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Probabilistic ML algorithms

MLE, MAP and Naïve Bayes Model



Basic probability 
notions you 

need
link
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https://www.probabilitycourse.com/


Axioms of Probability Theory

• All probabilities are between 0 and 1

• The true proposition has probability 1, false has 
probability 0. 

P(true) = 1        P(false) = 0

• Disjunctive probabilities:
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1)(0  AP

𝑃(𝐴 𝑂𝑅 𝐵) = 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)

A B𝐴 ∩ 𝐵



Conditional Probability 
• P(A | B) is the probability of A given B

• Assumes that B is all and only information known.

• Defined by:
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𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)

A B𝐴 ∩ 𝐵



Statistical Independence

• Random variables A and B are independent if and 
only if:

• Therefore, if A and B are independent:
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)()|( APBAP = )()|( BPABP =

𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
= 𝑃(𝐴)

𝑃 𝐴 ∩ 𝐵 = 𝑃(𝐴, 𝐵) = 𝑃(𝐴)𝑃(𝐵)



Bayes 
Formula

• 𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)



Univariate and Multivariate distributions

• Univariate distribution is when there is only one random variable
(e.g. if instance vectors 𝒙 in 𝑋 are described by just one feature, or 
when there is one classification function 𝐶 𝑥 = 𝑌) 
• The feature or classification space is one-dimensional (for example real 

numbers, list of labels, ordered labels or binary)

• Multivariate if many random variables are involved (e.g. 
𝒙: (𝑋1, … , 𝑋𝑑) or C(x): (Y1,Y2…..YN)  - multiple features and multiple 
classes. Now, any feature 𝑗 (or any class i) can be described by a 
random variable Xj (or Yi). 

• If a random variable Xj is discrete, we can estimate 
𝑃 𝑋𝑗 = 𝑥𝑗𝑘 , 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑎𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑀𝐹, where 𝑥𝑗𝑘 with 
k = 1,… , 𝑑𝑗 are the dj possible values for feature 𝑗 . (e.g., binomial
multinomial)

• 𝐼f Xj is continuos, then we can estimate p(Xj), the Probability Density
Function PDF of its values (e.g., a Gaussian). 



Probability mass and probability density
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Probabilistic ML

• We reformulate the learning/predictions problems in probabilistic
terms

• Input instances x are treated as (univariate or multivariate) random 
variables, output y is a (univariate or multivariate) random variable, 
the model to be learned can be described in probabilistic terms, e.g., 
P(Y=y|X=x) the conditional probability of y given the observation of x. 
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Mapping the terminology
Symbolic
(table)

Geometric (vectors) Probabilistic
interpretation

Variables or values?

X : feature
space

feature space (multivariate) random 
variables

Set of variables

x : record, 
instance

feature vector Observation, trial, 
sample, random vector

Set of values

D : dataset Set of feature vectors A sample of X Set of valued random 
vectors

Xi: i-th feature i-th dimension of feature
space

i-th random variable of 
the multivariate 
distribution

variable

xi: a value for 
feature Xi

value of i-th coordinate of a 
feature vector

A value that can be 
assumed by the 
random variable Xi (a 
sample/observation of 
Xi)

value

In general, in statistics,  lowercase indicate observations (values)  and uppercase random variables
10



Probabilistic formulation of 
ML

Many machine learning problems can be formulated in 
probabilistic terms. 

• The target of a ML classifier is to learn a 
classification function (a model M)  from data D

𝑓 𝒙 : 𝒙 → 𝑦 (or y if output is also a vector)

➢Given an unseen instance 𝒙, assign a category
label 𝑦 to this instance using the learned
function 𝑓 𝒙 . 

➢ In a probabilistic formulation, f(x) is a 
probability function, e.g., P(y|x). What is the 
probability to observe Y=y for the output 
random variable, given that X=x?
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Probabilistic 
formulation

Two alternative probabilistic formulations of 
a ML classifier are: 

GENERATIVE models: define a function L(D; 𝜽), 
where 𝜽 are the parameters of a model M𝜽 and «;» 
stands for a joint probability.

• L(D; 𝜽) is the likelyhood of 𝜽 given the 
observation of  D.  The likelyhood is used to 
estimate the parameters 𝜽

• Use 𝜽 to specify the model M𝜽 that explains our
data (and predict new ones)

DISCRIMINATIVE models: Use the dataset D to 
estimate the parameters 𝜽 of a  probability
function P 𝑌 = 𝑦 | 𝒙 which is the conditional
probability of class label y given the observation of 
𝒙. 
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Understanding the 
difference

• A generative model implies learning  the distribution of the 
data itself  and tells you how likely a given example (instance) 
is. For example, we can postulate that our data are generated 
by a Gaussian distribution, G𝜽 with unknown parameters 𝜎
and 𝜇. Learning the parameters allows us to predict the 
probability of observing a particular instance X=x. 

• A discriminative model ignores the question of whether a 
given instance x is likely, and just tells you how likely a label
(category) is , GIVEN the observation of the instance 
(P(Y=yi|X=x).

• Here is a nice paper that explains in detail the difference 

13

http://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf


Discriminative/generative
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The model just predicts the probability
that a new instance is a cat or dog, 
only based on whether it is placed wrt
the decision boundary

The model «interprets»  the input data (provides a 
probabilistic model  that may have generated the observed
data) and it is able to say how likely a new
instance is to belong to the probability
distribution – e.g., of of «cats» or of «dogs» -

Argmax(P(Y=dog/X=x), P(Y=cat/X=x)



What is this «model» of the data?
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An additional dimension is added, a PMF (or PDF) – the «Model» – that «interprets»
the data in probabilistic terms (e.g, in this two-dimensional space: 
P(X1,X2;Positive) and P(X1,X2; negative) )  

For example: x and y are the 
body-mass-index and 
cholesterol value of a sample 
population D of diabetic
(positive, D+) and 
non-diabetic (negative. D-)
patients.
We are assuming a gaussian
distribution of these values,
with unknown 𝜎, 𝜇



Generative: find 
parameters that 
“explain” all data

For example, if we assume 
that the values of a 
continuous random 
variable X follow a 
Gaussian distribution, we 
can estimate the 
parameters of this 
distribution for the 
positive and negative 
examples  (𝜎+𝜇+, 𝜎−𝜇− ) 
in D
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Is x=4 more 
likely to 

belong to the 
distribution
of positive
or negative 
instances? 



