
Data pre-processing
Feature Engineering and

Model Fitting
How to make

your ML experiments work on real data
In part from: LINK

https://medium.com/open-machine-learning-course/open-machine-learning-course-topic-6-feature-engineering-and-feature-selection-8b94f870706a

The ML pipeline

Issues with data

What data? Where can I find it?

What type of data? Several classification
dimensions (sequential/non sequential;
symbolic/continuous; structured/unstructured)

How to represent/transform my data (especially for
unstructured data, such as images and texts)?
➔feature transformation and engineering

How to «clean» my data: noise, missing elements,
unbalanced distributions, feature selection and/or
augmentation

Data pre-
processing

So far we assumed input data to be available in some form
(feature vectors, pixel matrixes, graphs, sequences of
continuous or discrete values)

However finding the appropriate data for a given problem is a
relevant task, not always data is available.
Furthermore, data can be “not ready” for analysis and needs
lots of cleaning and transformation (a process often called ETL,
extraction transformation and load)

Therefore the responsibility of a machine learning engineer is:
➢Setting up the correct problem to be solved/optimized

(this is far from straightforward in the real world, often
requires expert knowledge deepending on application
domain)

➢Identifying/Designing/extracting/representing
relevant variables (features) to predict the unknown
variable(s)

➢Finding relevant data from which features can be
extracted

➢Choosing a learning algorithm (or a family of algorithms)

From scratch
or from

available
data?

• Ex 1: you have a problem (e.g., Huber
wants to optimise the use of electric
bikes in a city) but you don’t know
which types of data can be useful for
your prediction and where to find them;

• Ex 2: you are given a dataset (e.g.
patients health records on diabetes in a
country) and a problem (early
prediction of coronary complications).
Are the attributes in your EHR dataset
all useful? Do you need more/less data?

The data workflow

Problem

analysis

Data collection

and

transformation

Feature

identification

Feature

extraction

Feature

transformation

Feature engineering

What is the task?

How can I solve

it?

Which variables

may be useful for

the prediction?

Where can I find

relevant data?

How to extract

features from

dirty,

unstructured

data?

Should features

be normalised,

discretised,

aggregated..?

Data preparation

Problem analysis and feature identification

• Given a ML problem (e.g. image classification, patient disease prediction,
predicting successful football players..) often the very first issue is: Which
kind of information would be helpful to accomplish the task? And where
can I find it?

• Often this is preliminary and more crucial than finding and processing the
information, once available.

• Often there is not a SINGLE source of information, data may come from
different sources, data can be

• heterogeneous (structured, unstructured; csv, images, texts, signals)

• semantically diverse (business data, social, metereological, traffic, health…) and

• available from different sources (legacy data, open data, web data..)

Example
problem

analysis 1:
Uber bike

sharing
optimisation

Task: Surge pricing- These algorithms
monitor traffic conditions and journey
times in real-time to predict and
suggest prices as demand for rides
changes, and traffic conditions mean
journeys are likely to take longer.

Which variable should be predicted?
Task is predicting the best price
dinamically, optimizing global revenue

Dynamic pricing

Which data?

• Uber uses a mixture of legacy and
external data to dynamically generate fares:

– street traffic data,

– GPS data (preferred routes by users)

– external data like public transport
routes and weather data

– Historical data on users (from apps)

– User opinions (from social networks)

• Hetherogeneous data, from multiple sources:
need preprocessing and integration before
they can be transformed into some of the
«known» formats (vectors, matrixes,
sequences..)

Example
problem

analysis 2

• The transfer fees of football players are getting
higher and higher each year.

• Can ML help in predicting these values?

➢Problem 1 (feature identification):

Which information can support the decision
system?

➢Problem 2 (data collection):

Where do I find the data?

➢Problem 3 (feature engineering):

Are my data ready for processing?

Let’s play: which features would
you use?

Using domain
knowledge

and
open data

sources we
may come out

with this
(possible) list
of relevant
features:

• Features (for each player):

➢Player’s basic information: team, age, height,
weight.

➢Market information: transfer fee, former team,
duration of the contract, when the player joined the
team, . . .

➢Performance information: on-pitch time,
actions at the ball, fouls, scores.

• But now the question is: Where can we find this data?

• Data sources: Transfer Market, WhoScored, European
Football Database, and Garter

Finding good
data sources

• Data can be legacy data of a
company/entity

• Lots of open source data are
available on the web

• Lots of data repositories on line
(Kaggle perhaps the most well
known, but many other)

• In the era of big data finding data is
not the main problem. But we have
another problem: real world data are
NOT ready for use!

Using on-line info (ex, web data) is far from
being easy (often you need scarpers..)

Whoscored: https://www.google.com/

Raw data: The dream

Raw data: The reality

A lot of cleaning and transformation is needed before
data are truly useful

Machine learning systems are only as

good as the data you feed it

Feature
Engineering:

3 related
tasks

Feature Extraction:
Transformation of raw data (e,g, text)
into features suitable (e.g., numbers)
for processing

Feature Transformation:
Transformation of data to improve the
accuracy of the algorithm (e.g.,
normalization, scaling..)

