
RecurrentNeuralNetworks
RNN, LSTM , GRU..

In part from J. Canny, CS294-129 2016 and from Mooney (UTexas, 2015)

Standard Neural Networks are DAGs (Directed Acyclic Graphs). That
means they have a topological ordering.
ÅThe topological ordering is used for activation propagation, and

for gradient back-propagation.

ÅThey are implemented as combinatorial logic devices.

Neural Network structure

Recurrent networks introduce cyclesand a notion of time.

ÅThey are designed to process sequences of data ὼȟȣὼȣȟὼ
and can produce sequences of outputs ώȟȣȟώ .

ÅThey are implemented as sequential logicdevices, and their
behaviourcan be describedasa sequenceof statesand
transitions.

Åὼώ ÃÁÎÂÅÓÉÎÇÌÅÖÁÌÕÅÓÂÕÔÉÎÇÅÎÅÒÁÌÔÈÅÙÁÒÅἾἭἫἼἷἺἻ

Recurrent Neural Networks (RNNs)

ὼ ώ

ὬὬ

One-step delay

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Neural Network

We can process a sequence of vectors xt

by applying a recurrence formula at every
time step:

new hidden state old hidden
state

input vector at
some time step t

some function
with parameters W

x

RNN

y

ht

Notice: the same function and the same set of parameters are used at every time step!!!!

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

(Vanilla) Recurrent Neural Network

x

RNN

y

¢ƘŜ άǎǘŀǘŜέ ŀǘ ǘƛƳŜ ǘ is representedby a άƘƛŘŘŜƴέvector
ht:

An RNN cell

Xt

ht-1 ht

yt

ὡ ȡὬ Ὤ
ὡ ȡὼ Ὤ
ὡ ȡὬ ώ

«Sketched» representationof an RNN cell

ht-1

ht

ht

xt

RNN cells can be unrolled across multiple time steps.

This produces a DAG which
supports backpropagation.

But its size depends on the
input sequence length.

Unrolling RNNs

ὼ ώ

ὬὬ

One-step delay

ὼ
ώ

Ὤ

ὼ
ώ

Ὤ

ὼ
ώ

Ὤ

Output from a hidden
layerat time t is input
to next cellat time t+1

Usually drawn as:

Unrolling RNNs

ὼ
ώ

Ὤ

ὼ
ώ

Ὤ

ὼ
ώ

Ὤ

ὼ

ώ

Ὤ

ὼ

ώ

Ὤ

ὼ

ώ

Ὤ

Often layers are stacked vertically (deep RNNs), and you can have
many:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Same parameters (WL1
hh, W

L1
xh, W

L1
hy)

at this level

Same parameters (WL0
hh, W

L0
xh, W

L0
hy)

at this level

¸

Deep RNN

Thisis obvious, sinceeverylayer
is made of the samecellacrosstime..

lat layercomputessome output function

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Last layercan be a
Softmaxor other functions

ώ ώ ώ

Character-level language model example

Vocabulary (set of characters):
[h,e,l,o,a]

Example training
sequence:
άƘŜƭƭƻέ
όάƘƻƭŀέ άŀƭƻhŀέ άlolέ..)

x

RNN

y

Example: learnpredictingnextcharacterof a
characterstring (word precompilation)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Character-level language
model example

Vocabulary:
[h,e,l,o,a]

Example training
sequence:
άƘŜƭƭƻέ

One hot vectors

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Character-level anguage model example

Vocabulary:
[h,e,l,o,a]

Example training
sequence:
άƘŜƭƭƻέ

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Character-level language model example

Vocabulary:
[h,e,l,o,a]

Example training
sequence:
άƘŜƭƭƻέ

ht-1 representssome
«compressed» representation
of previouscharacter

At eachtime-step t, Input is a character, output is the subsequentcharacter

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Networks offer a loRNNt of flexibility:

Vanilla Neural Networks

RNN

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

RNN

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example: image captioning

Input is an image, output a sequenceof
words describingthe image a «caption»)

Whatis the learning task?
Asusual, learning the model parameters(the 3 matrixesW in anylayer),

like for «standard» CNN

Backpropagationstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Activations

Backpropstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Activations

Backpropstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Activations

Backpropstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Activations

Backpropstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Activations

Backpropstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Activations

Backpropstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Activations

Backpropstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Gradients

Backpropstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Gradients

Backpropstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Gradients

Backpropstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Gradients

Backpropstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Gradients

Backpropstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Gradients

Backpropstill works:

RNN structure

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ

ώ
Ὤ

ὼ ὼ ὼ

ώ ώ ώ

Ὤ Ὤ Ὤ

Time

Abstraction
- Higher

level
features

Gradients

Learning parametersin a
RNN

ÅWhat is the total lossfor this network?

ÅHow do we update the weights Whh ,Wxh and Why?

Backpropagationin RNN

As usualwe definea LossfunctionL, for
example, cross entropy loss(asfor CNN)

ὒώ ΣώύҐ ὒὸώὸ Σώύ

Note that error isdefinedover the entire
sequence, so that the total error is the
sum of lossesat eachstep

Note herewe can have
multiple layers

Ad usual, a forwardpass and a backwordpass

ȟ ,

Forwardpass:

L=Вὒὸώȟώ
ὝὙὟὉ

Backwardpass:

To simplify, we denoteWhh asW, Wxh asU and WhyasV.

ώ ίέὪὸάὥὼώ (on the last layer)

Derivationwrt U

Å В

Å =

Åώ=softmax(Uht)

To simplify, we denoteWhh asW, Wxh asU and WhyasV.

Thisis the only dependence

ȟ ,

The derivative of softmax
iscomputedasshown here

https://themaverickmeerkat.com/2019-10-23-Softmax/

Derivationwrt W

‬ὒ

‬ὡ

‬ὒ

‬ὡ

=

Ὤ ÔÁÎÈὠὼ+WὬ)

Thisalsodependson W!!!

=
‬Ὤ

‬Ὤ

‬Ὤ

‬Ὤ
ȣȢȢ
‬Ὤ

‬ὡ VANISHING GRADIENT!!!

=1-ὸὥὲὬ(x)

ȟ ,

Derivative wrt V

‬ὒ

‬ὠ

‬ὒ

‬ώ

‬ώ

‬Ὤ

‬Ὤ

‬ὠ

Ὤ ÔÁÎÈὠὼ+WὬ)

Wehavethe sameproblem, sincethe
derivative of ht dependson ht-1!!!

ȟ ,

RNNsufferfrom vanishinggradient

ÅNot onlyacrossmultiple layers(vertically), asfor
CNN, but alsoalongthe timeline (horizontally).

ÅLong-term dependenciesarelost!

ÅBetter solution: LSTM

Long Short-Term Memory: to preserve long-term dependencies

RNN

LSTM

