
Experience Generalization for Concurrent Reinforcement
Learners: the Minimax-QS Algorithm

Carlos H. C. Ribeiro
Divisão de Ciência da

Computação
Instituto Tecnológico de

Aeronáutica
Pr. Mal. Eduardo Gomes, 50

12228-900 São José dos
Campos, Brazil

carlos@comp.ita.br

Renê Pegoraro
Departamento de

Computação
Universidade Estadual

Paulista
Av. Luiz Edmundo Carrijo

Coube
17033-360 Bauru, Brazil

pegoraro@fc.unesp.br

Anna H. Reali Costa
Laboratório de Técnicas

Inteligentes
Escola Politécnica da

Universidade de São Paulo
Av. Prof. Luciano Gualberto,

Trav. 3 no. 158
05508-900 São Paulo, Brazil

anna.reali@poli.usp.br

ABSTRACT
This paper investigates the use of experience generaliza-
tion on concurrent and on-line policy learning in multi-agent
scenarios, using reinforcement learning algorithms. Agents
learning concurrently implies in a non-stationary scenario,
since the reward received by one agent (for applying an ac-
tion in a state) depends on the behavior of the other agents.
Non-stationary scenarios can be viewed as a two-player game
in which an agent and the other player (which represents the
other agents and the environment) select actions from the
available actions in the current state; these actions define the
possible next state. An RL algorithm that can be applied to
such a scenario is the Minimax-Q algorithm, which is known
to guarantee convergence to equilibrium in the limit. How-
ever, finding optimal control policies using any RL algorithm
(Minimax-Q included) can be very time consuming. We in-
vestigate the use of experience generalization for increasing
the rate of convergence of RL algorithms, and contribute
a new learning algorithm, Minimax-QS, which incorporates
experience generalization to the Minimax-Q algorithm. We
also prove its convergence to Minimax-Q values under suit-
able conditions.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Knowledge ac-
quisition; I.2.11 [Artificial Intelligence]: Distributed Ar-
tificial Intelligence—Multiagent systems; F.2.0 [Analysis of
Algorithms and Problem Complexity]: General

General Terms
Algorithms, Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

Keywords
reinforcement learning, Markov games, Minimax-Q, experi-
ence generalization, robot soccer.

1. INTRODUCTION
Reinforcement learning (RL) algorithms are very attrac-

tive to be used in solving a wide variety of control and plan-
ning problems, since some of them are known to guaran-
tee convergence to equilibrium in the limit [9] and provide
model-free learning of control strategies. In RL, learning
is carried out on-line, through trial-and-error interactions
of the agent with the environment. Unfortunatelly, con-
vergence of any RL algorithm may only be achieved after
extensive exploration of the state-action space, which can
be very time consuming.

However, the rate of convergence of an RL algorithm can
be increased by using experience generalization, an approach
in which a single experience (i.e., a single loop of the algo-
rithm) can update more than a single cost value. The con-
sequence of taking action at at state st is spread to other
pairs (s, a) as if the real experience at time t actually was
〈s, a, st+1, rt〉 [7].

This paper investigates the use of experience generaliza-
tion on concurrent and on-line policy learning in multi-agent
scenarios, using reinforcement learning (RL) algorithms.

Agents learning concurrently implies in a non-stationary
scenario, since the reward received by one agent (for apply-
ing an action in a state) depends on the behavior of the other
agents. Non-stationary scenarios can be viewed as a two-
player game in which an agent and the other player (which
represents the other agents and the environment) select ac-
tions from the available actions in the current state; these
actions define the possible next state. An RL algorithm
that can be applied to such a scenario is the Minimax-Q
algorithm, proposed by Littman in [3].

