
Recurrent Neural Networks
RNN, LSTM , GRU..

In part from J. Canny, CS294-129  2016  and from Mooney (UTexas, 2015)



Standard Neural Networks are DAGs (Directed Acyclic Graphs). 
Which means they have a topological ordering.
• The topological ordering is used for activation propagation, and 

for gradient back-propagation.

• They are implemented as combinatorial logic devices.

Neural Network structure



Recurrent networks introduce cycles and a notion of time.

• They are designed to process sequences of data 𝑥0, … 𝑥𝑡 … , 𝑥𝑛 and can 
produce sequences of outputs 𝑦0, … , 𝑦𝑚.

• They are implemented as sequential logic devices, and their behaviour can 
be described as a sequence of  states and transitions.

• Tuples 𝑥𝑡 𝑦𝑡 can be single values but in general they are 𝐯𝐞𝐜𝐭𝐨𝐫𝐬

Recurrent Neural Networks (RNNs)

𝑥𝑡 𝑦𝑡

ℎ𝑡ℎ𝑡−1

One-step delay



Sequential data: any kind of data where the 
order matters
• Examples: sequences of discrete (symbolic) or continuous values

• Customer purchases history:  discrete

• Patients health records (sequence of medications, diagnoses..): discrete

• Students actions in and e-learning platforms: discrete

• Stock market prices : continuous

• Sensor data where every point is an observation at a given time: continuous

• Texts (sequence of words): discrete

• Video (sequence of frames) : continuous

• Sequence elements can be univariate or multivariate, uninomial or 
multinomial



Uni/multi variate, uni/multinomial

With respect to the number of variables:

• Univariate: only one variable, e.g. the sequence of values of a stock market price

• Multivariate: many variables, e.g., the sequence of values of different sensors. Every x at time t is a vector of values (xi is the value

of sensor i at time t).

With respect to the type of variables:

• Discrete (symbolic) variables: they can be uninomial or multinomial distributions. Uninomial have only two values, multinomial

have many values.

• Continuos variables may assume any value, and can follow different distributions, e.g., Poisson, Gaussian, Pareto..

Algorithms may differ according to the type of variables and distribution of values.



Overview of common sequential data types

From: https://arxiv.org/ftp/arxiv/papers/2004/2004.12524.pdf



Synthetic and extended architecture of a RNN 
cell

𝑊ℎℎ
𝑊𝑥ℎ

𝑊ℎ𝑦
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ℎ𝑡

Note: we will use from now on
matrixes to denote synaptic
connections between layers in 
a synthetic way

𝑊ℎℎ: ℎ × ℎ
𝑊𝑥ℎ: 𝑥 × ℎ
𝑊ℎ𝑦: ℎ × 𝑦



(Vanilla) Recurrent Neural NetworkThe “state” of an RNN «cell» at time t is represented by a 
“hidden” vector ht:

𝑊ℎℎ
𝑊𝑥ℎ

𝑊ℎ𝑦

ℎ𝑡−1

ℎ𝑡

Hyperbolic tangent is used here as activation function

ht



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Neural Network

Note that we  can process a sequence of vectors xt

by applying a recurrence formula at every time 
step:

new hidden state old hidden 
state

input vector at 
some time step t

some function
with parameters W (e.g., tanh) 

Notice: the same function and the same set of parameters (once learned)  are used at every time step!!!!

xt

RNN

Yt

ht

xt-1 xt-2 xt-3

Yt-1Yt-2Yt-3



RNN cells can be unrolled across multiple time steps.

This produces a DAG which
supports backpropagation.

But its size (number of cells) depends on the 
input sequence length. 

Unrolling RNNs

𝑥𝑡 𝑦𝑡

ℎ𝑡ℎ𝑡−1

One-step delay
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ℎ0

𝑥1
𝑦1
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𝑥2
𝑦2

ℎ2
Output from a hidden
layer at time t is input
to the cell at time t+1

Now here subscript is time



3 equivalent representations  (the third is more often used)
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IMPORTANT!! Although we «unroll» the cell along the timeline, these are NOT different cells! There is a unique cell with
parameters 𝑊𝑥ℎ 𝑊ℎℎ 𝑊ℎ𝑦



Often cells  are stacked vertically (deep RNNs), and you can have 
many  layers L:

RNN structure
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ℎ00

𝑥1
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Time
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- Higher 

level 
features

Same parameters  (WL1
hh, WL1
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hy) 

at this layer 
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at this layer



Deep RNN

This is obvious, since every layer
is made of the same cell across time..