Feature Selection:
Removing unnecessary features

Feature
extraction

• In practice, data rarely comes in the form of
ready-to-use feature-value matrices (as for the
decision-tree and perceptron examples).

• That's why every task begins with feature
extraction. Sometimes, it can be enough to
read the CSV file and convert it into an array,
but this is a rare exception.

• Popular types of data from which features can
be extracted:

➢Texts

➢Images

➢Geospatial data

➢Date and time

➢Time series, web data, etc.

1. Text

• Text is pervasive: web pages, social media messages,
news, diagnostic reports, release notes..

• The first step is tokenization, i.e., splitting the text into
units (hence, tokens).

➢“Before working with text, one must tokenize it”
before,working,with,text,one,must,tokenize,it

• Next, stemming or lemmatization to normalize tokens
(recent approaches avoid stemming):

➢befor,work,with,text,one,must,stem,it

• Finally, text encoding (bag of words is the simplest):

➢Build a vocabulary over all words in all documents
(now dense word representations are used, called
embeddings)

➢Encode every document in a sparse vector di where
dij=1 iff word j of vocabulary is in di, else dij=0

1. Text:
Example of text encoding

From free text to a list of tokens

Create a vocabulary ordering all tokens

The «simplest» document encoding strategy

assigns a binary value for presence absence

of a word in the document

1. Text:
single words can be assigned a vector

representation, so-called one hot encoding

Dimension of the vector equals the dimension of the vocabulay. Here we assume a simple 7-words vocabulary

1. Text:
Embeddings

• State of the art approach for text representation
is word embeddings

• More in NLP courses, however, the idea is that
words, rather than being represented as a
binary value (or a real value, or a binary vector)
in a “sparse” document space with |V|
dimensions, are represented as “dense”
numeric vectors in a “reduced” semantic space

• Words with “close” vectors are
(semantically) similar

• A survey on word embedding methods

https://ieeexplore.ieee.org/document/10100347

Sparse and dense representations

Word2vect embeddings: 2 training methods

• CBOW: given a context, learn
predicting a word;

• Skip-gram: given a word, learn
predicting the context

• In both cases, the result of
training is an «encoder» able to
associate to word’s one-hot
vectors a «dense» representation,
named embedding.

Dense
representations
capture the
«essence» of
word meanings

Semantically similar words
are closer in a “latent” space

Words are “projected”
onto latent semantic
spaces

• The «dense» dimensions are “latent”
(hidden) and learned by looking at word
contexts. However, the meaning of
dimensions is not explicit! (black boxes)

• NOTE: We are unaware that
dimension 1 is, e.g., “royalty”.

• Learned dimensions depend on the
source texts used for learning – kings,
queen, and princesses have different
vectors if learned from fairy tales or
gossips newspapers!

Example of embeddings

More on embeddings

• Embeddings are now widely applied not only to textual data
but to any vectorial representation of data (including images
and graphs)

• They capture «latent» similarities in the data and allow better
generalization during the learning phase

• They also «compress» the representation of data items since
they project surface features into a «denser» semantic space
(see later on dimensionality reduction)

• More here

https://cloud.google.com/architecture/overview-extracting-and-serving-feature-embeddings-for-machine-learning

2. Images
• Images are usually represented at the

pixel level
• Note that the entire pipeline of a CNN

(except for the final classification
layer) can be regarded as a way to
compress the features of an image
into a more compact representation.

• Even in this case, the
latent “semantics” discovered
by hidden layers is not available!

2. Images

• Nevertheless, we should not focus too
much on neural network techniques.
Simpler features are still very useful for
image representation

• For example, to «predict» if an image
represents a lion or a frog, a cromaticity
histograms is more than enough!

3. Geospatial
data

3. Geospatial
Data

• Geospatial data are very useful in many
applications where location is relevant
(e.g. recommender systems, and many
other location-dependent optimization
problems, e.g., supply chain management)

• Geospatial data is often presented in the
form of addresses or coordinates (latitude,
longitude)

• Depending on the task, you may need two
mutually-inverse operations:
➢Geocoding (recovering a point of

interest from an address)
➢Reverse geocoding (recovering an

address from a point).
• Both operations are accessible in practice

via external APIs from Google Maps or
OpenStreetMap.

3. Geospatial
Data

CAVEAT:
• Textual addresses may contain typos,

which makes the data cleaning step
necessary (see later).

• Coordinates contain fewer misprints, but
its position can be incorrect due to GPS
noise or bad accuracy in places like
tunnels, downtown areas, etc.

• If the data source is a mobile device, the
geolocation may not be determined by
GPS but by WiFi networks in the area.
While traveling along in Manhattan, there
can suddenly be a WiFi location from
Chicago.