In this paper we present a new algorithm, Minimax-QS,
which incorporates experience generalization to Minimax-Q.
We run a series of empirical evaluation of the algorithm in
a simplified simulator for the soccer domain. We show that
even using very simple domain-dependent rules, the perfor-
mance of the learning algorithm can be improved. We also
prove its convergence to Minimax-Q values under suitable

1239

conditions.
Experience generalization is related to state aggregation

methods analyzed by some authors [11],[10],[8] in the con-
text of function approximation for reinforcement learning.
These authors have been considering the effects of adaptive
aggregation when compact representations are used. In par-
ticular, it can be shown [9] that some RL algorithms acting
on a set of aggregate states converge, provided a persistently
exciting action policy is used. The trouble, however, is that
the set of action values asymptotically reached will depend
on the limit distribution defined by this action policy. If the
action policy itself depends on the estimated action values,
there is no simple way to ensure convergence. In this paper,
we deal with this problem by considering a parameter that
controls the degree of experience generalization along time.

2. MULTI-AGENT RL LEARNING
In this section we first introduce the Markov Game frame-

work(MG), which can be viewed as an extended Markov De-
cision Process (MDP) to multiple agents. We then present
the Minimax-Q algorithm for solving MGs. Minimax-Q
is based on both Q-Learning, an RL technique for solving
MDPs, and the Minimax algorithm, which is applied to find-
ing game solutions.

2.1 Markov Games
Let us consider n agents interacting with the environ-

ment via perception and action. On each interaction step
each agent i senses the current state st of the environment,
and chooses an action ai to perform. The set of actions
a1, . . . , an alter the state st of the environment, and a scalar
reinforcement signal ri (a reward or penalty) is provided to
each agent i to indicate the desirability of the resulting state.

An MG is formally represented by a tuple:
〈n, S,A1, A2, . . . , An, r1, r2, . . . , rn, P 〉

(see [3]), where:
n is the number of agents;
S is a set of states;
A1, . . . , An is a collection of sets Ai of the actions available
to agent i;
ri : S × A1 . . .× An → R is a scalar reinforcement function
for the ith agent,
P : S × A1 . . . × An → Π(S) is a state transition function,
where a member of Π(S) is a probability distribution over S.
P (st+1|st, a1, . . . , an) represents the probability of moving
from state st to st+1 when the n agents perform respectively
actions a1, . . . , an at state st.

2.2 Minimax-Q
Let us consider a specialization of the MG framework,

which consists of two agents performing actions in alternat-
ing turns, in a zero-sum game. Let A be the set of possible
actions that the playing agent A can choose from, and Ā
the set of actions for the opponent player B. rst,at,āt is the
immediate reinforcement A receives for performing action
at ∈ A in state st ∈ S when its opponent B performs action
āt ∈ Ā.

The goal of A is to learn an optimal policy of actions
that maximizes its expected cumulative sum of discounted
reinforcements. Learning this policy is very difficult, since it
depends on the actions the opponent performs. The solution
to this problem is to evaluate each policy with respect to the
opponent’s strategy that makes it look the worst. This idea

is the core of the Minimax-Q algorithm [3], which is known
to guarantee convergence to equilibrium in the limit [9].

For deterministic action policies, the optimal value of a
state st ∈ S in an MG is:

V ∗(st) = max
a∈A

min
ā∈Ā

Q(st, a, ā) (1)

and the Minimax-Q learning rule is:

Qt+1(st, at, āt) = Qt(st, at, āt) +

αt[rst,at,āt + γV̂t(st+1) −Qt(st, at, āt)] (2)

where:
st is the current state,
at is the action performed by A in st,
āt is the action performed by B in st,
Qt+1(st, at, āt) is the expected discounted reinforcement for
taking action at when B performs āt in state st, and con-
tinuing the optimal policy thereafter,
rst,at,āt is the reinforcement received by A,
st+1 is the consequent state,
V̂t(st+1) is the current estimate of the optimal expected dis-
counted reward V ∗(st+1),
γ is the discount factor,
αt is the learning rate.

For non-deterministic action policies, a general formula-
tion of Minimax-Q has been defined elsewhere [3], [1].