The last layer computes some output function
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Last layer can be a 
Softmax or other functions

ෞ𝑦10 ෞ𝑦11 ෞ𝑦12



Deep RNN

time

abstraction



Character-level language model example

Vocabulary  (set of characters):
[r,i,g,h,d,o,t]

Example training
sequence:
right, rigid, rigor..)

Example: learn predicting next character of a 
character string (word precompilation)



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Character-level language model example

Example
sequence:
“hello”

ht-1 represents some
«compressed» representation
of previous character

At each time-step t, Input is a character, output is the subsequent character

«l» is predicted based on «e» 
and on «h»



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Networks offer a loRNNt of flexibility:

standard NN (no recursion)

RNNTypes of RNN architectures



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

RNN



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example: image captioning

Input is an image, output a sequence of 
words describing the image  a «caption»)



Or text to 
image..
«an astronaut riding a horse 
in a photorealistic style»  
(https://openai.com/dall-e-2/
)

https://openai.com/dall-e-2/


What is the learning task?
As usual, learning the model parameters (the 3 matrixes W in any layer), like for 
«standard» CNN



Backpropagation still works:

RNN structure
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Learning parameters in a 
RNN

• What is the total loss for this network?

• How do we update the weights Whh ,Wxh and Why?



Backpropagation in RNN 

As usual we define «some»  Loss function
L, for example, cross entropy loss (as for 
CNN), or 

𝐿(𝑦𝑇𝑅𝑈𝐸, ො𝑦)=

𝑡

𝐿𝑡(𝑦𝑡
𝑇𝑅𝑈𝐸,ෝ𝑦𝑡)

Note that here the error is defined over 
the entire sequence, so that the total
error is the sum of losses at each time 
step 

Note here we can have
multiple layers



Always with computational graphs!

• We can consider separatly every node (or layer of nodes) of the graph, and analyze the gradient flow at the 
node level

• Remember:  on each node we have 3 gradients: the upsteam (backpropagating from pervious layer), the 
local gradient, computed on the current node, and the downstream gradient, that propagates backwords

• The upstream is known, the local is computed applying tthe derivative on f(x) (whatever function f(x) is), and 
the downstream gradient is computed applying the chain rule.



A more compact notation: Matrix multiplication
gradient

We usually deal with high dimensional inputs and outputs (x) which are represented as vectors (x) and matrices (W).  
The derivative of a scalar (the matrix)  wrt a vector (x) is a vector that represents how the scalar is affected by a 
change in each element of the vector; the derivative of a vector wrt another vector is a matrix that represents how 
each element of the vector is affected by a change in each element of the other vector.

Here W is the weight matrix, x is the input vector, and y is the output product vector, T is the 
transpose (of W or x). The purple node Wx represents an entire layer of neurons that receive the 
input vector x and compute the convolution.

x

W

y



Now, let’s consider the full RNN graph

𝑊ℎℎℎ𝑡−1

𝑊𝑥ℎ𝑥𝑡

ℎ𝑟𝑎𝑤 = 𝑊ℎℎ ℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡

ℎ𝑡 = tanh(ℎ𝑟𝑎𝑤)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡

𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑡)=
𝑒𝑦

𝑡

σ 𝑦𝑘

𝐿 = −log(𝑠)
Forward pass

We use the Logloss

The softmax backprop
is same as for CNN

Same as for CNN, we use
matrix&vector form



Step by step: softmax backpropagation

𝜕𝐿

𝜕𝑦𝑡
= 𝑆𝑚 − 1 𝑖𝑓 𝑡 = 𝑚, 𝑒𝑙𝑠𝑒 𝑆𝑡 where m is the index of the ground truth vector [0,0..1,0..0]

L(y)soft
max

𝑦𝑡

Output of softmax

Log 
entr
opy



Backpropagation along the timeline

Time 

𝜕𝑙

𝜕𝑦𝑡



Backpropagation through vertical layers (towards input)

Transpose of ht vector

𝜕𝑙

𝜕ℎ𝑡−1
= 𝑊ℎℎ

𝑇 1 − ℎ𝑡
2

𝜕𝑙

𝜕ℎ𝑡

Vanishing gradient!!



Vanishing gradient with RNN

Each partial derivative of hidden states 
𝜕𝐿

𝜕ℎ𝑡
is a function of the activation function used to 

produce that hidden state — often the tanh and sigmoid functions. 

An important property of these functions is that they map input to values between -1 and 1 
for tanh and 0 and 1 for sigmoid. Thus, the derivative of the hidden states is generally 
bounded by 1. 

