Routing

Distance vector protocol

Irene Finocchi

finocchi@di.uniroma1.it

Classification of routing algorithms

View: global or local

- Global: info about entire network (routers, links) [link state]
- Local: partial knowledge of remote parts of network [distance vector]

Centralized or decentralized

- one node maintains view, and distributes routes to other nodes
- all nodes maintain view

Static or dynamic?
Static:

- infrequent route changes
- infrequent view update; static link costs (e.g. up/down)

Dynamic:

- frequent periodic route changes
- frequent view update; dynamic link costs (e.g. delay)
- Routing protocol

Goal: determine "good" path (sequence of routers) thru network from source to dest.

Graph abstraction for routing algorithms:

- graph nodes are routers
- graph edges are "physical" links
> link cost: delay, \$cost, congestion level

"Good" path:
- minimum cost path
- other def's possible

Distance vector routing algorithm

Distributed, asynchronous implementation of the algorithm by Bellman \& Ford

■ Distributed: each node communicates only with directly-attached neighbors
■ Asynchronous: nodes need not exchange info or iterate in lock step (synchronized)!

- Iterative:
$>$ continues until no nodes exchange info
> self-terminating: no "signal" to stop
- Decentralized, local, dynamic

Distance table data structure

- Each node has its own distance table
- One row for each possible destination
- One column for each directly-attached
neighbor of the node (outgoing links)
Example: at node S , for destination T via neighbor X :

$$
\begin{aligned}
D^{S}(T, X) & =\text { distance from } S \text { to } T \text {, via } X \text { as next hop } \\
& =w(S, X)+\min _{Y} D^{X}(T, Y)
\end{aligned}
$$

Distance table gives routing table

Distance table: an example

$$
\begin{aligned}
D^{E}(C, D) & =w(E, D)+\min _{Y}\left\{D^{D}(C, Y)\right\} \\
& =2+2=4 \\
D^{E}(A, D) & =w(E, D)+\min _{Y}\left\{D^{D}(A, Y)\right\} \\
& =2+3=5 l^{\text {loop! }} \\
D^{E}(A, B) & =w(E, B)+\min _{Y}\left\{D^{B}(A, Y)\right\} \\
& =8+6=14 \underbrace{\text { loop! }}
\end{aligned}
$$

Distance vector routing: an overview

Iterative, asynchronous
Each local iteration caused by:

- local link cost change
- message from neighbor v : a shortest path with source v has changed

Distributed

- each node notifies neighbors only when a shortest path to any destination changes
$>$ neighbors then notify their neighbors if necessary

Each node:

update distance table
if shortest path to any dest
has changed, notify
neighbors

Assumption

- For the time being, don't consider link cost changes: we'll remove this assumption later
- In the next slides we show:
> How does the algorithm work
> Why it stabilizes and produces in a finite amount of time the correct distances

Each node:

initialization

has changed, notify neighbors

Distance vector algorithm: initialization

At node S

```
for all adjacent nodes y:
    DS}(.,y)=+
    DS}(y,y)=w(S,y
for all destinations t
send min }\mp@subsup{\operatorname{m}}{}{\prime}\mp@subsup{D}{}{S}(t,y) to each neighbor
    /* y over all neighbors of S */
```


Distance vector algorithm: main loop

At node S:

```
loop
    wait (until S receives a message from a neighbor V)
    let m = ( V, T, C ) be the message received from v
    /* a path from V to T of cost C has been discovered *
    update: D D (T,V) = w(S,V) + C
    if min
        the neighbors of S
forever
```

Distance vector algorithm: an example

If msg destination = path destination, message is useless: Y is not a possible destination in its own distance table, and the info carried by the message cannot be used to update any entry in D^{Y} \square Won't consider these messages any further

Distance vector algorithm: an example

Msg destination	Msg/path source	Path destination	Cost
Z	X	Y	2
Y	X	Z	7
X	Y	Z	1
Z	Y	X	2
X	Z	Y	1
Y	Z	X	7