Discriminative:
finds parameters that 
help to predict relevant 
data.
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What is
the 

most
likely
class
for 
???

Note the analogy between the difference
between classifiers and regressors, and 
discriminative and generative models.



Intuitively: To learn the 
parameters of the model we
have to maximize a probability
function of observing the 
evidence provided by the 
training  set D. 

Goal: After observing 
several examples x1.. xN (a 
so-called “sufficient 
statistics”) estimate the 
model parameters, 𝜽,
that may have generated 
the observed data.  

• Let M be a probabilistic formulation (model) of a classification task , our training task 
is to “fit” the model with respect to our dataset D, like for algebraic models. In 
probabilistic terms, our task is to model the joint probability P 𝐷;𝑀𝜽 where 𝜽 are 
the model parameters («what is the most likely set of parameters that may have
generated D??» The training  set D now is seen as an «evidence» generated by some 
unknown distribution)

• Suppose that we know exactly the “structure” of M (e.g. a softmax function or a 
gaussian) , this means that we can express our model in some precise probabilistic 
form, but the values of its probabilistic parameters 𝜽 (e.g. the weights of softmax or 
the 𝝈 of a Gaussian) are unknown. The problem involves finding

M 𝜽 that “best explains” the training data D

Generative models formulation



Maximum 
Likelihood 
Estimation

In statistics, Maximum Likelihood 
Estimation (MLE) is a method 
for estimating the parameters of a statistical 
model M given observations D, by finding 
the parameter values that maximize 
the likelihood of observing D. So, again, it is 
an optimization problem.

What is the «likelihood»?
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Likelihood 
Function  for 
Random 
Variables

• The likelihood function expresses the joint probability (or 
probability density) of a sample data D, given a set of model 
parameters values. 

• 𝑳𝑫 𝜽 = 𝒇 𝑫; 𝜽 = 𝒇(𝒙𝟏, 𝒙𝟐, … , 𝒙|𝑫|; 𝜽)

• f is a function of the parameters, that express:
• Discrete Case: probability mass function (PMF) 

(e.g. Bernoulli, Geometric, Binomial distributions)
• Continuous Case: a probability density function 

(PDF) (Gaussian, Poisson, Exponential, Softmax..)
• What does likelihood mean and how is “likelihood” different 

than “probability”? 
• Discrete distributions: likelihood is a synonym for 

the joint probability of your data D
• Continuous Distribution: likelihood refers to the 

joint probability density of your data D
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Likelihood 
Function
What are these 
“parameters”?

• The definition of 𝜽 is quite general. 

• A set of parameters {1,2, … ,𝑚}
➢ Discrete Case: the parameters are 

probabilities P(Xi=xi), e.g. P(Color=red)  or 
conditioned probabilities P(Y=y|X=x)  (e.g. 
P(Y=yes|Color=red) 

➢ Continuous Case: the parameters are the 
coefficients in a probabilistic formulation
(e.g., if M is the softmax function (a.k.o. 
exponential) : 𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑖 𝒙,𝑊 =
𝑒𝑥𝑖𝑤𝑖

σ𝑗 𝑒
𝑥𝑗𝑤𝑗

)  parameters 𝜽 are the wj; if M is a 

gaussian, 𝜽 are 𝜎 𝑎𝑛𝑑 𝜇)
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Statistical Parameter Fitting 
(general definition for multivariate case)

• Consider instances in dataset 𝐷:< 𝒙𝟏, 𝒙𝟐, … , 𝒙 |𝑫| >

• such that:
• The set of values that y = 𝑌(𝒙) can take is known (to simplify, 

let’s Y be univariate and either binomial or multinomial)

• Each 𝒙𝒊 is sampled from the same distribution

• Each 𝒙𝒊 is sampled independently of the rest
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i.i.d.

Samples

The task is to find a vector of parameters:

 that have generated the given data 𝐷.  This  vector parameter  can 
be used to (probabilistically) predict the class of future data



Maximum Likelihood Estimation

MLE Principle:

Given sufficient statistics, choose parameters that maximize the 
likelihood function (the likelihood of observing data)

Θ𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥C(𝐿 (𝐷; Θ)) = 𝑎𝑟𝑔𝑚𝑎𝑥Θ(𝑃(𝐷; Θ))

• A “sufficient statistics” is a function whose value contains all the 
information needed to compute any estimate of the parameters

• In MLE we seek the model parameters  that maximize the likelihood
(argmax𝜽 (L)), and the likelihood is expressed as a conditional 
probability.  It is thus an optimization problem (as for all ML 
algorithms!)
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Maximum Likelihood Estimation
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Finding MLE’s involves techniques of differential calculus (as usual). To 
maximize 𝐿𝐷 𝜽 with respect to each 𝜃𝑖 𝑖𝑛 𝜽:

1. First calculate the (partial) derivative of 𝐿𝐷 𝜽 with respect to all 𝜃𝑖,
2. Set the derivative equal to zero, and
3. Solve the resulting equation for 𝜃𝑖.

• These computations can often be simplified by maximizing the log-likelihood 
function:

𝑙𝐷 𝜽 = ln(𝐿𝐷 𝜽 )

𝑙𝐷 𝜽 =

𝑖=1

|𝐷|

ln(𝑷(𝒙𝒊; 𝜽) ) (𝑖𝑛 𝑡ℎ𝑒 𝑖. 𝑖. 𝑑. 𝑐𝑎𝑠𝑒)

• The natural log is an increasing function, maximizing the log-likelihood is the 
same as maximizing the likelihood. The loglikelihood often has a much 
simpler form than the likelihood and is usually easier to differentiate.



Likelihood Function for discrete variables

25

• First, we deal with discrete distributions of random variables (so we can directly 
use the classical probability notation 𝑃 instead of 𝑓). 

𝑳𝑫 𝜽 = 𝑷 𝑫;𝜽 = 𝑷(𝒙𝟏, 𝒙𝟐, … , 𝒙 |𝑫|; 𝜽)

• Note: Categorical distributions like Bernoulli, Binomial and Multinomial are discrete 
distributions!!!

• For different values of the parameters, the likelihood of our data will be different. 
For that reason we write likelihood as a function of our parameters (θ)

• Furthermore, if the random variables (instances in X) are identical and 
independently distributed (i.i.d.), we can apply the independent and identically 
distributed assumption to the likelihood:

𝑳𝑫 𝜽 = 𝑷 𝑫;𝜽 = ෑ

𝒊=𝟏

|𝑫|

𝑷(𝒙𝒊 ; 𝜽)

The joint distribution 𝑷(𝒙𝟏, 𝒙𝟐, … , 𝒙 |𝑫|; 𝜽)

can be expressed as the product of  independent joint probabilities of observing each 
instance! 



