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Routing

Graph abstraction for routing

algorithms:

! graph nodes are routers

! graph edges are “physical”

links

" link cost: delay, $cost,

    congestion level

Goal: determine “good” path

(sequence of routers) thru

network from source to dest.

Routing protocol

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

“Good” path:

• minimum cost path

• other def’s possible

Classification of routing algorithms

    View: global or local

! Global: info about entire

network (routers, links)

[link state]

! Local: partial knowledge of

remote parts of network

[distance vector]

Static or dynamic?

Static:

! infrequent route changes

! infrequent view update;

static link costs (e.g.

up/down)

Dynamic:

! frequent periodic route

changes

! frequent view update;

dynamic link costs (e.g.

delay)

     Centralized or decentralized

! one node maintains view,

and distributes routes to

other nodes

! all nodes maintain view

Distance vector routing algorithm

! Distributed: each node communicates only with
directly-attached neighbors

! Asynchronous: nodes need not exchange info or
iterate in lock step (synchronized)!

! Iterative:

" continues until no nodes exchange info

" self-terminating: no “signal” to stop

! Decentralized, local, dynamic

  Distributed, asynchronous implementation of the

algorithm by Bellman & Ford



Distance table data structure

! Each node has its own distance table

! One row for each possible destination

! One column for each directly-attached

neighbor of the node (outgoing links)

D  (T,X)
S

distance from S to T, via X as next hop=

w(S,X) + min  D   (T,Y)X

Y
=

Example: at node S, for destination T via neighbor X:

Distance table: an example

A

E D

CB
7

8

1

2

1

2 A

1

7

6

4

B

14

8

9

11

D

5

5

4

2

D  ()

A

B

C

D

E
neighbors

d
e

s
ti

n
a

ti
o

n
s

D  (C,D)
E

w(E,D) + min  {D  (C,Y)}D

Y
=

= 2+2  = 4
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=

= 8+6  = 14

loop!

loop!

Distance table gives routing table
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Distance vector routing: an overview

Iterative, asynchronous

Each local iteration caused by:

! local link cost change

! message from neighbor v: a

shortest path with source v

has changed

Distributed

! each node notifies neighbors

only when a shortest path to

any destination changes

" neighbors then notify their

neighbors if necessary

wait for (msg from neighbor /

        change in local link cost)

update distance table

if shortest path to any dest

has changed, notify

neighbors

Each node:



Assumption

! For the time being, don’t

consider link cost

changes: we’ll remove

this assumption later

! In the next slides we show:

" How does the algorithm

work

" Why it stabilizes and

produces in a finite amount

of time the correct

distances

Each node:

wait for (msg from neighbor)

update distance table

if shortest path to any dest

has changed, notify

neighbors

initialization

Distance vector algorithm: initialization

for all adjacent nodes y: 

      D (.,y) = + !

      D (y,y) = w(S,y) 

for all destinations t 

send min D (t,y) to each neighbor  

     /* y over all neighbors of S */ 

S

S

S
y

At node S:

   let m = ( V, T, C ) be the message received from V

   /* a path from V to T of cost C has been discovered */

   update: D  (T,V) = w(S,V) + C

   if  min  D  (T,Y) changes, send its new value to all

                              the neighbors of S
Y

S

S

Distance vector algorithm: main loop

At node S:

loop

forever

   wait (until S receives a message from a neighbor V)

Distance vector algorithm: an example
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Msg destination Msg/path source Path destination Cost

Y X Y 2

Z X Y 2

Y X Z 7

Z X Z 7

Y
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neighbors

d
e
s
t.

X  D Distance table at node X 

just after the initialization

If msg destination = path destination, message is useless: Y is not

a possible destination in its own distance table, and the info

carried by the message cannot be used to update any entry in DY

Won’t consider these messages any further



Distance vector algorithm: an example
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Messages generated during the initialization

Distance vector algorithm: an example
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Distance vector algorithm: an example
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Distance vector algorithm: an example
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Distance vector algorithm: an example
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Distance vector algorithm: an example
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Distance vector algorithm: an example
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Distance vector algorithm: an example
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Distance vector algorithm: an example
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Distance vector algorithm: an example
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    No more messages remain: the algorithm has

found a stable configuration

Correctness (1/2)    Does the algorithm stabilize and

produce (in a finite amount of

time) the correct distances?

   let m = ( V, T, C ) be the message received from V

   /* a path from V to T of cost C has been discovered */

   update: D  (T,V) = w(S,V) + C

   if  min  D  (T,Y) changes, send messages
Y

S

S

This is just a relaxation!

min DS(T,Y)
Y

= DST C = DVT

The update is equivalent to the relaxation DST  = w(S,V) + DVT

Correctness (2/2)

We previously proved the following:

If: 1) Distance estimate Dxy corresponds to the length of an

existing path from x to y

2) Bellman’s conditions Dxz  ! w(x,y) + Dzy  locally satisfied
for each (x,y) " E

Then Dxy = dxy for every x,y " V

     If at some point Dzy decreases, this is notified with a

message to x, that restores the condition if necessary

(and sends in turn messages to its own neighbors)