Messages generated during the initialization

Distance vector algorithm: an example

Msg destination	Msg/path source	Path destination	Cost
Y	X	Z	7
X	Y	Z	1
Z	Y	X	2
X	Z	Y	1
Y	Z	X	7

$$
\mathrm{w}(\mathrm{Y}, \mathrm{X})+\mathrm{C}=2+7=9 \quad \square \mathrm{D}^{\mathrm{Y}}(\mathrm{Z}, \mathrm{X})=9
$$

Distance vector algorithm: an example

Distance vector algorithm: an example

$$
\mathrm{w}(\mathrm{X}, \mathrm{Y})+\mathrm{C}=2+1=3 \Longleftrightarrow \mathrm{D}^{\mathrm{x}}(\mathrm{Z}, \mathrm{Y})=3
$$

Distance vector algorithm: an example

$$
\mathrm{w}(\mathrm{Z}, \mathrm{Y})+\mathrm{C}=1+2=3 \quad \mathrm{D}^{\mathrm{Z}}(\mathrm{X}, \mathrm{Y})=3
$$

Distance vector algorithm: an example

$$
\mathrm{w}(\mathrm{Y}, \mathrm{Z})+\mathrm{C}=1+7=8 \quad \square \mathrm{D}^{\mathrm{Y}}(\mathrm{X}, \mathrm{Z})=8
$$

Distance vector algorithm: an example

$$
\mathrm{w}(\mathrm{X}, \mathrm{Z})+\mathrm{C}=7+1=8 \quad \square \mathrm{D}^{\mathrm{X}}(\mathrm{Y}, \mathrm{Z})=8
$$

Distance vector algorithm: an example

$$
\mathrm{w}(\mathrm{Y}, \mathrm{X})+\mathrm{C}=2+3=5 \quad \mathrm{D}^{\mathrm{Y}}(\mathrm{Z}, \mathrm{X})=5
$$

Distance vector algorithm: an example

$$
\mathrm{w}(\mathrm{Y}, \mathrm{Z})+\mathrm{C}=1+3=4 \quad \square \mathrm{D}^{\mathrm{Y}}(\mathrm{X}, \mathrm{Z})=4
$$

Correctness (1/2) Does the algorithm stabilize and produce (in a finite amount of time) the correct distances?

```
let m = ( V, T, C ) be the message received from v
/* a path from V to T of cost C has been discovered */
update: DS (T,V) = w(S,V) + C
if min }\mp@subsup{\textrm{D}}{\textrm{Y}}{}(T,Y)\mathrm{ changes, send messages
```

This is just a relaxation!

$$
\min _{\mathrm{Y}} \mathrm{D}^{\mathrm{S}}(\mathrm{~T}, \mathrm{Y})=\mathrm{D}_{\mathrm{ST}}
$$

$$
\mathrm{C}=\mathrm{D}_{\mathrm{VT}}
$$

The update is equivalent to the relaxation

Distance vector algorithm: an example

No more messages remain: the algorithm has found a stable configuration

Correctness (2/2)

We previously proved the following:
If: 1) Distance estimate $D_{x y}$ corresponds to the length of an existing path from x to y
2) Bellman's conditions $D_{x z} \leq w(x, y)+D_{z y}$ locally satisfied for each $(x, y) \in E$
Then $D_{x y}=d_{x y}$ for every $x, y \in V$

The algorithm always uses existing arcs

1) OK

If at some point $D_{z y}$ decreases, this is notified with a message to x , that restores the condition if necessary \qquad 2) OK (and sends in turn messages to its own neighbors)