MLE for Binomial Distribution (univariate)
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• Suppose that (𝑥1, 𝑥2, … , 𝑥 |𝐷|) represents  n=|D| i.i.d. samples of a binary random 

variable Y, that follows a binomial distribution. Let 𝜃 be the probability that a sample 
𝑥 𝑗 is equal to 1, and (1- 𝜃) the probability of being 0. (Note: Y is here univariate, 
therefore is not in bold)

• Note: The binomial distribution here could model both the distribution of class labels yj
AND the distribution of feature values xi in case of discrete features. The purpose is just 
to see how MLE applies to these types of distributions.

• Consider the PMF (probability mass function) of a Binomial distribution where r is the 
number of times we observe x=1 in n trials (e.g., the PMF modeling the probability of  
observing r “1s”  in the n samples in D):

𝑃 𝐷;  =
𝑛!

𝑟! 𝑛 − 𝑟 !
𝜃𝑟(1 − 𝜃)𝑛−𝑟

So, if the MODEL is a Binomial distribution, the only parameter is 𝜃 the probability P(x=1)



MLE for Binomial Distribution
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• The likelihood for 𝜃 based on 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is defined as the 
joint probability distribution of observing a sequence of n binary values  
𝑦1, 𝑦2, . . . , 𝑦𝑛 such that every 𝑦𝑖is either 1 or 0. Since 𝑦1, 𝑦2, . . . , 𝑦𝑛 are i.i.d.

observations of the random variable X, the joint distribution is:

𝐿𝐷 𝜽 = 𝑃 𝐷;  =ෑ

𝑖=1

𝑛

𝑃 𝑦𝑖; 𝜽 = 𝜃𝑟(1 − 𝜃)𝑛−𝑟

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝜃 + (1 − 𝜃) = 1 𝑎𝑛𝑑 𝜃 ≥ 0

• Note that the constant  
𝒏!

𝒓! 𝒏−𝒓 !
of the binomial distribution is not necessary in the 

likelihood formula.  Since the 𝐿𝐷 𝜽 is a function on ,  and 
𝑛!

𝑟! 𝑛−𝑟 !
is a fixed 

constant, it does not affect the MLE (maximization). 

• The constant values in the expression of 𝑃 𝑥𝑖; 𝜽 are statistically irrelevant.



MLE for Binomial Distribution
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• Note that the values of r and n-r in previous formula are, respectively, N1

(the number of observed samples where Y=1) and N0 (the number of 
samples with Y=0) in D (|D|=n=N1+N0). They  represent a sufficient 
statistics to estimate the parameter 𝜃 of the  binomial distribution

• We can employ MLE to estimate 𝜃 using the log-likelihood:

𝑙𝐷 𝜃 = log(𝐿𝐷 𝜽 ) = 𝑁1 log 𝜃 + 𝑁0 log 1 − 𝜃

• With 𝜃+(1- 𝜃)=1

• Taking derivative 
𝜕(𝑙𝐷 𝜃 )

𝜕 𝜃
and equating it to 0 we obtain (log is the 

natural log):

𝑁1

𝜃
=

𝑁0

1−𝜃
➔ 𝜃 =

𝑁1

𝑁0+𝑁1
=
𝑁1

|𝐷|
=

𝑁1

𝑛

Remember: to maximize or
minimize a function you
need to take the derivativeNote: 𝜃 is our ESTIMATE of 

the parameter, given the 
evidence



MLE for Multinomial Distribution
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• Suppose that 𝐷 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) represents n i.i.d. samples (n=|D|) of a 
random variable  X. The random variable is now multinomial, i.e., it can 
assume one out of  k different values  each with probability 𝜃𝑗 (e.g., 
assigning a category label to a document in a predictive task )

• Consider the PMF of a Multinomial distribution:

𝑃 𝐷;  =
𝑛!

𝑟1! 𝑟2! … 𝑟𝑘!
𝜃1
𝑟1𝜃2

𝑟2 …𝜃𝑘
𝑟𝑘 =

𝑛!

𝑟1! 𝑟2! … 𝑟𝑘!
ෑ

𝑗=1

𝑘

𝜃
𝑗

𝑟𝑗

Where 𝑟𝑗 is the number of occurrences of the outcome j. Each rj can be 
estimated  by the dataset  D.

• Notice that in the multinomial distribution, the Maximum likelihood
parameter vector  is composed by  a set of k probabilities 𝜃1 𝜃2… 𝜃𝑘 of 
observing each possible outcome   X=xj .



MLE for Multinomial Distribution
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• Since 𝑥1, 𝑥2, . . . , 𝑥𝑛 are i.i.d., the joint distribution is:

(1) 𝐿𝐷 𝜽 = 𝑃 𝐷;  = ς𝑖=1
𝑛 𝑃 𝑥𝑖; 𝜽 = ς𝑗=1

𝑘 𝜃
𝑗

𝑟𝑗
𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕: σ𝑖 𝜃𝑖 = 1 𝑎𝑛𝑑 𝜃𝑖 ≥ 0 ∀𝑖

• Since the 𝐿𝐷 𝜽 is a function on , 
𝒏!

𝒓𝟏!𝒓𝟐!…𝒓𝒌!
is a fixed constant, it does not affect the 

MLE (maximization)! As before,  the constants are statistically irrelevant.

• In this case the «sufficient statistics» are 𝑟1, 𝑟2…𝑟𝑘 , e.g. the observations of the  of |D| values xi  of 
the multinomial random variable X (𝑤𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑟1 times value x1, ecc.)

• To calculate the log-likelihood and incorporating constraints (the «such that» above) we can use the 
Lagrangian method



Lagrangian optimization
Given a function f(x) and a set of constraints c1,.. cn, a Lagrangian
is a function L(f, c1,.. cn, α1,..  αn)  that “incorporates” the constraints 
in the optimization problem

Karush-Kuhn-Tucker (KKT) conditions: The optimum is at a point where

This condition is known as complementarity condition  
(it means that at least one of 𝛼𝑖, ci(x) must be zero). 