3. GENERALIZING MINIMAX-Q
Ribeiro [6] argues that embedding a priori knowledge in

an RL algorithm may improve its convergence rate. He pro-
poses the use of a spreading mechanism in which a single
experience (i.e., a single loop of the algorithm) can update
more than a single action value. This better use of expe-
rience in RL algorithms is known as experience generaliza-
tion, in which the consequence of taking action at at state
st is spread to other pairs (s, a) as if the real experience at
time t actually was 〈s, a, st+1, rt〉. Considering this spread-
ing mechanism, we propose a variant of the Minimax-Q al-
gorithm, named Minimax-QS.

Formally, in Minimax-QS for alternating MG, at time t:
1. A and B observe the current state st.
2. A selects an action at ∈ A and executes it.
3. B selects an action āt ∈ Ā and executes it.
4. A and B observe the next state st+1 and receive the
reinforcement rst,at,āt .
5. The Q values for every state-A action-B action 3-tuple
(s, a, ā) are updated according to:

Qt+1(s, a, ā) = Qt(s, a, ā) +

αtσt(st, at, āt, s, a, ā)[rst,at,āt +

γV̂t(st+1) −Qt(s, a, ā)] (3)

6. Repeat steps above until stopping criterion is met.
where σt(st, at, āt, s, a, ā) is the spreading function (0 ≤
σt(st, at, āt, s, a, ā) ≤ 1). The standard Minimax-Q algo-
rithm corresponds to Equation 3 with σt(st, at, āt, s, a, ā) =
δ(st, s)δ(at, a)δ(āt, ā), where δ(., .) is the Kronecker delta
function (that is, δ(u, v) = 1 if u = v, otherwise δ(u, v) = 0).

By using σt(st, at, āt, s, a, ā) it is possible to reduce the
learning time of the Minimax-Q algorithm, since the conse-
quence of choosing action at when the opponent chooses āt

in state st can spread to all others similar 3-tuple (s, a, ā).

1240

For the experiments reported, we consider a spreading
mechanism that produces generalization only along the state
space S, that is, σt(st, at, āt, s, a, ā) = gt(st, s)δ(at, a)δ(āt, ā),
where gt(st, s) is a state similarity function. We define
gt(st, s) = τd, where τ is a constant and d is a similarity
— distance — measure between the current state st and a
similar state s.

4. CONVERGENCE OF MINIMAX-QS
We now present a proof of convergence for the Minimax-

QS algorithm. The proposition to be proved is the following:

Proposition 1. Assume that the conditions for conver-
gence of Minimax-Q to the action value function Q are sat-
isfied. Then the action values generated by the Minimax-QS
algorithm converge to Q with probability one if the conver-
gence σt(st, at, āt, s, a, ā) − δ(s, st)δ(a, at)δ(ā, āt) → 0 is of
order O(αt).

What this proposition basically says is that if the spread-
ing mechanism vanishes at least as quickly as the learning
rate αt, then Minimax-QS converges to the action values
generated by Minimax-Q.

A related proof for the QS-algorithm — a spreading-based
formulation of Q-learning for single agents — can be found
in [7].

4.1 Simultaneous Approximations on RL
Finding an optimal cost function in RL algorithms im-

plies two approximations going on simultaneously: one of
them approximates a Dynamic Programming operator, and
the second one uses the resulting approximation itself to es-
timate the optimal costs. To illustrate, let us consider the
update equation for Q-learning:

Qt+1(st, at) = Qt(st, at) +

αt[rst,at + γV̂t(st+1) −Qt(st, at)] (4)

This equation iteratively approximates the Action Value op-
erator applied to Qt(st, at)

(TqQ)(st, at) = rst,at +

γ
X

st+1∈S

P (st+1|st, at) max
a
Q(st+1, a) (5)

whilst using the resulting approximation itself to approxi-
mate the optimal costs V ∗(st+1) = maxaQ(st+1, a) through

V̂t(st+1) = maxaQt(st+1, a).
As an additional example, let us consider the Minimax-Q

algorithm for alternating Markov games. The corresponding
equation

Qt+1(st, at, āt) = Qt(st, at, āt) +

αt[rst,at,āt + γV̂t(st+1) −Qt(st, at, āt)] (6)

approximates the operator

(TmqQ)(st, at, āt) = rst,at,āt +

γ
X

st+1∈S

P (st+1|st, at, āt)V
∗(st+1) (7)

applied to Qt(st, at, āt). The resulting approximation itself
is then used to approximate the optimal costs V ∗(st+1) via

V̂t(st+1) = maxa mināQt(st+1, a, ā).