Because the gradient is calculated using the product of these derivatives all the way through 
the time line (which might be quite longer than the vertical line, e.g., the depth of the 
network), and the magnitude of each derivative of hidden states is less than 1, the result is 
that the entire gradient approaches 0 as the length of the sequence increases. 

With a gradient that approaches 0, each update of the weight vectors becomes smaller and 
smaller, leading to a neural net that does not improve after a few samples of training, with 
stagnant weight vectors.

RNN then tend to “forget” the effect of earlier signals !!!!



Vanishing gradient along the timeline

If the weights along the purple edge are less than one, the 
effect of the input at the first time step (blue) on the 
output at the final time step (red) will rapidly diminish as a 
function of the size of the interval in between.



RNN suffer from vanishing gradient!

•➔Long-term dependencies are lost!

•Better solution: LSTM  (long-short term memory)



Long Short-Term Memory: to preserve long-term dependencies

RNN

LSTM



Basic cell of LSTM

❑ Hidden states

❑ Input gates

❑ Forget gates

❑ Output gates

To upper layers

To next step t+1
W



Concatenate x and h

Cell state to retain only «relevant» long-term dependencies
and cancel unnecessary information

Hidden state to retain short-term
dependencies (long term are forgotten
due to VG)



«Extended» view of the cell



Cell state
• Maintains a vector Ct that is the same dimensionality as the hidden state, ht

• Information can be deleted (forgotten) from, or added to, this state vector C via the Forget (×) and Input 
(+) operators.

• The “X” operator multiplies  Ct vector by the output of sigmoid vector, whose values are in the range [0,1]. 
This causes some of the elements in  Ct to be forgotten (deleted).

• Th “+” operator adds to  Ct some of the information computed in the current cell

• Help remember long-term dependencies (sort of “summary” of previous history, updated in each cell)



Cell State Example: forget and add

• Automated anaphora resolution: Want to remember person & 
number of a subject noun so that it can be checked to agree with the 
person & number of pronoun when it is eventually encountered.

• Example: John is a student, he likes machine learning.

• Forget gate will remove (multiply by zero or small value) 
existing information of a prior subject when a new one is encountered.

• Example: John is a student, George is a professor, he hates machine 
learning. 

• Input gate "adds" in the information for the new subject.

52



Forget Gate (what should be forgotten about 
previous states)

• Forget gate computes a 0-1 
value using a sigmoid output 
function from the input, xt, 
and the current hidden state, 
ht:

• Multiplicatively combined 
with cell state C, "forgetting" 
information where the gate 
outputs something close to 0.

53



Input Gate  (what is added by this state)

• First, determine which entries 
in the cell state to update by 
computing 0-1 sigmoid 
output (when zero the 
correspondent value cjt in Ct
is not updated, cjt +0= cjt)

• Then determine the sign 
(whether to add or subtract) 
of these entries by computing 
a tanh output (valued –1 to 1) 
function of the input and 
hidden state.

54



Updating the Cell State

• Cell state is updated by using 
component-wise vector 
multiply to "forget" and 
vector addition to "input" 
new information.

• Note that actually the values 
(a b c d) are SCALED in [-1 1,] 
rather than multiplied bay -1 
+1

55

a b c d 

0 0 1 1 

0 0 c d 

0 1 0 1 

f -g h e 

0 -g 0 e 

0 -g c (d+e)) 



Output Gate  (what goes to next layer and 
next state)

• Hidden state is updated 
based on a "filtered" version 
of the cell state, scaled to [–1 
1 ] using tanh.

• Output gate computes a 
sigmoid function of the input 
and current hidden state to 
determine which elements of 
the cell state to "output".
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Overall Network Architecture



LSTM Training

• Trainable with backpropagation derivatives -
Stochastic gradient descent with momentum

• Each cell has many parameters (Wf, Wi, WC, Wo)

• Generally requires lots of training data.

• Requires lots of computation time that exploits GPU 
clusters.
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Common 
applications of 
LSTMs

59

Robot 
control.

Time series 
prediction.

Speech 
recognition.

Automated 
translation

Rhythm 
learning.

Music 
composition.

Grammar 
learning.

Handwriting 
recognition.

Human action 
recognition.

More here
and here

●%20http:/colah.github.io/posts/2015-08-Understanding-LSTMs/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-netwo


Advanced methods in sequence learning

• Attention networks to identify those elements in a sequence with the 
highest relevance

• Transformers

https://theaisummer.com/attention/
https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452