The derivative is 0

More at this link

http://www.statslab.cam.ac.uk/~rrw1/mor/s.pdf


MLE optimization with Lagrangian

• MLE optimization then implies first, incorporating the constraints with 
lagrangians

• From previous equation (1) by applying the log and incorporating
constraints (𝛼 is the lagrangian coefficient), we obtain: 

𝑙𝐷 𝜃 =

𝑗

𝑟𝑗𝑙𝑜𝑔𝜃𝑗 + 𝛼 1 −
𝑗
𝜃𝑗

• Next, we apply the partial derivatives vrs. each 𝜃𝑗 and set them to 
zero, and solve equations considering that σ𝑗 𝜃𝑗 = 1

𝜃𝑗 =
𝑟𝑗
σ𝑖 𝑟𝑖

=
𝑟𝑗

|𝐷|
=
𝑟𝑗

𝑛



MLE for supervised learning

• Previous formulas estimate the probability of  observing a given value xj in 
an «unconditional» setting, that is: we estimate the likelihood of observing
a given «outcome» in the data, regardless of the function y=f(x) that
generates these outcomes. 

• The MLE principle is:

𝜃𝑀𝐿𝐸=𝑎𝑟𝑔𝑚𝑎𝑥𝜃(𝑃 𝐷; 𝜃 )

• Where 𝜃 are the parameters of M, a model that may represent the 
distribution of data, e.g. a binomial. 

• We now need to apply MLE to a supervised context where we consider
both input and output data (x and y)

𝜃𝑀𝐿𝐸=𝑎𝑟𝑔𝑚𝑎𝑥𝜃(𝑃 𝐷; (𝒙, 𝜃) )



Example of prediction with MLE

• Suppose we have univariate multinomial instances x describing a unique feature: the age
of citizens (values are, e.g.: A: [16-20) B:[20-23)  C[23-28) D  [28, 100]), the class label is 
binary and represents their average cellular phone bill , where Y=0 ➔ less than €100 , 
Y=1 ➔ >=€100

• Step 1: we partition our data (patients) in two subsets DY=0 and DY=1;

• Step 2: we assume that x follows a multinomial distribution, and we estimate, for each
subset DY=i separately, the model parameters Θ𝐷𝑌=𝑖using the log-likelyhood maximization
seen above

• Step 3: given a new unseen instance x’, we predict the class Y as

𝑌 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗(𝑃(𝑥′; 𝑌 = 𝑗))  

• in practice this will be the most likely bill range for citizens aged in the range A, B, C or D, 
to which x belongs. We select the class value j that maximizes the probabilty that x has 
been generated by the model M(DY=j) with parameters 𝜣𝑫𝒀=𝒊



MLE for continuous variables
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Suppose we have data points representing the average of past grades of students in a 
class (so we have only one feature for each instance, a univariate problem, but now the 
variable is continuous), and we want to predict if they will pass a new test. (in our train set 
D, red passed test Ti, green did not). So here x is continuous, y is binary. In the histogram, x 
is the average, y is the % of the population with that average value, the color distinguishes
the distribution (in our sample) of those who passed and those who not passed.

Average past grade
in test T0..Ti-1

%students



MLE for Gaussian distribution

• Given our data, let’s suppose that the model for input variable X 
(average grade) follows approximately a Gaussian distribution

• So the model M is (probability density of X in C):

• Note, as for the discrete case before,  that 𝜽 parameters
(𝜎𝐶=1𝜇𝐶=1; 𝜎𝐶=0𝜇𝐶=0 ) are DIFFERENT for each class C (those who
passed and those who didn’t).

• In the example we have just two classes (the output C is binomial) 
and one feature (univariate, continuous) but this applies in general 
to multiple classes and multiple features – each would follow a 
Gaussian)

c



Example (3): fitting the model with data
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We need to find, for each subset of samples (in our example, students who passed
test Ti and those who did’nt), the values of  parameters 𝜎, 𝜇 of the Gaussian, such that
P(DC; ) best «fits»  the observed data.



Example: MLE for Gaussian distributions

• Let 𝐷𝐶𝑖 be the subset of D of instances with class C=Ci (0 or 1)and lets’ 
use a superscript to denote different instances 𝒙(𝑖) in 𝐷𝐶𝑖 (so that for 
multi-variate observations we can denote with subscripts their
features). 

• We then have for the log-likelyhood (we omit the Ci subscript to avoid
overloading the notation and furthermore |𝐷𝐶𝑖 = 𝑁 :
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𝑙𝐷 𝜽 =

We have two parameters, 𝜇 𝑎𝑛𝑑 𝜎

Note the «-» sign is like multiplying by a constant, does not change the ranking and simplifies the expression



Computing partial derivatives

• We then apply the derivative 
𝜕 𝑙

𝜕𝜇
to the log likelihood and 

set to zero

• Setting to zero  the derivative  (➔numerator must be =0), 
we obtain:

Note that for multivariate instances x, also 𝝁 is a vector



Computing partial derivatives

• Next, we compute derivative 
𝜕𝑙

𝜕𝜎
and set it to 0

,

40
(which is a rather obvious result.. )

𝜕
𝜕

This generalizes in a 
straightforward way to
the multivariate case
(multiple features): now
𝒙𝒏

,
𝝈, 𝝁 are vectors, and 

we compute partial derivatives
𝜕𝑙

𝜕𝜇𝑖
,
𝜕𝑙

𝜕𝜎𝑖



When the model parameters have been estimated,  
how is a new  prediction made with MLE?
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),,,( 21 nxxx =x

𝐶 ∗= 𝑎𝑟𝑔𝑚𝑎𝑥𝑗𝑃(𝒙; 𝐶𝑗)

Given a new instance x (we now suppose x is a vector), and having estimated the 
parameters of the generative  models for each possible class, we compute P(x|Ci) for each
model, and compute the argmax

Generative

Probabilistic Model

for Class 1

)|( 1cP x

1x 2x nx
•••

Generative

Probabilistic Model

for Class 2

)|( 2cP x

1x 2x nx
•••

Generative

Probabilistic Model

for Class L

)|( LcP x

1x 2x nx
•••

•••

P(x;CN)P(x;CN)P(x;C2)P(x;C1)

We select the class value Ci that
maximizes the probabilty that x
has been generated by M(Ci)



Maximum A 
Posteriori 
(MAP)
another 
generative 
model

• MAP is an alternative probabilistic formulation of ML 
problems, still belonging to the generative class of 
models

• In short, the essential difference wrt MLE is in what is 
modeled using probability theory. MLE first, learns a joint 
probability 𝑳𝑫 𝜽 = 𝒇 𝑫; 𝜽 and then, to predict a class, 
estimates the argmax of P(X=x;Y=yi) for every output 
value or class 

• MAP uses a Bayesan approach: The formulation is a 
conditional probability A/B rather than a joint probability 
A;B.