It might be convenient to relate stochastic approximations
characteristic of RL algorithms — such as those exemplified
above — and simpler and better studied approximations.
This would allow us to simplify or propose theorems for the
more complicated cases by relating them to their simpler
counterparts. Indeed, we adopt this line of reasoning for
proving the convergence of Minimax-QS. First, however,
it is important to review a theorem that relates stochastic
approximations.

4.2 Relating Stochastic Approximations
Let B(S) be the set of cost functions over S and T :

B(S)
→ B(S) be an arbitrary contraction mapping with
fixed point V ∗.

For Dynamic Programming algorithms in general, a con-
traction mapping T (or Tq) is applied directly to succes-
sively approximate V ∗ (or Q). In model-free RL methods,
such operator is not available and the agent must use its
own experience to approximate it.

Consider a sequence of operators Tt : (B(S) × B(S))
→
B(S) and define Ut+1 = TtUtV where V and U0 are arbi-
trary cost functions. We say that Tt approximates T at V
with probability one uniformly over S if Ut converges to TV
uniformly over S.

We can interpret this in the following way: a ‘memory’ Ut

is used as a help to make Tt approximate T. The equiva-
lence between these operators is assessed by using any ‘test
function’ V that subject either to T (through TV) or to Tt

(through TtUtV) produces the same result.

Theorem 1. [9] Let T be an arbitrary mapping with
fixed point V ∗, and let Tt approximate T at V ∗ with prob-
ability one uniformly over S. Let V0 be an arbitrary cost
function, and define Vt+1 = TtVtVt. If there are functions
0 ≤ Ft((x)) ≤ 1 and 0 ≤ Gt((x)) ≤ 1 satisfying the con-
ditions below with probability one, then Vt converges to V ∗

with probability one uniformly over S.

1. For every U1, U2 ∈ B(S) and s ∈ S,
|(TtU1V

∗)(s) − (TtU2V
∗)(s)|

≤ Gt(s)|U1(s) − U2(s)| (8)

2. For every U , V ∈ B(S) and s, s′ ∈ S,
|(TtUV

∗)(s) − (TtUV)(s)|
≤ Ft(s) sup

s′
|V ∗(s′) − V (s′)| (9)

3. For all k > 0, the product
Qn

t=kGt(s) converges to
zero uniformly in s as n increases;

4. There is 0 ≤ β ≤ 1 such that for all s and large enough
t, Ft(s) ≤ β(1 −Gt(s)).

This theorem eliminates the burden of having to prove the
convergence of the cost functions Vt to V ∗. Instead, it says
that it suffices to show that — given the above conditions
— the operator Tt approximates the operator T at the fixed
point V ∗.

A proof and a full discussion on the applicability of this
theorem can be found respectively in [4] and [9].

1241

4.3 A Proof of Convergence for Minimax-QS
The proof involves three basic steps. First, an appropriate

space and operators T and Tt must be defined. Then, con-
ditions 1 to 4 of Theorem 1 must be verified. Finally, it must
be checked if Tt approximates T with probability 1. Ideally,
Tmqs

t should be defined in such a way that Ut+1 = TtUtV
is an ordinary stochastic approximation process.

Let us reconsider the update equation for the Minimax-QS
algorithm. The superscript s indicates that spreading has
been used to update the action values:

Qs
t+1(s, a, ā) = Qs

t (s, a, ā) +

αtσt(st, at, āt, s, a, ā)[rst,at,āt +

γV̂t(st+1) −Qs
t (s, a, ā)] (10)

Assume the function σt is such that σt(st, at, āt, s, a, ā)
converges to δ(st, s)δ(at, a)δ(āt, ā) uniformly. This means
that the Minimax-QS update rule approaches more and more
the standard Minimax-Q equation as learning progresses.