4. Time
series

• Sequential data are quite common (e.g. stock market
data, personal patient records (trajectories), sensor
data..)

• In many cases, before you can feed your ML system with
time series data, you need to eliminate trends, to
average over selected time spans, and to normalize
(especially if you have different types of time series in
your data).

Example: these time series of «umbrella sales» behave similarly, however without

normalization, the similarity cannot be captured.

https://machinelearningmastery.com/time-series-trends-in-python/

4. Times
series:

extracting
features

• There are libraries (link) to automatically extracts a large
number of time series features.

http://tsfresh.readthedocs.io/en/latest/

5. Other
domains

In other domains, you can come up
with your features based on intuition
about the nature of the data, based
on available information, and the
classification/regression task that has
been set

But almost NEVER your data are
«ready-to-use»!

Feature
Engineering:

3 related
tasks

Feature Extraction:
Transformation of raw data (e,g, text)
into features suitable (e.g., numbers)
for processing

Feature Transformation:
Transformation of data to improve the
accuracy of the algorithm (e.g.,
normalization, scaling..)

Feature Selection:
Removing unnecessary features

Feature
transformation

methods

1. Normalization

• Scaling and centering, Change of bases,
Categorical to numeric…

2. Missing values

• Removal, regression imputation, k-neares
neighbours…

3. Data augmentation (add more features)

4. Imbalanced categories

• Oversampling, undersampling, smote, anomaly
detection, cost-sensitive learning

Normalization
and

changing
distribution

• Certain algorithms –and platforms-
require a specific format for data
(E.g., decision trees allow for
categorical data, other methods do
not)

• Similarly, some algorithms suffer for
unbalanced scaling of features
(e.g. one feature with range [0,1]
and others
with range [-10000.. +1000..])

Normalization:
Scaling &
Centering

• The reason for centering and scaling is that it places
all features on equal standing.

• Some ML algorithms project instances onto a multi-
dimensional space and examine the distances
between different data points (e.g., clustering). In
such methods, features with large absolute
differences in values will be more important (will
“affect” more than others the computation of
distance).

• Yet generally such absolute differences in values
reflects nothing more than the metric chosen to
measure the variable, and a priori it is
unreasonable that one variable should be more
important than others

Example: predicting the sell price of
houses Here , the

feature
“number of

rooms” does
not allow any

useful
separation
between

datapoints

Feature normalization also helps gradient
descent converge faster!

1w

2w Loss L

1w

2w Loss L

smooth

st
ee

p

same

range
Credits: https://speech.ee.ntu.edu.tw

Why gradient converges faster with normalized
features

• Remember the «basic» weight updating rule:

∆𝑤𝑖𝑗 = 𝜂
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤𝑖𝑗
= 𝜂𝛿𝑗

𝜕(𝑛𝑒𝑡𝑗)

𝑤𝑖𝑗
= 𝜂𝛿𝑗𝑥𝑖

• Larger signals travelling on a synaptic connection cause
greater updates

• This applies both to input features and to the features
computed in the internal layers of a deep NN

Feature Normalization

…
…

…
…

…
…

…
…

…
…

…… ……

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝒓 𝒙𝑹

• compute mean: μ𝑖

• compute standard
deviation: 𝜎𝑖

෤𝑥𝑖
ℎ ←

𝑥𝑖
ℎ − μ𝑖
𝜎𝑖

With normalized values, the
means of all dimensions 𝑖 are 0,
and the variances are all 1

For all feature

values 𝑥𝑖
ℎ𝑖𝑛 𝑫:

𝒙1
𝟏

𝒙2
𝟏

𝒙1
𝟐

𝒙2
𝟐

46
Credits: https://speech.ee.ntu.edu.tw

Note: we are «forcing» a gaussian distribution of all features

𝑥𝑖
ℎ

𝒂𝟑

𝒂𝟐

𝑎1𝑊1

𝑊1

𝑊1

𝒛𝟏

𝒛𝟐

𝒛𝟑

𝑊2

𝑊2

𝑊2

Sigm
o

id

……

……

……

Sigm
o

id
Sigm

o
id

Feature
Normalization

෥𝒙𝟏

෥𝒙𝟐

෥𝒙𝟑

Also need
normalization

Different dimensions have different ranges.

Also difficult to optimize

In deep architectures normalization is needed also in the internal
layers

Credits: https://speech.ee.ntu.edu.tw

Batch normalization (2 steps)

𝑊1

𝑊1

𝑊1

𝒛𝟏

𝒛𝟐

𝒛𝟑

𝝁 𝝈

ො𝒛𝒊 = 𝜸෤𝒛𝒊 + 𝜷

ො𝒛𝟑

ො𝒛𝟐

ො𝒛𝟏෤𝒛𝟏

෤𝒛𝟐

෤𝒛𝟑

𝜷 𝜸

෤𝒛𝒊 =
𝒛𝒊 − 𝝁

𝝈

𝝁 and 𝝈
depends on 𝒛𝒊

෥𝒙𝟏

෥𝒙𝟐

෥𝒙𝟑

Credits: https://speech.ee.ntu.edu.tw

𝜷 and𝜸 hyperparameters

Why batch normalization works

• It normalizes not only the input features but also further values in the
hidden units to take on a similar range of values that can speed up
learning (faster gradient descent, as we have seen).