Dealing with link cost changes

```
loop
wait（until S receives a message from a neighbor \(V\) or the cost of a link（S，U）changes
if w（S，U）changes by \(\delta\)
／＊change cost to all dest＇s via neighbor U by \(\delta\)＊／ ／＊\(\delta\) may be positive or negative＊／
for all destinations \(T: D^{S}(T, U)=D^{S}(T, U)+\delta\)
else if m＝（ V，T，C ）is the message received from V ／＊a path from V to \(T\) of cost \(C\) was discovered＊／ update： \(\mathrm{D}^{\mathrm{S}}(\mathrm{T}, \mathrm{V})=\mathrm{w}(\mathrm{S}, \mathrm{V})+\mathrm{C}\)
for all destinations \(T\) ：
if \(\min _{Y} D^{S}(T, Y)\) changes，send its new value to
forever

Decreasing the cost of a link：an example

\begin{tabular}{r|rrr}
\multicolumn{4}{c}{ neighbors } \\
\(D^{b}\) & \(a\) & \(c\) & \(d\) \\
\hline \multirow{2}{c}{} & 1 & 9 & 13 \\
\hline 0 & 6 & 8 & 11 \\
d & 7 & 9 & 10
\end{tabular}
\[

\]

\begin{tabular}{c|ccc|cc}
\multicolumn{4}{c}{ neighbors } & & \multicolumn{3}{c}{ neighbors } \\
\(D^{a}\) & \(b\) & \(c\) & & \(D^{d}\) & \(b\) \\
\hline
\end{tabular}
\[
\mathrm{w}(\mathrm{~b}, \mathrm{c})+\mathrm{C}=8+1=9 \quad \square \mathrm{D}^{\mathrm{b}}(\mathrm{a}, \mathrm{c})=9
\]

Decreasing the cost of a link：an example

\begin{tabular}{c|ccc}
\multicolumn{4}{c}{ neighbors } \\
\(D^{b}\) & \(a\) & \(c\) & \(d\) \\
\hline\(\pm\) & & 1 & 10 \\
\hline 0 & 13 \\
0 & \(c\) & 6 & 8 \\
\hline
\end{tabular}
\begin{tabular}{c|ccc}
\(D^{c}\) & \(a\) & \(b\) & \(d\) \\
\hline\(\dot{y}\) & 5 & 1 & 4 \\
\hline 0 & 6 & 0 & 3 \\
\hline 0 & 11 & 7 & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Msg dest． & Msg source & Path dest． & Cost & \multicolumn{2}{|r|}{neighbors} & \multicolumn{2}{|r|}{neighbors} \\
\hline b & c & a & 1 & \(D^{\text {a }}\) & b c & \(D^{\text {d }}\) & b c \\
\hline d & c & a & 1 & & & & \\
\hline a & c & b & 0 & 出 b & （1） 6 & ＊ & 11 （3） \\
\hline d & c & b & 0 & －c & 75 & \(\stackrel{\text { d }}{\circ} \mathrm{b}\) & 10 （2） \\
\hline
\end{tabular}

In \(\mathbf{D}^{\mathbf{C}}\) ，decrease all entries in column \(\mathbf{b}\) by \(\mathbf{1}\)

\section*{Decreasing the cost of a link：an example}

\[

\]
\begin{tabular}{c|ccc}
\multicolumn{5}{c}{ neighbors } \\
\(D^{c}\) & \(a\) & \(b\) & \(d\) \\
\hline\(\dot{y}\) & 5 & 1 & 4 \\
\hline\(\dot{y}\) & & 6 & 0 \\
0 & 3 \\
\(d\) & 11 & 7 & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Msg dest． & Msg source & Path dest． & Cost & \multicolumn{2}{|r|}{neighbors} & \multicolumn{2}{|r|}{neighbors} \\
\hline d & c & a & 1 & \(D^{\text {a }}\) & b c & \(D^{\text {d }}\) & b c \\
\hline a & c & b & 0 & & & & \\
\hline d & c & b & 0 & 为 b & （1） 6 & 出a & 11 （2） \\
\hline b & d & a & 2 & \％c & 7 （5） & \(\stackrel{\text { o b }}{ }\) b & 10 （2） \\