The operator T is the Minimax-Q operator, namely

(TmqQ)(s, a, ā) = rs,a,ā + γ
X

st+1

P (st+1|s, a, ā)V ∗(st+1)

(11)
and the random operator sequence Tt is

(Tmqs
t UV)(s, a, ā) = U(s, a, ā)+

αtσt(st, at, āt, s, a, ā)[rst,at,āt +

γmaxu minū V (st+1, u, ū) − U(s, a, ā)] (12)

where U, V : S × A × Ā → R. The update equation for
Minimax-QS can then be written as Qs

t+1 = Tmqs
t Qs

tQ
s
t ,

and if all the conditions of Theorem 1 are satisfied then this
process converges to the fixed point of Tmq — namely, the
Q values for the Minimax-Q algorithm.

Let us choose

Gt(s, a, ā) = 1 − αtσt(st, at, āt, s, a, ā) (13)

and

Ft(s, a) = αtσt(st, at, āt, s, a, ā) (14)

which respectively satisfy the first two conditions (inequali-
ties 8 and 9) of Theorem 1.

Condition 3 would imply
Q∞

t=k(1−αtσt(st, at, āt, s, a, ā)) =
0. Consider then this result [2]: if 0 < mt < 1 thenQ∞

t=k(1−mt) = 0 iff
P∞

t=kmt = ∞. In our case, this means
that
P∞

t=k αtσt(st, at, āt, s, a, ā) = ∞ is required. However,
if we assume

P∞
t=k αtδ(z, xt)δ(u, at)δ(ū, āt) = ∞ (manda-

tory to ensure convergence of the Minimax-Q algorithm,
see [4]) and δ(z, xt)δ(u, at)δ(ū, āt) ≤ Cσt(st, at, āt, s, a, ā)
for some 0 < C ≤ ∞, then C

P∞
t=k αtσt(st, at, āt, s, a, ā) ≥P∞

t=k αtδ(z, xt)δ(u, at)δ(ū, āt) ≥ ∞, satisfying the condi-
tion 3.

Condition 4 is satisfied because Ft(s, a) = 1 −Gt(s, a).
Finally, we must show that Tmqs

t approximates Tmq at Q.
As we already know that Minimax-Q converges to Q (and
thus its corresponding random operator Tmq

t approximates

Tmq at Q), it suffices to show that, for a fixed V̂ (st+1)

Qs
t+1(s, a, ā) = Qs

t (s, a, ā)+

αtσt(st, at, āt, s, a, ā)[rst,at,āt +

γV̂ (st+1) −Qs
t (s, a, ā)] (15)

and

Qt+1(st, at, āt) = Qt(st, at, āt) +

αt[rst,at,āt + γV̂ (st+1) −Qt(st, at, āt)] (16)

converge to the same value. In particular, showing this
would imply that Tmqs

t approximates Tmq
t for the fixed point

V ∗(st+1). As Tmq
t itself approximates Tmq at this point,

that would mean that Tmqs
t also approximates Tmq at Q.

The proof can be carried out separately for every state-
action pair. Let us then fix an arbitrary triplet (s, a, ā)
and denote by Qs

t , Qt, σt, etc. the values of Qs
t (s, a, ā),

Qt(s, a, ā), σt(st, at, āt, s, a, ā), etc. If αt = 0 then neither
Qs

t nor Qt changes, so we can consider αt > 0 for all t.
Assume now that σt − δt = O(αt), i.e., there is a bounded
function Bt such that σt − δt = Btαt. This assumption
means that the spreading function σt must converge to δt
at least as quickly as αt converges to zero. Some algebraic
manipulation on equations 15 yields

Qs
t+1 = Qs

t + αt[rt + γV̂ (st+1) −Qs
t] +

α2
tBt[rt + γV̂ (st+1) −Qs

t] (17)

One can see the above equation as a small perturbation
of the standard Minimax-Q update, where the additive per-
turbation term α2

tBt[rt + γV̂ (st+1) − Qs
t] can be neglected

as αt gets smaller. Thus, equations 15 and 16 converge
to the same value for a fixed V̂ (st+1), and therefore the
Minimax-QS operator Tmqs

t approximates the Minimax-Q
operator Tmq at Q. Thus, according to theorem 1, Tmqs

t

converges to Q.