2)  OK

     The algorithm always uses existing arcs 1)  OK



  else if m = ( V, T, C ) is the message received from V

     /* a path from V to T of cost C was discovered */

     update: D  (T,V) = w(S,V) + CS

Dealing with link cost changes
A

t 
no

d
e
 S

:

loop

forever

  wait (until S receives a message from a neighbor V

 or the cost of a link (S,U) changes )

  if w(S,U) changes by #

     /* change cost to all dest's via neighbor U by # */

     /* # may be positive or negative */

     for all destinations T: D  (T,U) = D  (T,U) + #S S

Y
S

  for all destinations T:

if  min D  (T,Y) changes, send its new value to

                                all the neighbors of S

Decreasing the cost of a link: an example

Msg dest. Msg source Path dest. Cost

In DC, decrease all entries in column b by 1
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Decreasing the cost of a link: an example

Msg dest. Msg source Path dest. Cost
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Decreasing the cost of a link: an example
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Decreasing the cost of a link: an example

Msg dest. Msg source Path dest. Cost
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Decreasing the cost of a link: an example

Msg dest. Msg source Path dest. Cost

w(d,c) + C = 1 + 0 = 1 Dd (b,c) = 1
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Decreasing the cost of a link: an example

Msg dest. Msg source Path dest. Cost
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Decreasing the cost of a link: an example

Msg dest. Msg source Path dest. Cost
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Decreasing the cost of a link: an example

Msg dest. Msg source Path dest. Cost

w(c,d) + C = 1 + 1 = 2 Dc (b,d) = 2
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Decreasing the cost of a link: an example

Msg dest. Msg source Path dest. Cost
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11 3

10 2

16 1

a

b

c

2

1

12 3

2

No more messages remain: the

algorithm has found a stable

configuration
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Decreasing links: “good news travel fast”

Why does the algorithm stabilize?

! (S,X) = arc that we decreased by the amount #

!  T = any destination

! Assume for simplicity that all cycles have cost >0

Shortest path between any pair of nodes must be simple

! Consider the path S X T

shortest path from X to T simple

cannot contain (S,X)

The cost of S X T decreases by exactly #

Decreasing links: “good news travel fast”

The cost of $ST = S X T decreases by exactly #

1) If $ST was shortest, the cost of the shortest path from S

to T changes

2) If $ST was not shortest, it may become preferable to the

old shortest path from S to T

      In any case, if $ST is shortest after decreasing (S,X), it must be

simple (no cycle has cost 0), it is a path really existing in G and

we know exactly its cost

      The messages sent to the neighbors of S contain correct info

      With similar arguments: the neighbors of S will correctly

propagate this information backwards



Increasing links: “bad news travel slow”

! (S,X) = arc that we increased by the amount #

!  T = any destination

! If S X T was shortest before the update,

it may no longer be the shortest path after increasing (S,X)

! Replacement path = minimum in row T of DS

! The replacement path may not be simple and may contain (S,X)

S X TS Y

     In this case we should increase its cost by #, but the algorithm

doesn’t know when this is necessary

      The messages sent to the neighbors of S may contain

wrong info and the algorithm may not stabilize!

Increasing links: sending wrong info

In Dc and Dd, increase all entries in

columns d and c by 99

a

b

c

d

1

5

10

1

8

100

1

neighbors

b  D a c d

1 10 13

6 8 11

7 9 10

a

c

d

d
e
s
t.

neighbors

c  D a b d

5 4

6 3

11 1

a

b

d

2

1

8

d
e
s
t.

neighbors

d
e
s
t.

a  D b c

1 6

7 5

8 6

b

c

d

neighbors

d
e
s
t.

d  D b c

11 3

10 2

16 1

a

b

c
In Dc, Dc(d,b)=8 is the new minimum

in row d of Dc, but there is no path in

the graph from c to d of cost 8!

!

“Count to infinity” problem

Msg destination Msg/path source Path destination Cost

a b c 3

b

c

b

1

    2

neighbors

d
e
s
t.

a  D a

1

3

c

!

1

a

c

neighbors

d
e
s
t.

b  D

c

b

a

1

11 a

b

neighbors

d
e
s
t.

c  D

!

!

“Count to infinity” problem

Msg destination Msg/path source Path destination Cost

a b c 3

b

c

b

1

    2
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d
e
s
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1

3

c

!

1

a

c
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d
e
s
t.

b  D

c

b

a

1

11 a

b
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d
e
s
t.

c  D

!

b a c 4

w(a,b) + C = 1 + 3 = 4 Da (c,b) = 4

4



!

“Count to infinity” problem

Msg destination Msg/path source Path destination Cost

a b c 3
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…

How to make things work

! Different solutions proposed to solve the problem

(poisoned reverse, …

! None of them really general

! To solve the problem completely we should keep

information about the entire path to a destination

(path vector protocols)

! But messages in that case are much bigger

Hierarchical Routing

scale: with 50 million
destinations:

! can’t store all dest’s in routing
tables!

! routing table exchange would
swamp links!

administrative autonomy

! internet = network of
networks

! each network admin may
want to control routing in
its own network

Our routing study thus far - idealization

all routers identical

network “flat”

… not true in practice



Hierarchical Routing

! aggregate routers into

regions, “autonomous

systems” (AS)

! routers in same AS run

same routing protocol

" “intra-AS” routing

protocol

" routers in different AS

can run different intra-

AS routing protocol

! special routers in AS

! run intra-AS routing
protocol with all other
routers in AS

! also responsible for
routing to destinations
outside AS

" run inter-AS routing
protocol with other
gateway routers

gateway routers