• MAP estimates conditional probabilities rather than the 
parameters of a distribution

42



Maximum A Posteriori estimate

• In MAP, the probabilistic model M is:  𝑃 𝑌 = 𝑦 | 𝑿 = 𝒙 (P(y|x) 
for short) , the conditional probability of class label  y,  given the 
observation of an instance x

• The prediction is computed as y ∗= 𝑎𝑟𝑔𝑚𝑎𝑥 𝑦𝑗(P(𝑌 = 𝑦𝑗|X=x))  
(remember, in MLE we computed the joint probability  P(x;Y(x))!!)

• As for MLE, we need to estimate the parameters  of M

• The solution of the problem is based on the Bayes theorem 
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Learn the values of model parameters that
maximize the the conditional probability of a class 
label y given the observation of x. Model 
parameters are probabilities. 



Maximum a posteriori estimate learning
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• Similarly to MLE, we estimate 𝑦𝑖 by maximizing a probability function distribution, which
is for MAP:

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖(𝑃 𝑌 = 𝑦𝑖 | 𝑋 = 𝒙 )

• In probability calculus, often estimating 𝑃(𝑎|𝑏) is easier that estimating 𝑃(𝑏|𝑎) so 
MAP applies the Bayes theorem to invert conditional probabilities

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖 𝑃 𝑌 = 𝑦𝑖| 𝑋 = 𝒙 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖
𝑃 𝑌 = 𝑦𝑖 𝑃(𝑋 = 𝒙|𝑌 = 𝑦𝑖)

𝑃(𝑋 = 𝒙)

≈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖 𝑃 𝑌 = 𝑦𝑖 𝑃(𝑋 = 𝒙|𝑌 = 𝑦𝑖)

• Note that since the denominator 𝑃(𝑋 = 𝒙 ) is common to all the probabilities, it does
not affect the ranking in the argmax computation. No need to compute it!!!

• Also note that the problem is now formuled both in terms of prior probabilities (the 
𝑃 𝑌 = 𝑦𝑖 ) of the random variable to be predicted, and conditional probabilities P(X|Y)



Given previous formula, how does MAP 
works?
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Apply log

Use property of independence
of observations

Change product with sum 
(property of logs) 

Conditionals Priors



Probabilistic Classification with MAP
(multinomial, multivariate X and Y)

• Let Y be a univariate multinomial random variable for the output class Y which takes values

{𝑦1, 𝑦2, … , 𝑦𝑛} (n possible classifications for our instances).

• Let X be a multivariate multinomial random variable describing input instances consisting of d features 

• 𝒙:< 𝑋1, 𝑋2, … , 𝑋𝑑 >, let 𝑥𝑗 be a possible value for the feature 𝑋𝑗 (𝑗 = 1,… , 𝑑)

• Remember: we now use uppercase Xi for features, to suggest that  features are random variables, lowercase for 
instances xi (random vectors) of X in D.

• Since features Xi are multinomial (multiple values), for our classification task, we need to compute the 
conditional probabilities:

𝑃 𝑌 = 𝑦𝑖| 𝑋 = 𝒙:< 𝑋1 = 𝑥1, … , 𝑋𝑑 = 𝑥𝑑 > for 𝑖 = 1,… , 𝑛
(e.g. 𝑃 𝑌 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒| 𝑋 = 𝒙:< color = blue, shape = circle > )
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Remember: 
• Multinomial is a random variable that can take a finite number of values
• Multivariate is a random vector made of multiple random variables



Probabilistic Classification
𝑃 𝑌 = 𝑦𝑖| 𝑋 = 𝒙 < 𝑋1 = 𝑥

1
, … , 𝑋𝑑 = 𝑥

𝑑
> for 𝑖 = 1,… , 𝑛

(e.g. 𝑃 𝑌 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒| 𝑋 = 𝒙 < color = blue, shape = circle > )

• the objective is to classify a new unseen instance  𝒙 by first estimating the 
probability of each possible classification 𝑦𝑖 , given the observation of feature 
values of the instance to be classified

• To estimate  𝑃(𝑌 = 𝑦𝑖 | 𝑿 = 𝒙) we use a learning set D of pairs (𝒙, 𝑌(𝑥))

• Summary notation: 
• i is index of class values (Y is univariate and multinomial)
• j is index of features  (X is multivariate, Xj are multinomial) 
• uppercase Xj is a feature, lowercase xj is a value
• Bold lowercase x is a specific instance in D (x∈ 𝑋) – here the idea is that 

uppercase represents a random variable, lowercase an observation. 
• We omit the superscript h of instances xh in D (unless strictly necessary) to avoid 

overloading  the notation
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How can we compute 
𝑃(𝑌 = 𝑦𝑖| 𝑋 = 𝒙)? ?

• Example: we observe the instance x<color = red, shape = circle> (two symbolic features) and there
are two possible classes Y <y1 = positive, y2 = negative>

• Possible values for features are: color: 𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒 ; shape: 𝑐𝑖𝑟𝑐𝑙𝑒, 𝑠𝑞𝑢𝑎𝑟𝑒

• We need to compute:

• So we need to estimate  the joint probabilities (e. g. 𝑃(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒⌃𝑟𝑒𝑑⌃𝑐𝑖𝑟𝑐𝑙𝑒)) 

• The joint probability distribution for a set of random independent variables gives the probability 
of every combination of values
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P(positive | redÙcircle) =
P( positiveÙ redÙcircle)

P(redÙcircle)

P(negative | redÙcircle) =
P(positiveÙ redÙcircle)

P(redÙcircle)



Joint probability tables

• The probability of all possible conjunctions (= assignments of values to some 
subset of features) can be estimated from the training  set, by summing the 
appropriate subset of values from the joint distribution.