5. EXPERIMENTS IN A SOCCER DOMAIN
To perform the experiments, we used the soccer simulator

introduced by Littman [3]. It is a two-player zero-sum game
played on a 4x5 grid. The players always occupy distinct
grid squares. The initial configuration of the board consists
of the players A and B placed in the positions shown in
Figure 1, and the possession of the ball is given randomly
to A or B (agent A in figure).

At each time step, the players can move around by choos-
ing from 5 actions: N, S, E, W, and stand. When one player
attempts to move to the grid square occupied by the other
player, the move fails and the second player gets the ball.
When a player performs an action that would take it out of
the board, the move does not take place. When the player
with the ball reaches the goal (right for A and left for B),
it scores and the board is reset to its initial configuration.

A

B

Figure 1: The soccer simulator. An initial board
configuration (A with the ball).

A number of state similarity functions can be explored
in the soccer domain. We demonstrate the effectiveness of
the use of the proposed spreading mechanism considering a

1242

state similarity function based on very simple rules derived
from particular board configurations.

Referring to Figure 1, it can be noticed that provided
player A holds the ball, it does not matter where exactly
player B is, as far as the overall game situation is concerned.
Thus, we addopted a state similarity function which consider
as similar those states in which A holds the ball and B lies
in a region around the position it was when the experience
took place. However, as the game board is small, similarity
conditions must decrease quickly as B moves further away
from its real position (because its corresponding state en-
compasses a large region relative to the game board). Quick
spatial decrease was provided by using an exponential form
for the state similarity function.

Similarity among configurations was defined as a function
of the number of actions required to move the opponent
(player B) from the position where the real experience took
place to the position defined in the similar configuration
considered. Formally, this measure of similarity mentioned
corresponds to a spreading function σt(st, at, āt, s, a, ā) =
gt(st, s)δ(at, a)δ(āt, ā) (see equation 3) with gt(st, s) = τd,
where d is the minimal number of actions to get the op-
ponent from st to s and τ is either a constant (in some of
the experiments reported below it is kept at 0.7) or (for the
remaining experiments) a decreasing linear function of the
iteraction number (0.7 is the maximum initial value).

We only spread the experience 〈st, aA, aB, st+1, rt〉 at time
t to all states s defined for some neighborhood of Bst (see
Figure 2). In the experiments reported here this neigh-
borhood is measured by the chessboard metric dch for two
board positions Bst = (xBst

, yBst
), where the real experi-

ence took place, and the similar state defined by player B
at Bs = (xBs , yBs):

dch(Bst ,Bs) = max{|xBst
− xBs |, |yBst

− yBs |} (18)

Given a dch value, a spreading area is defined where each
cell of this area represents the B position in the similar state
considered. Figure 2 depicts the spreading value τd for all
cells included in the area defined by dch = 1 (Figure 2(a))
and dch = 2 (Figure 2(b)).

5.1 Experimental Setup
We run 9 different experiments in the soccer simulator,

3 using a constant spreading function in the learning al-
gorithm — Minimax-QS, constant spreading — 3 using a
linearly decreasing spreading function in the learning algo-
rithm — Minimax-QS, decreasing spreading — and 3 using
a traditional implementation of the Minimax-Q algorithm
— Minimax-Q.

The learning player A was trained against a random oppo-
nent B (Figures 3 and 4) and against a Minimax-Q opponent
B (Figure 5).