• The second reason why batch norm works, is it makes weights, later or
deeper in the network you have, more robust to changes of weights in
earlier layers of the neural network (eg. in layer one).

• What batch norm ensures is that no matter how the parameters of the
neural network update, their mean and variance will at least stay the
same mean and variance, causing the input values to become more stable

49

Gradients
with batch
norm are
smoother

https://towardsdatascience.com/batch-norm-explained-visually-why-does-it-

work-90b98bcc58a0

Normalization:
Changes of

Bases

• Input features values are usually
distributed according to some
distribution, e.g., a normal (Gaussian)
distribution for continuous variables

• The “skewness” is an asymmetry in a
statistical distribution, in which the
curve appears distorted or skewed
either to the left or to the right

• Skewness can be quantified to define
the extent to which a distribution
differs from a normal (Gaussian)
distribution

Skewed data example

• If data are «skewed» the
tail region may act as an
«outlier» for the model and
outliers may adversely affect
the model's performance,
especially regression-based
models - since the «most
common» data may no
longer be around the mean.

Outliers: instances that are

significantly "diverse" from

average population

Normalization:
Changes of

Bases

• To reduce the skewness of the
distribution of a feature’s values
in a dataset, we can perform a log
transformation

• For more “sparse” distributions,
other more complex methods are
possible (e.g. qqnorm).

Example

The original distribution of values
and the distribution after applying

a log transformation

Normalization:
Categorical
into numeric

• Certain features can take categorical values
(e.g., Spotify dataset: artist, track name..).

• Categories may be nominal (sport, politics,
finance..) or ordinal (e.g., dates or weekdays).
Ordinal levels follow a logical order. In
nominal categories often there is no order
(e.g., city names)

• Some algorithms do not accept categorical
data, therefore we need some
transformation.

Normalization:
Categorical into numeric

• One-hot encoding is the default way of turning
categorical data into numeric. With this method, we
encode the categorical variable as a one-hot vector,
i.e. a vector where only one element is non-zero, or
"hot".

• With one-hot encoding, a categorical feature
becomes an array whose size is the number of
possible choices for those features. With N values,
the dimension of the vectors is N

One hot encoding

Normalization:
Categorical
into numeric

• However, if N is large, one-hot encoding may
be a bad idea.

• Another approach to encoding categorical
values is to use a technique called label
encoding. Label encoding is simply
converting each categorical value to a
number

• But, in those algorithms where the “weight” of
each attribute value matters (regressors),
label encoding introduces an unjustified bias
towards higher values

• An intermediate alternative is label
binarization which introduces log2(N) values.

Example
(label and binary encoding)

Binary encoding

label encoding

Feature
transformation

methods

1. Normalization

• Scaling and centering, Change of bases,
Categorical to numeric…

2. Missing values

• Removal, regression imputation, k-nearest
neighbours…

3. Data augmentation (add more features)

4. Imbalanced categories

• Oversampling, undersampling, smote, anomaly
detection, cost-sensitive learning

Missing values

• Real-world data often has missing
values

• Data can have missing values for
several reasons such as observations
that were not recorded or data
corruption

• Handling missing data is important
since many machine learning
algorithms do not support data with
missing values (or they perform worst,
or a particular feature is useful and we
would like to recover the most of what
we have)

Missing values

The first thing to do is to count how many missing
values you have and try to visualize their
distributions (methods are provided e.g. see the
missingno package in Python). The white

spaces are
missing
values

Missing
values

• The simplest thing to do is the
removal of instances with missing
values (if missing <10%), or removal of
the attribute (if missing >50%). This is
rather brute-force, since we loose
information.

• For numerical values, a standard and
often very good approach is to
replace the missing values with
mean, median or mode in the entire
distribution of values for a given
feature

• With categorical values, the standard
is to replace with the most probable
value

(although it might be dangerous..)

Missing values:
better methods

• Correlation matrices
among features can help to
design the regression
model (what are the most
helpful features that could
predict the missing value of
a feature)

Regression imputation:
A regression model is
estimated to predict the
observed values of a feature
xj based on other features
(xk..xn), and the model is
then used to impute values
where that variable is
missing. (we can use a NN)

Missing values:
other methods

• Imputation with K-
Nearest Neighbours:
If j-th feature xj

i is
missing on instance xi,
we can consider the K
most similar instances
that have no missing
value in j-th feature.

• Then impute the
missing value with the
most frequent value
(the mode) amongst
the j-th features of
these K instances.