• If all joint probabilities can be estimated, all conditional probabilities can be 
calculated.
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circle square

red 0.20 0.02

blue 0.02 0.01

circle square

red 0.05 0.30

blue 0.20 0.20

Class = positive Class = negative

P(redÙcircle) = P(redÙcircleÙ positive)+ P(redÙcircleÙnegative) = 0.20+0.05= 0.25

80.0
25.0

20.0

)(

)(
)|( ==




=

circleredP

circleredpositiveP
circleredpositiveP

P(shape = circle, color = blue, C = positive)



Example

Consider this learning set D of 5 annotated instances:

• x1 (red, circle), positive

• x2(red,square),negative

• x3(blue,circle),positive

• x4(red, circle),negative

• x5(red, circle), positive

𝑃 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑑 ∧ 𝑐𝑖𝑟𝑐𝑙𝑒) =
𝑃(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∧𝑟𝑒𝑑 ∧ 𝑐𝑖𝑟𝑐𝑙𝑒)

𝑃(𝑟𝑒𝑑 ∧ 𝑐𝑖𝑟𝑐𝑙𝑒)
=

2
5
3
5

=
2

3
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Probabilistic Classification
• However, given no other assumptions, this requires tables assigning a 

probability to each category label for each possible combination of 
feature values in the instance space  X, which is impossible to 
accurately estimate from a reasonably-sized training set D.

• E.g 𝑃 𝑌 = 𝑦𝑖 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑑 = 𝑥𝑑) for all 𝑦𝑖 and 𝑥𝑗
Assuming  that Y and all Xi are binomial, and we have d features, we 
need 2d entries to estimate 𝑃 𝑌 = 𝑝𝑜𝑠 𝑋 = 𝒙𝒌 ) for each of the 2d

possible 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 since:

• 𝑃 𝑌 = 𝑛𝑒𝑔 𝑋 = 𝒙) = 1 = 1 − 𝑃(𝑌 = 𝑝𝑜𝑠|𝑋 = 𝒙)
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Summary
MAP so far

• Given: 

• An unclassified random vector 𝒙, which is represented by d
discrete features (e.g. binomial or multinomial)

• A multinomial classification function Y(x) with possible values
{y1,... ,ym}

• The target of the probabilistic classifier is to classify 𝒙 based on: 

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖(𝑃 𝑦𝑖 | 𝒙 )

(the most likely classification given the specific combination of feature 
values in 𝒙)

• The parameters of the model are the 𝑃 𝑦𝑖 | 𝒙

• We need to estimate 𝑃 𝑦𝑖 | 𝒙 for all 𝑦𝑖 , using the evidence provided
by the previously seen instances <xi,yi> in D

• Quite likely, the specific combination of feature values of 𝒙 is not in the 
learning set: even if values are boolean, there are 2d possible
combinations! So how do we go about it?
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Naïve Bayes classifier: 
an ML algorithm 
based on MAP
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Naïve Bayes Model

Let’s define the model:

• We are given an evidence represented by an annotated learning set 𝐷 of classified
instances (x, y).

• Consider an instance 𝒙 as a random vector of 𝑑 random variables

< 𝑋1, 𝑋2, … , 𝑋𝑑 >

• Each 𝑋𝑗 feature can assume a discrete value 𝑥𝑘𝜖{1, … , 𝑑𝑗} (i.e. binary or multinomial)

• The class variable is a multinomial random variable Y that can take a set of values 
𝑦𝑖 with i = 1, . . , 𝑛, usually categorical (e.g., red, blue,..)

Naïve Bayes assumption: all the 𝑋𝑖 are statistically independent
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Naïve Bayes Model
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• Our goal is to make a prediction, based on a conditional probability model 
𝑃 𝑌 𝑋 , whose parameters can be estimated considering the dataset D 
(Training)

• For MAP and Bayes Theorem, this requires to compute (see previous slides):

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖 𝑃 𝑌 = 𝑦𝑖 𝑃(𝑋 = 𝒙|𝑌 = 𝑦𝑖)

Where x is a vector of feature values < 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑑 = 𝑥𝑑 >



Naïve Bayes Model
How can we calculate 𝑃(𝑋 = 𝒙 < 𝑥1, … , 𝑥𝑑 > |𝑌 = 𝑦𝑖)?
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𝑃 𝒙 =< 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑑 = 𝑥𝑑 > |𝑌 = 𝑦𝑖 =

By Independence assumption (e.g. Naïve Bayes Assumption):

=ෑ
𝑗=1

𝑑

𝑃 𝑋𝑗 = 𝑥𝑗|𝑌 = 𝑦𝑖

To classify a new instance we apply the MAP formulation + NB assumption: 

𝑦∗ ≈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖 𝑃 𝑌 = 𝑦𝑖 𝑃(𝑋 = 𝒙|𝑌 = 𝑦𝑖) =

𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖(𝑃 𝑌 = 𝑦𝑖 ෑ
𝑗=1

𝑑

𝑃 𝑋𝑗 = 𝑥𝑗|𝑌 = 𝑦𝑖 )

We assume that features’ random variables
are also statistically independent!



Naïve Bayes Model
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Now, we have to estimate the  priors 𝑃 𝑌 = 𝑦𝑖 and the conditionals 𝑃൫

൯

𝑋𝑗 =

𝑥𝑗|𝑌 = 𝑦𝑖 (our parameters)

• 𝑃 𝑌 = 𝑦𝑖 can be estimated directly from the learning set D, since categories 
are complete and disjoint

• Next, we use again likelyhood to estimate two sets of parameters θ1 and θ2 : 
• θ1 : 𝑃 𝑌 = 𝑦𝑖 (the priors)

• θ2: 𝑃 𝑋𝑗 = 𝑥𝑗|𝑌 = 𝑦𝑖 =
𝑃 𝑋𝑗=𝑥𝑗𝑌;𝑌=𝑦𝑖

𝑃 𝑌=𝑦𝑖
(the conditionals)



Naïve Bayes Model
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• The estimate of parameters depend on the random variable distribution:
➢ Categorical Distributions (e.g. Binomial, Multinomial, Geometric)
➢ Gaussian, exponential..
➢ Etc.

θ𝑖
1 =

𝑁(𝑦𝑖)

|𝐷|
θ𝑖𝑗
2 =

𝑁(𝑥𝑗 , 𝑦𝑖)

𝑁(𝑦𝑖)

• Where 𝑁(𝑦𝑖) is the number of instances classified 𝑦𝑖 in the training set (so θ𝑖
1are the 

priors);  
• Where 𝑁(𝑥𝑗 , 𝑦𝑖) is the number of times the label 𝑦𝑖 is seen in conjunction with feature

value 𝑥𝑗 in D :  number of instances in D in which Xj=xj and Y=yi

• Let first  suppose that both 𝑌 and the 𝑋𝑗 follow a multinomial distribution, 

then (for what we have seen in previous slides ), using the likelyhood
maximization:  

Note that these formulas are obtained exactly as for the MLE case (see previous slides): we consider the log of the multinomial for 
each random variable, then take the derivative and equate to 0 (ignoring the constant values).