The parameters used in the algorithms were set as: γ =
0.9, initial value of α = 1.0 (maximum) and decreasing lin-
early to 0 in the 150000 iteraction, i.e., becomes 0 at aprox-
imately the game 500, initial value of Q− table = 0, random
rate of exploration = 0.2, representing the probability of
choosing a random action, and random rate of action execu-
tion = 0.2, representing the non-determinism in the action
execution.

For each learning algorithm, we run a sequence of 100 ses-
sions, each of them consisting of 600 matches. Each match
is composed of 10 games, and each game is ended by a goal

A

B
0.7

0.7

0.7

0.7

0.49 0.49

0.490.49

A

B
0.7

0.7

0.7

0.7

0.49

0.49

0.490.49

0.49

0.490.343

0.343

0.343 0.3430.24

Figure 2: Spreading area and values for the config-
uration illustrated in Figure 1. (a) Area for chess-
board distance dch = 1 (8 neighbors of Bst) and (b)
for dch = 2 (24 neighbors of Bst).

scored (either by the learning player or by the opponent) or
by reaching a pre-defined number of iterations (empirically
set as 50). At the beginning of each match, both players
are transported to the initial configuration of the board (see
Figure 1). Learning data is reset at the beginning of each
session. We computed the average number of goals balance
scored by the learning player from 1 to 600 matches, over
100 sessions.

5.2 Results
The resulting score balances for the learner A against the

opponent B for each experiment are illustrated in Figures
3,4, and 5.

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600

av
er

ag
e

go
al

 b
al

an
ce

number of matches

Learner X Random opponent. Spreading area = 8 cells

Minimax-Q
Minimax-QS (constant spreading)

Minimax-QS (decreasing spreading)

Figure 3: Results for the soccer game using the
Minimax-Q algorithm (thin line), the Minimax-QS
algorithm with a linearly decreasing spreading fuc-
ntion (bold line), and the Minimax-QS algorithm
using a constant spreading function (dashed line).
The spreading values used are shown in Figure 2(a).

1243

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600

av
er

ag
e

go
al

 b
al

an
ce

number of matches

Learner X Random opponent. Spreading area = 24 cells

Minimax-Q
Minimax-QS (constant spreading)

Minimax-QS (decreasing spreading)

Figure 4: Results for the soccer game using the
Minimax-Q algorithm (thin line), the Minimax-QS
algorithm with a linearly decreasing spreading func-
tion (bold line), and the Minimax-QS algorithm us-
ing a constant spreading function (dashed line). The
spreading values used are shown in Figure 2(b).

-1

0

1

2

3

4

5

6

0 100 200 300 400 500 600

av
er

ag
e

go
al

 b
al

an
ce

number of matches

Learner X Minimax-Q opponent. Spreading area = 8 cells

Minimax-Q
Minimax-QS (constant spreading)

Minimax-QS (decreasing spreading)

Figure 5: Results for the soccer game using the
Minimax-Q algorithm (thin line), the Minimax-QS
algorithm with a linearly decreasing spreading func-
tion (bold line), and the Minimax-QS algorithm us-
ing a constant spreading function (dashed line). The
spreading values used are shown in Figure 2(a).

The results (Figures 3 and 4) show an effective increase
in the goal balance of the learning player in the beginning
of the experiments in which a spreading function was used
(Minimax-QS). After 50 matches, Minimax-QS presents a
positive goal balance of 5, whilst Minimax-Q presents a pos-
itive goal balance of only 2.5. However, in the long term the
positive goal balance against a random opponent is not very
impressive if a constant spreading function is used. This
could mean that, from a certain stage, the spreading mecha-
nism can raise difficulties for the learning process since it can
spread information to states that, in fact, should not be con-
sidered similar. On the other hand, if the spreading mecha-
nism stops acting after a few matches — about 100 matches
in the experiments reported here — Minimax-QS converges
to Minimax-Q values. The theoretical proof presented in
this paper corroborates this evidence, since it shows that if
the spreading mechanism vanishes at least as quickly as the
learning rate, then Minimax-QS in fact converges to optimal
values.