Feature
transformation

methods

1. Normalization

• Scaling and centering, Change of bases,
Categorical to numeric…

2. Missing values

• Removal, regression imputation, k-nearest
neighbours…

3. Data augmentation (add more features)

4. Imbalanced categories

• Oversampling, undersampling, smote, anomaly
detection, cost-sensitive learning

Feature
Augmentation

• Feature augmentation refers to methods that
add more features to available data

• The objective is enhancing the quality of
models by adding informative features to the
original data

• For image data-sets, you can rotate, scale,
translate, interpolate

• For other types of datasets, you can add new
features that can be inferred from other
features

• For example, in a database of football
matches, you may want to add for each team
the time elapsed between the current match
and the last victorious match

• Note: adding new features is different from
adding more data, an issue that we consider
next

Feature
transformation

methods

1. Normalization

• Scaling and centering, Change of bases,
Categorical to numeric…

2. Missing values

• Removal, regresion imputation, k-neares
neighbours…

3. Data augmentation (add more features)

4. Imbalanced categories

• Oversampling, undersampling, smote, anomaly
detection, cost-sensitive learning

Imbalanced Categories

• Class imbalance is when each class does not make up
an equal portion of your data-set

• For example, suppose you have two classes—A and B

• Class A is 90% of your data-set and class B is the other
10%, but you are most interested in identifying
instances of class B

• You can reach an accuracy of 90% by simply predicting
class A every time, but this provides a useless classifier
for your intended use case

Why
imbalance is

a critical
issue

• Receiving significantly more examples from
one or more classes, the model could be
biased towards those particular classes;

• In some cases, models trained on unbalanced
datasets could actually completely ignore the
minority classes.

• There are cases where we are actually
interested in predicting the minority class, e.g.
risk prediction (in health, fraud, and other
applications) and in all anomaly detection
applications (behavioural anomalies, fake news
detection..)

Imbalanced
Categories:
Sampling

Sampling: A simple way to fix imbalanced data-sets is
simply to balance them, either by oversampling instances
of the minority class or undersampling instances of the
majority class

Disadvantages
of under/over

sampling

• Undersampling may discard potentially
useful data;

• Oversampling creates exact copies of
existing examples and may cause
overfitting;

• Another disadvantage of oversampling is
that increasing the number of training
examples also increases the learning time.

Imbalanced Categories:
SMOTE

A more powerful sampling method is SMOTE Synthetic
Minority Oversampling Technique , which creates new
instances of the minority class by forming convex
combinations of neighboring instances (link).

• As the graphic shows, it effectively draws lines
between minority points in the feature space and
samples along these lines.

• If features are categorical, SMOTE can’t be used.
Recent data augmentation approaches relate on
generative methods such as GANs that may be
also applied to sequential data.

convex combination is a linear combination of points where all

coefficients are non-negative and sum to 1.

https://www.researchgate.net/publication/220543125_SMOTE_Synthetic_Minority_Over-sampling_Technique
https://www.researchgate.net/publication/361298537_Efficient_Approaches_for_Data_Augmentation_by_Using_Generative_Adversarial_Networks

Example of re-
sampling with
SMOTE

Imbalanced Categories:
Anomaly Detection

Anomaly Detection: we assume that there is a “normal”
distribution(s) of data-points, and anything that sufficiently
deviates from that distribution(s) is an anomaly.

• When we reframe our classification
problem into an anomaly detection
problem (see lesson on denoising
autoencoders) where we treat the
majority class as the “normal”
distribution of points, and the
minority as anomalies

• We can also simply ignore
anomalies (however, it depends on
the application: if anomalies are,
e.g. fraudulent behaviors, then this
is exactly what we may be looking
for!)

Imbalanced Categories:
Cost-Sensitive Learning

In regular learning, we treat all misclassifications equally
(regardless of the class which is misclassified), which causes
issues in imbalanced classification problems, as there is no extra
reward for identifying the minority class over the majority class.

• Cost-sensitive Learning: Cost-sensitive learning changes this,
and uses a function C(p, t) (usually represented as a matrix)
that specifies the cost of misclassifying an instance of class t as
class p.

• The algorithm, in the attempt
of minimizing the cost of
wrong decisions, will pay
more attention to the minority
elements

Feature
Engineering:

3 related
tasks

Feature Extraction:
Transformation of raw data (e,g, text)
into features suitable (e.g., numbers)
for processing

Feature Transformation:
Transformation of data to improve the
accuracy of the algorithm (e.g.,
normalization, scaling..)

Feature Selection:
Removing unnecessary features

Feature Selection
How many? Are there enough? Are there too many?

• For any ML task, we can easily come up with thousands
of features and extract them from various external
sources.