Naïve Bayes Model
Make Predictions

Finally to make a prediction for a new instace 𝒙 =< 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑑 = 𝑥𝑑 >
we must calculate:

𝑦∗ ≈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖 𝑃 𝑌 = 𝑦𝑖 𝑃(𝑋 = 𝑥|𝑌 = 𝑦𝑖) =

𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖 𝑃 𝑌 = 𝑦𝑖 ෑ

𝑗=1

𝑑

𝑃 𝑋𝑗 = 𝑥𝑗|𝑌 = 𝑦𝑖 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖
𝑁(𝑦𝑖)

|𝐷|
ෑ

𝑗=1

𝑑
𝑁(𝑥𝑗 , 𝑦𝑖)

𝑁(𝑦𝑖)
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• Where 𝑁(𝑦𝑖) is the number of instances classified with label 𝑦𝑖 in the training set;  
• Where 𝑁(𝑥𝑗 , 𝑦𝑖) is the number of times the label 𝑦𝑖 is seen in conjunction with the

feature Xj=𝑥𝑗



Naïve Bayes Model Example
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1 med red circ pos

2 sm blue tri pos

3 med red tri pos

4 lg grn circ pos

5 lg red circ pos

6 sm blue circ pos

7 sm red sqr pos

8 med red circ pos

9 lg red sqr neg

10 sm blue tri neg

11 med grn circ neg

12 med grn tri neg

13 lg red circ neg

14 sm blue sqr neg

15 sm blue tri neg

16 lg grn sqr neg

X1= size X2=color X3=shape
X1= 𝑠𝑚𝑎𝑙𝑙,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑎𝑟𝑔𝑒
X2= 𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒
X3= 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, 𝑠𝑞𝑢𝑎𝑟𝑒, 𝑐𝑖𝑟𝑐𝑙𝑒
Y = 𝑝𝑜𝑠, 𝑛𝑒𝑔

x        X1     X2    X3     Y

|D|=16, d=3



Naïve Bayes Model Example
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Size          Color        Shape Size          Color        Shape 

Positive  examples Negative examples

pos
neg
pos

pos
pos neg

neg

sm

med
lg

lg

med
sm

sm
med

lg

red

redred

red
red

blue

blue
grn

circ

circ

circ

circ

sqr

tri tri

circ sqr
tri

sm

lg

med
sm

lg
med

lg
sm

blue

red

grn

blue

grn
red

grn
blue

circ

sqr tri
circ

sqr
circ

tri

Category

• Urns represent occurrences of feature values in training set  D. Red urns are 
positive, blue negative. Separate urns indicate statistical independence of 
features (sampling of values from each urn does not affect the others).



Naïve Bayes Inference Problem
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Size          Color        Shape 

Negative

pos
neg
pos

pos
pos neg

neg

sqr
tri

sm

lg

med
sm

lg
med

lg
sm

blue

red

grn
blue

grn
red

grn
blue

circ

sqr tri
circ

sqr
circ

tri

Category

lg  red circ 

??     ??

Let’s say we have a new unclassified instance 𝑥:< 𝑙𝑎𝑟𝑔𝑒, 𝑟𝑒𝑑, 𝑐𝑖𝑟𝑐𝑙𝑒 >.
We need to estimate, using the learning set D, the class label yi that maximizes the probability
of observing 𝑥:< 𝑙𝑎𝑟𝑔𝑒, 𝑟𝑒𝑑, 𝑐𝑖𝑟𝑐𝑙𝑒 >. Is it more likely to extract this combination from red or 
from blue urns?

Positive

neg

pos
pos neg

sm

med
lg

lg

med
sm

sm
med

lg

red

redred

red
red

blue

blue
grn

circ

circ

circ

circ

sqr

tri tri

circ



How?
We fill urns using the available dataset D
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1 med red circ pos

2 sm blue tri pos

3 med red tri pos

4 lg grn circ pos

5 lg red circ pos

6 sm blue circ pos

7 sm red sqr pos

8 med red circ pos

9 lg red sqr neg

10 sm blue tri neg

11 med grn circ neg

12 med grn tri neg

13 lg red circ neg

14 sm blue sqr neg

15 sm blue tri neg

16 lg grn sqr neg

Note that because of independence
assumption, the specific combination of 
feature values does not matter!



Now we can compute parameters θ𝑖
1 and θ𝑖𝑗

2

Probability Y=positive Y=negative

P(Y) 0.5 0.5

P(small | Y) 3/8 3/8

P(medium | Y) 3/8 2/8

P(large | Y) 2/8 3/8

P(red | Y) 5/8 2/8

P(blue | Y) 2/8 3/8

P(green | Y) 1/8 3/8

P(square | Y) 1/8 3/8

P(triangle | Y) 2/8 3/8

P(circle | Y) 5/8 2/8
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Training set  D (evidence)We have 3 small out of 8 instances in red “size” urn
then P(size=small/pos)=3/8=0,375 (round 4)
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Using parameters 
we can classify unseen instances

Probability Y=positive Y=negative

P(Y) 0.5 0.5

P(medium | Y) 3/8 2/8

P(red | Y) 5/8 2/8

P(circle | Y) 5/8 2/8

P(positive | X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive)/P(X)

0.5        *               3/8         *        5/8            *        5/8

P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X) 

0.5       *              2/8               *        2/8             *     2/8

= 0,073

=0.0078

For example,  x:<medium ,red, circle>  y=?

