
RecurrentNeuralNetworks
RNN, LSTM , GRU..

In part from J. Canny, CS294-129  2016  and from Mooney (UTexas, 2015)



Standard Neural Networks are DAGs (Directed Acyclic Graphs). That 
means they have a topological ordering.
ÅThe topological ordering is used for activation propagation, and 

for gradient back-propagation.

ÅThey are implemented as combinatorial logic devices.  

Neural Network structure



Recurrent networks introduce cyclesand a notion of time.

ÅThey are designed to process sequences of data ὼȟȣὼȣȟὼ
and can produce sequences of outputs ώȟȣȟώ .

ÅThey are implemented as sequential logicdevices, and their
behaviourcan be describedasa sequenceof  statesand 
transitions.

Åὼώ ÃÁÎÂÅÓÉÎÇÌÅÖÁÌÕÅÓÂÕÔÉÎÇÅÎÅÒÁÌÔÈÅÙÁÒÅἾἭἫἼἷἺἻ

Recurrent Neural Networks (RNNs)
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Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Neural Network

We can process a sequence of vectors xt

by applying a recurrence formula at every 
time step:

new hidden state old hidden 
state

input vector at 
some time step t

some function
with parameters W 
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Notice: the same function and the same set of parameters are used at every time step!!!!



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

(Vanilla) Recurrent Neural Network
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An RNN cell
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«Sketched» representationof an RNN cell
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RNN cells can be unrolled across multiple time steps.

This produces a DAG which
supports backpropagation.

But its size depends on the 
input sequence length. 

Unrolling RNNs
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Output from a hidden
layerat time t is input
to next cellat time t+1



Usually drawn as:

Unrolling RNNs
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Often layers are stacked vertically (deep RNNs), and you can have 
many:

RNN structure
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Deep RNN

Thisis obvious, sinceeverylayer
is made of the samecellacrosstime..



lat layercomputessome output function
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Character-level language model example

Vocabulary  (set of characters):
[h,e,l,o,a]

Example training
sequence:
άƘŜƭƭƻέ
όάƘƻƭŀέ άŀƭƻhŀέ άlolέ..)

x
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Example: learnpredictingnextcharacterof a 
characterstring (word precompilation)



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Character-level language 
model example

Vocabulary:
[h,e,l,o,a]

Example training
sequence:
άƘŜƭƭƻέ

One hot vectors
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Character-level anguage model example

Vocabulary:
[h,e,l,o,a]

Example training
sequence:
άƘŜƭƭƻέ



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Character-level language model example

Vocabulary:
[h,e,l,o,a]

Example training
sequence:
άƘŜƭƭƻέ

ht-1 representssome
«compressed» representation
of previouscharacter

At eachtime-step t, Input is a character, output is the subsequentcharacter



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Networks offer a loRNNt of flexibility:

Vanilla Neural Networks

RNN



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

RNN



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example: image captioning

Input is an image, output a sequenceof 
words describingthe image  a «caption»)



Whatis the learning task?
Asusual, learning the model parameters(the 3 matrixesW in anylayer), 

like for «standard» CNN



Backpropagationstill works:

RNN structure
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Backpropstill works:
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Backpropstill works:
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Backpropstill works:
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Learning parametersin a 
RNN

ÅWhat is the total lossfor this network?

ÅHow do we update the weights Whh ,Wxh and Why?



Backpropagationin RNN 

As usualwe definea LossfunctionL, for 
example, cross entropy loss(asfor CNN)

ὒώ ΣώύҐ ὒὸώὸ Σώύ

Note that error isdefinedover the entire
sequence, so that the total error is the 
sum of lossesat eachstep

Note herewe can have
multiple layers



Ad usual, a forwardpass and a backwordpass

ȟ ,

Forwardpass:

L=Вὒὸώȟώ
ὝὙὟὉ

Backwardpass:

To simplify,  we denoteWhh asW,  Wxh asU and WhyasV.

ώ ίέὪὸάὥὼώ (on the last layer)



Derivationwrt U

Å В

Å =

Åώ=softmax(Uht)

To simplify,  we denoteWhh asW,  Wxh asU and WhyasV.

Thisis the only dependence

ȟ ,

The derivative of softmax
iscomputedasshown here

https://themaverickmeerkat.com/2019-10-23-Softmax/


Derivationwrt W
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ȟ ,



Derivative wrt V
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Wehavethe sameproblem, sincethe
derivative of ht dependson ht-1!!!

ȟ ,



RNNsufferfrom vanishinggradient

ÅNot onlyacrossmultiple layers(vertically), asfor 
CNN, but alsoalongthe timeline (horizontally).

ÅLong-term dependenciesarelost!

ÅBetter solution: LSTM



Long Short-Term Memory: to preserve long-term dependencies

RNN

LSTM