• However, the number and complexity of needed
features often depend on the specific task addressed

• For example, if you need to
distinguish city landscapes
from mountain landscapes
you don’t need pixel features
(a color histogram would do)

Feature
Selection

• In many practical cases, one may come out with
very many– potentially useful features (so the
“too many” is the most frequent case)

• Not easy to say what is truly useful, nor if some
features are correlated:

➢Adding many potentially correlated features
can decrease model performance

➢“Too many” features make models less
interpretable and less generalizable

• So, we need automatic tools for feature
selection (filtering)

Feature selection: why it is important

• Ovals represent the (hidden, i.e. unknown) space of positive (squares) and negative
(circles) examples

• Dashed lines are the "models" (classification functions learned from available data,
that separate positive examples from negative)

• In the reality, as shown by the figures above, only feature x1 is useful to predict the
class value of examples (Figure i) but given the examples, a ML algorithm may come
out with any of the 3 models (i) (ii) and (iii). However, model (ii) and (iii) would NOT
generalize on unseen instances

• For example, istance will be mistakenly predicted as negative by model (ii) and
instance would be mistakenly predicted as positive by model (iii)

Feature
Selection

Since the exhaustive search for an
optimal feature subset is infeasible in
most cases, many search strategies
have been proposed in the literature,
often classified in three types:

➢Filter Methods (A)

➢Wrapper Methods (B)

➢Embedded and hybrid methods (C)

➢To learn more: link

https://heartbeat.fritz.ai/hands-on-with-feature-selection-techniques-an-introduction-1d8dc6d86c16

Feature
Selection vrs

dimensionality
reduction

• Feature selection is basically a process that selects
and excludes some features without
modifying them at all.

• The other strategy is Dimensionality reduction that
modifies or transforms features into a lower
dimension, creating a whole new feature space that
looks approximately like the first one, but smaller in
terms of dimensions.

• You will familiarize with some «classic»
dimensionality reduction strategies (e.g., matrix
factorization, principal component analysis) in other
courses

• As far as ML methods are concerned, Deep
encoders are a way to reduce the dimensions of a
feature set, projecting input vectors onto a latent
space.

• Note that also ensambles inherently limit the
negative effect of irrelevant features, but they do
not explicitly remove or replace them.

Feature
Selection:
A) Filter
Methods

• Filter methods select features based on a
performance measure regardless of, and prior
to, the employed data classification
algorithm

• Only after the best features are found, the ML
algorithms can use them

Feature
Selection:
A) Filter
Methods

• We can roughly classify the developed
measures for feature filtering into:
information, distance, consistency,
similarity, and statistical measures

• Furthermore:

➢ univariate filters evaluate (and
usually rank) a single feature

➢multivariate filters evaluate an
entire feature subset

A list of
common
filter
methods

Examples of filters: RELIEF

• Information Gain (information, univariate: we have seen it in DT)

• Relief(F) (distance, univariate): consider all features as independent ones and estimate the relevance
(quality) of each feature based on its ability to distinguish instances located near each other, but
belonging to different classes:
➢The algorithm iteratively selects a random instance x and then searches for its two nearest

neighbors in D: the nearest hit (from the same class, e.g., negative) and the nearest miss (from a
different class).

➢For each feature value xi of x, the estimation of the quality of the i-th feature (weight Wi) is updated
depending on the differences between the current instanceand its nearest hit and along the
corresponding feature i axis.

➢The weight Wi increases if the value of the near miss is «far» and the value of the near hit is «close»
➢The rationale is: to what extent this feature is able to differentiate two instances belonging to different

classes?
➢Several measures to compute difference (euclidean distance, Manhattan distance..)
➢Only good for numeric features

Relief
Example

Correlation-
based

feature
selection

• Based on the following principles: If two or more variables
are correlated, only one can be selected

• Spearman correlation, 𝜒 − 𝑠𝑞𝑢𝑎𝑟𝑒 test are common
methods to identify correlated variables (and remove the
dependent variable)

• Heatmaps can graphically identify correlation between
variables

https://www.sagepub.com/sites/default/files/upm-binaries/33663_Chapter4.pdf

Feature
Selection

Since the exhaustive search for
optimal feature subset is infeasible in
most cases, many greed search
strategies have been proposed in the
literature, often classified in three
types:

➢Filter Methods (A)

➢Wrapper Methods (B)

➢Embedded and hybrid methods (C)

➢To learn more: link

https://heartbeat.fritz.ai/hands-on-with-feature-selection-techniques-an-introduction-1d8dc6d86c16

Feature
Selection:

B)
Wrappers

• Wrappers evaluates feature subsets by the quality of
the performance on a specific ML algorithm, which is
taken as a “black box” evaluator

Feature
Selection:

B) Wrappers

• Thus, for classification tasks, a wrapper
will evaluate subsets of features based on
a ML method performance (e.g.
Regression Trees or Neural Networks)

• The evaluation is repeated for each
subset, and the subset generation is
dependent on the search strategy, in the
same way as with filters (e.g., random)

• Wrappers are much slower than filters in
finding sufficiently good subsets because
they depend on the considered algorithm

Feature
Selection:

B) Wrappers
Methods

• Recursive feature elimination

• Sequential feature selection
algorithms

• Genetic algorithms

Feature Selection:
Sequential feature selection algorithm

The task: Say we have features A, B, C, and a classifier M.
We want to predict T (the class) given the smallest
possible subset of features {A, B, C} while achieving
maximal performance (accuracy)

FEATURE SET CLASSIFIER PERFORMANCE

{A,B,C} M 98%

{A,B} M 98%
{A,C} M 77%
{B,C} M 56%

{A} M 89%

{B} M 90%

{C} M 91%

{.} M 85%

The set of all subsets of features is the power set and its
size is 2|V|. Hence for large V, we cannot do this
procedure exhaustively; instead, we rely on a heuristic
search of the space of all possible feature subsets.