P(positive/X)>P(negative/X) ➔ positive

Note: sum is not 1 since we ignore the denominator of original formulation 𝑃(𝑋 = 𝑥) 

𝑦∗ ≈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖 θ𝑖
1ෑ

𝑗=1

𝑑

θ𝑖𝑗
2



Naive Bayes Summary
Classify any new unseen instance 𝒙 = (𝑋1, … , 𝑋𝑑) as:

• To do this based on training examples, estimate the parameters from the 
training examples  in D:

• For each label value of the classification variable (hypothesis) 𝑦𝑖

• For each attribute value of 𝑥𝑗 of each datum instance

P̂(Y = y
j
) := estimate P(y

i
)

𝑦∗ ≈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖 𝑃 𝑌 = 𝑦𝑖 𝑃(𝑋 = 𝑥|𝑌 = 𝑦𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖 𝑃 𝑌 = 𝑦𝑖 ෑ

𝑗=1

𝑑

𝑃 𝑋𝑗 = 𝑥𝑗|𝑌 = 𝑦𝑖

𝑃 𝑋𝑗 = 𝑥𝑗|𝑌 = 𝑦𝑖 ≔ 𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝑃(𝑥𝑗|𝑦𝑖)



Estimating Probabilities
• Usually, as in previous example, probabilities are estimated based on observed frequencies in 

the training data.

• If 𝐷 contains 𝑁(𝑦𝑖) examples in category 𝑦𝑖, and 𝑁(𝑥𝑗 , 𝑦𝑖) of these 𝑁(𝑦𝑖) examples have  value  
𝑥𝑗 for feature 𝑋𝑗, then:

• However, estimating such probabilities from small training sets is error-prone (bias in the 
estimate, as we have seen)

• If - due only to low chance - a rare feature value, 𝑋𝑗 = 𝑥𝑗 is never observed in the training data, 
then our estimate  

𝑃(𝑋𝑗 = 𝑥𝑗 | 𝑌 = 𝑦𝑖) = 0.

• If 𝑋𝑗 = 𝑥𝑗 actually occurs in a test instance, 𝒙, the result is that    𝑦𝑖: 𝑃(𝑌 = 𝑦𝑖 | 𝒙) = 0
(since individual probability estimates are multiplied)
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𝑃 𝑋𝑗 = 𝑥𝑗|𝑌 = 𝑦𝑖 =
𝑁(𝑥𝑗 , 𝑦𝑖)

𝑁(𝑦𝑖)



Probability Estimation Example

Ex Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative
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Probability positive negative

P(Y) 0.5 0.5

P(small | Y) 0.5 0.5

P(medium | Y) 0.0 0.0

P(large | Y) 0.5 0.5

P(red | Y) 1.0 0.5

P(blue | Y) 0.0 0.5

P(green | Y) 0.0 0.0

P(square | Y) 0.0 0.0

P(triangle | Y) 0.0 0.5

P(circle | Y) 1.0 0.5

Test Instance x:
<medium, red, circle>

P(positive | x) = 0.5 * 0.0 * 1.0 * 1.0 / P(x) = 0

P(negative | x) = 0.5 * 0.0 * 0.5 * 0.5 /  P(x) = 0

No instances in D with Size=medium!



Smoothing

• To account for estimation from small samples, probability estimates 
are adjusted or smoothed.

• Laplace smoothing using an 𝑚-estimate assumes that each feature 
is given a prior probability, 𝑝, that is assumed to have been 
previously observed in a “virtual” sample of size 𝑚.

• For binary features, 𝑝 is simply assumed to be 0.5, while it can be 

set to 
1

𝑘
where k is the number of values that 𝑥𝑗 can assume.
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𝑃 𝑋𝑗 = 𝑥𝑗|𝑌 = 𝑦𝑖 =
𝑁 𝑥𝑗 , 𝑦𝑖 +𝑚𝑝

𝑁 𝑦𝑖 +𝑚



Laplace Smoothing Example
• Assume training set contains 10 positive examples, and the 

feature “Size” has 3 values, but 1 value (size=medium) is not 
observed in 𝐷:
➢4: small
➢0: medium
➢6: large

• Estimate parameters as follows (if we set m=1, p=1/3)
➢P(small | positive) = (4 + 1/3) / (10 + 1) =     0.394
➢P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03
➢P(large | positive) = (6 + 1/3) / (10 + 1) =      0.576
➢P(small or medium or large | positive) =        1.0
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Naïve Bayses (MAP) with 
Continuous Distributions

• If 𝑋 is a continuous (univariate) random variable  rather than a discrete one, need 
another way to calculate 𝑃(𝑋 = 𝑥𝑗| 𝑌 = 𝑦𝑖).

• Assume that 𝑋 has a Gaussian distribution whose mean and variance depend on 𝑌.

• During training, for each combination of the continuous values of 𝑋 and a class value 
𝑦𝑖 for 𝑌, estimate a mean 𝜇𝑖 , and standard deviation 𝝈𝒊 based on the observed values 
of feature 𝑋 in class 𝑦𝑖 in the training data. E.g.,  𝜇𝑖 is the mean value of  𝑋 observed in 
instances for which 𝑌 = 𝑦𝑖 in 𝐷

• During testing, estimate 𝑃(𝑋 = 𝑥𝑗| 𝑌 = 𝑦𝑖) for a given observation 𝑋 = 𝑥𝑗, using the 
Gaussian distribution defined by 𝜇𝑖 and 𝜎𝑖 .
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𝑃 𝑋 = 𝑥𝑗𝜖𝑅|𝑌 = 𝑦𝑖 =
1

𝜎𝑖 2𝜋
exp(

−(𝑋𝑗 − 𝜇𝑖)
2

2𝜎𝑖
2 )

Similarly if we assume that X follows other types of distributions, e.g., softmax, logit.. This method easily
extends to multivariate X: X1..Xn, and we need to estimate 𝜎𝑗𝑖 and 𝜇𝑗𝑖

Probability of observing the value xj (our current observation) given that the class is yi



Comments on Naïve Bayes

• May work well despite strong assumption of conditional independence.

• Although it does not produce accurate probability estimates when its 
independence assumptions are violated, it may still pick the correct maximum-
probability class in many cases.

• Does not perform any search of the hypothesis space.  Directly constructs a 
hypothesis from parameter estimates that are easily calculated from the training 
data.

• Not guaranteed consistency with training data.

• Typically handles noise well since it does not even focus on completely fitting the 
training data.
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More
• Likelihood Function and MLE: LINK, LINK, LINK, LINK, LINK, 

LINK, LINK, LINK

• MLE VS MAP: LINK,LINK, LINK,LINK, LINK,LINK

• Naïve Bayes LINK, LINK, LINK, LINK

• Note that what we said also applies to DEEP models. For 
example, x can be the “deep” representation of an instance 
(e.g., an image), and we want to infer the model M that 
underlies the generation of our images  (inferring M can be 
easier if we capture the “invariants” of the input). 

• See here an introduction to deep generatve models
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