Results were particularly interesting when a Minimax-Q
learner opponent was considered (Figure 5). The Minimax-QS
learners — for fixed and variable spreading functions —
present significant improvement over the Minimax-Q op-
ponent (positive goal balance of 4 goals around the 50th.
match) in the short term. As expected, in the long term
Minimax-QS policies for decreasing spreading converge to
the learned Minimax-Q values (zero goal balance), confirm-
ing experimentally the optimal convergence property demon-
strated in section 4.

6. CONCLUSION
In this paper we have contributed a Minimax-QS algo-

rithm, in which a spreading function is used to improve on-
line learning time of control policies in multi-agent systems.
This algorithm enhances Minimax-Q by embedding a priori
knowledge in the spreading function, while at the same time
keeping the convergence properties of the latter.

We have conducted empirical evaluations of Minimax-QS
in a simplified simulator for the soccer domain. The results
confirm the usefulness of the spreading function for learn-
ing purposes. The positive contributions of the spreading
function can be mostly evidentiated in the beginning of the
learning process. Even when using a very simple domain-
dependent spreading function, the performance of the learn-
ing algorithm could be significantly improved. It should be
stressed, however, that a wrong choice of state similarity
function can significantly degrade performance of Minimax-
QS. Fortunately, in many games similarities inherently exist
in the environment, making it easy to design simple and
useful state similarity functions [5].

We plan to continue investigating the use of experience
generalization in hybrid RL algorithms. More specifically,
lines of research worth pursuing include evaluation in real
domains, integration with other convergence speeding up
techniques, and studies on adaptation of the spreading func-
tion to the task domain.

7. ACKNOWLEDGMENTS
This research was conducted under the NSF/CNPq-ProTeM

CC Project MAPPEL (Grant no. 68003399-8). Carlos H.
C. Ribeiro is grateful to FAPESP (proc. 99/05777-2) and
CNPq (Grant no. 301228/97-3-NV).

1244

8. REFERENCES
[1] B. Banerjee, S. Sen, and J. Peng. Fast concurrent

reinforcement learners. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI’2001), pages 825–830, 2001.

[2] S. Karlin and H. M. Taylor. A First Course in
Stochastic Processes. Academic Press, 1975.

[3] M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In Proceedings of
the Eleventh International Conference on Machine
Learning (ICML’94), pages 157–163. Morgan
Kaufmann, 1994.

[4] M. L. Littman and C. Szepesvári. A generalized
reinforcement learning model: Convergence and
applications. In Procs. of the Thirteenth International
Conf. on Machine Learning (ICML’96), pages
310–318, 1996.

[5] R. Pegoraro. Agilizando aprendizagem por reforco em
robotica movel atraves do uso de conhecimento sobre o
dominio. PhD thesis, University of São Paulo, 2001.

[6] C. H. C. Ribeiro. Embedding a priori knowledge in
reinforcement learning. Journal of Intelligent and
Robotic Systems, 21(1):51–71, January 1998.

[7] C. H. C. Ribeiro and C. Szepesvári. Q-Learning
combined with spreading: Convergence and results. In
Procs. of the ISRF-IEE International Conf. on
Intelligent and Cognitive Systems (Neural Networks
Symposium), pages 32–36, 1996.

[8] S. P. Singh, T. Jaakkola, and M. I. Jordan.
Reinforcement learning with soft state aggregation. In
G. Tesauro, D. S. Touretzky, and T. K. Leen, editors,
Advances in Neural Information Processing Systems 7,
pages 361–368. MIT Press, 1995.

[9] C. Szepesvári and M. Littman. Generalized markov
decision processes: Dynamic-programming and
reinforcement-learning algorithms. Technical Report
CS-96-11, Brown University, Department of Computer
Science, 1996.

[10] G. Tesauro. Temporal difference learning and
TD-Gammon. Communications of the ACM,
38(3):58–67, 1995.

[11] J. N. Tsitsiklis and B. V. Roy. An analysis of
temporal-difference learning with function
approximation. IEEE Transactions on Automatic
Control, May 1997.

1245