{} 85

{A} 89

{B} 90

{A,B} 98

{A,B,C}98

{C} 91

{A,C} 77

{B,C} 56

start

{A,B}98

{B,C}56

{A,C}77
end

Feature Selection:
Sequential feature selection algorithm

A common example of heuristic search is hill climbing: keep adding
features one at a time until no further improvement can be achieved.
Evaluation is based,e.g., on a lookahead of one step.

{} 85

{A} 89

{B} 90

{A,B} 98

{A,B,C}98

{C} 91

{A,C} 77

{B,C} 56

start

{A,B}98

{B,C}56

{A,C}77
end

Feature Selection:
Sequential feature selection algorithm

Greedy search: Add a feature
and evaluate performance,

then select best (local) choice

Numbers are «some»

performance measure,

e.g., accuracy 98%

Feature
Selection

Since the exhaustive search for
optimal feature subset is infeasible in
most cases, many search strategies
have been proposed in the literature,
often classified in three types:

➢Filter Methods (A)

➢Wrapper Methods (B)

➢Embedded and hybrid methods (C)

➢To learn more: link

https://heartbeat.fritz.ai/hands-on-with-feature-selection-techniques-an-introduction-1d8dc6d86c16

Feature
Selection:

C)
Embedded
methods

Embedded methods perform feature selection during the
execution of the ML algorithm.

• In contrast with filter (a) and wrapper (b) approaches, in
embedded methods (c) the features selection part can not be
separated from the learning part.

• Most embedded methods are model-dependent, i.e. they are
specifically designed for the class of ML algorithms chosen

Feature
Selection:

C)
Embedded
methods

• Any and all embedded methods work as
follows:

– First, these methods train a machine
learning model.

– They then derive feature importance
from this model, which is a measure
of how much is each feature
important when making a prediction.

– Finally, they remove non-important
features using the derived feature
importance.

Embedded
methods (2)

1. The most Common embedded technique are the
tree-based algorithms like Random Forest.

2. Tree-based algorithms select a feature in each
recursive step of the tree growth process and
divide the sample set into smaller subsets.
Topmost features in the tree are the most
relevant, as we have already learned.

3. Other Embedded Methods are regularization
methods, such as the LASSO with the L1 penalty
and Ridge with the L2 penalty for constructing a
linear model. These two methods shrink many
features to zero or almost near to zero. We
discuss later regularization methods, since they
are part of the “model fitting” strategies.

The ML pipeline: model tuning (fitting)

Model
tuning
(fitting)

• Model fitting is a measure of how well a machine learning model
generalizes to similar data to that on which it was trained.

• A model that is well-fitted produces more accurate outcomes. A
model that is overfitted matches the data too closely.

• An underfitted model makes bad predictions

Overfitting
and
underfitting
strategies

• techniques

(some ways of)

Preventing

overfitting

• Approach 1: Get more data!

– Almost always the best bet if data is cheap

and you have enough compute power to

train on more data.

• Approach 2: Average many different models.

– Ensambles (see previous lessons)

• Approach 3: Early stopping

– Start with small weights and stop the

learning before it overfits.

• Approach 4: Regularization methods

– Lasso, Ridge regression, Drop-out

Regularization

• Regularization adds a penalty to the different
parameters of a model to reduce its freedom
in the selection of best parameters.

• This penalty is applied to the coefficient that
multiplies each of the features (e.g., the
weights in a linear convolutional model), and
is done to avoid overfitting, make the model
robust to noise, and to improve its
generalization.

