see the link for a very clear description)

• Adam optimizer is also  very popular 
https://machinelearningmastery.com/adam-optimization-algorithm-
for-deep-learning/ù

• AutoML aims to automatize the entire ML workflow, from feature 
pre-processing to model optimization and hyperparameter tuning. 

• Many AI companies have created and publicly shared such systems 
(e.g., Cloud AutoML by Google) to help people with little or no ML 
knowledge to build high-quality custom models.

https://arxiv.org/pdf/1807.02811.pdf
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/ù
https://arxiv.org/abs/1908.00709
https://cloud.google.com/automl