• The simplest regularization method is Lasso
(L1) for linear models – non linear models
use other regularization methods, e.g., Ridge
regression

https://heartbeat.fritz.ai/deep-learning-best-practices-regularization-techniques-for-better-performance-of-neural-network-94f978a4e518
https://beta.vu.nl/nl/Images/werkstuk-fonti_tcm235-836234.pdf

What is regularization

• Red points are «examples» in
the training dataset

• The green curve is an overfitting
example. In mathematical
terms, the green curve has «too
large» coefficients

• Regularization aims at reducing
the coefficients (e.g. the weight
of a single convolutional layer)
such as in the blue line

Lasso
regularization

• As we said, embedded methods are strictly
dependent on the selected prediction model

• Lasso (L1) regularization is only applicable to
algebraic linear models (regressors,
perceptron..) that model the output as a linear
combination of input features 𝑥𝑗𝑖 :

𝑦𝑖 = 𝑤0 +෍
𝑖=1

𝑚

𝑤𝑖 𝑥𝑗𝑖

The output value 𝑦𝑖 for an input 𝑥𝑖 is predicted as
a linear combination of input features 𝑥𝑗𝑖
As we said, learning a predictive model requires
estimating the coefficients 𝑤𝑖, based on the known
< 𝑥𝑖, 𝑦𝑖 > pairs in the training set (as we have seen
for the perceptron model)

Lasso
regularization

(2)

• We know that learning a model (e.g. learning a linear
model) always imply to define an optimization
problem to minimize some error function (called Loss
function). Model parameters (the 𝑤𝑖 in our current
linear model) are adjusted to minimize the error of
predictions

• In linear models, a possible Loss function is Residual
Sum of Squares:

RSS=σ 𝑦𝑗 − ෝ𝑦𝑗
2 = σ𝑗=1

𝑛 𝑦𝑗 − σ𝑖=1
𝑚 𝑤𝑖 𝑥𝑗𝑖

2

Where 𝑥𝑗𝑖 is the i-th feature of input j of the dataset, and
𝑦𝑗 is the (known) true value of the output function

The optimization problem is to find all 𝑤𝑖 such that RSS
is minimised

Lasso
regularization

(3)

• The Lasso regularization problem can be stated as
follows:

MINIMIZE
RSS= σ𝑗=1

𝑛 𝑦𝑗 − σ𝑖=1
𝑚 𝑤𝑖 𝑥𝑗𝑖

2 +𝜆σ𝑖=1
𝑚 |𝑤𝑖|

• The red part is called l1 penalty (since it increases the
RSS), and has the effect of forcing some of the
coefficients 𝑤𝑖 to be exactly zero – in the attempt of
minimazing RSS - when the 𝜆 parameter is sufficiently
large, so it performs feature selection.

• This process is bit “extreme” since it essentially
eliminates those features from the model instead of
minimizing their impacts.

• Similar to the Lasso regression, Ridge regression puts a
similar constraint on the coefficients by introducing a
penalty factor. However, while Lasso regression takes
the magnitude of the coefficients, Ridge regression
takes the square.

https://online.stat.psu.edu/stat857/node/155/

Drop out

• Dropout is another regularization method that approximates
training a large number of neural networks with different
architectures in parallel.

• During training, some number of layer outputs are randomly
ignored or “dropped out.” This has the effect of making the
layer treated like a layer with a different number of nodes and
connectivity to the prior layer.

• Each update to a layer during training is performed with a
different “view” of the configured layer.

Why droput
works

• When training a NN, a neuron’s synaptic
weights may change in a way that “fixes up” the
mistakes of the other units (remember the
backpropagation formula!).

• This leads to complex co-adaptations among
weights, which in turn leads to the overfitting
problem because this complex co-adaptation
may fail to generalise on the unseen dataset.

• Dropout prevents these units to fix up the
mistake of other units (since these are
occasionaly removed during training), thus
preventing “strong” co-adaptation, as in every
iteration the presence of a unit is highly
unreliable.

• By randomly dropping a few units (nodes), we
relax the dependence of each layer from the
others.

Underfitting is when we have too few data
(some of the already seen methods to avoid overfitting or

to cope with unbalanced data may help with this)

https://towardsdatascience.com/breaking-the-

curse-of-small-datasets-in-machine-learning

-part-1-36f28b0c044d

https://towardsdatascience.com/breaking-the-curse-of-small-
https://towardsdatascience.com/breaking-the-curse-of-small-

The ML pipeline: Hyperparameter tuning

Grid search

• The grid search is an exhaustive
search through a set of manually
specified set of values of
hyperparameters.

• It means you have a set of models
(which differ from each other in their
parameter values, which lie on a grid).

• We train each of the models and
evaluate it. We then select the one
that performed best.

• For many hyperparameters,
exhaustive grid search is not
feasible

Random
search

• Set up a grid of
hyperparameter values and
select random combinations
to train the model and score
it.

• The number of search
iterations is set based on
time/resources.

Automated Hyperparameter Tuning

• Bayesian Optimization (see the link for a very clear description)

• Adam optimizer is also very popular
https://machinelearningmastery.com/adam-optimization-algorithm-
for-deep-learning/ù

• AutoML aims to automatize the entire ML workflow, from feature
pre-processing to model optimization and hyperparameter tuning.

• Many AI companies have created and publicly shared such systems
(e.g., Cloud AutoML by Google) to help people with little or no ML
knowledge to build high-quality custom models.

https://arxiv.org/pdf/1807.02811.pdf
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/ù
https://arxiv.org/abs/1908.00709
https://cloud.google.com/automl