\hline c & d & a & 2 & d & 8 （6） & c & 16 （1） \\
\hline
\end{tabular}
\[
\mathrm{w}(\mathrm{~d}, \mathrm{c})+\mathrm{C}=1+1=2 \quad \square \mathrm{D}^{\mathrm{d}}(\mathrm{a}, \mathrm{c})=2
\]

\section*{Decreasing the cost of a link: an example}


\[
\begin{array}{c|ccc}
D^{c} & a & b & d \\
\hline \dot{y} & 5 & 1 & 4 \\
\hline 0 & 6 & 0 & 3 \\
0 & b & 11 & 7
\end{array}
\]
neighbors
\begin{tabular}{c|ccc|cc}
\multicolumn{4}{c}{ neighbors } & & \multicolumn{3}{c}{ neighbors } \\
\(D^{a}\) & \(b\) & \(c\) & & \(D^{d}\) & \(b\) \\
\hline & & \(c\) \\
\hline & \(b\) & 1 & 5 & & \\
\hline & & & \(11(2)\) \\
\hline 0 & \(c\) & 7 & 5 & & 0 \\
0 & \(b\) & 10 & \((2)\) \\
\(d\) & 8 & 6 & & \(c\) & 16
\end{tabular}
\[
\mathrm{w}(\mathrm{a}, \mathrm{c})+\mathrm{C}=5+0=5 \quad \square \mathrm{D}^{\mathrm{a}}(\mathrm{~b}, \mathrm{c})=5
\]

Decreasing the cost of a link: an example

\[
\mathrm{w}(\mathrm{~b}, \mathrm{~d})+\mathrm{C}=10+2=12 \square \mathrm{D}^{\mathrm{b}}(\mathrm{a}, \mathrm{~d})=12
\]

Decreasing the cost of a link: an example


neighbors
\begin{tabular}{c|ccc}
\(D^{c}\) & \(a\) & \(b\) & \(d\) \\
\hline\(\dot{y}\) & & 5 & 1 \\
\hline 0 & 4 \\
0 & 6 & 0 & 3 \\
\(d\) & 11 & 7 & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Msg dest. & Msg source & Path dest. & Cost & \multicolumn{2}{|r|}{neighbors} & \multicolumn{2}{|r|}{neighbors} \\
\hline d & c & b & 0 & \(D^{\text {a }}\) & \(b \quad c\) & \(\mathrm{D}^{\text {d }}\) & b c \\
\hline b & d & a & 2 & & & & \\
\hline c & d & a & 2 & & (1) 5 & * a & 11 (2) \\
\hline c & d & b & 1 & \(\stackrel{8}{ \pm 0} \mathrm{c}\) & \[
\begin{aligned}
& 7 \\
& 7 \\
& 8
\end{aligned}
\] & \(\stackrel{8}{0} \mathrm{~b}\) & \[
\begin{aligned}
& 10(1) \\
& 16 \text { (1) }
\end{aligned}
\] \\
\hline
\end{tabular}
\[
\mathrm{w}(\mathrm{~d}, \mathrm{c})+\mathrm{C}=1+0=1 \quad \square \mathrm{D}^{\mathrm{d}}(\mathrm{~b}, \mathrm{c})=1
\]

Decreasing the cost of a link: an example

\[

\]
\[

\]

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{neighbors} & \multicolumn{2}{|r|}{neighbors} \\
\hline \(D^{\text {a }}\) & b c & \(D^{\text {d }}\) & b \\
\hline \(\pm \mathrm{b}\) & (1) 5 & & 11 (2) \\
\hline \% C & 7 (5) & \(\stackrel{\otimes}{0} \mathrm{~b}\) & 10 (1) \\
\hline d & 8 (6) & c & 16 (1) \\
\hline
\end{tabular}
\[
\mathrm{w}(\mathrm{c}, \mathrm{~d})+\mathrm{C}=1+2=3 \quad \square \mathrm{D}^{\mathrm{c}}(\mathrm{a}, \mathrm{~d})=3
\]

Decreasing the cost of a link: an example

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{neighbors} & \multicolumn{2}{|r|}{neighbors} \\
\hline \(D^{\text {a }}\) & b c & \(\mathrm{D}^{\text {d }}\) & b \\
\hline & (1) 5 & & 11 (2) \\
\hline \(\stackrel{\otimes}{0} \mathrm{c}\) & 7 (5) & \(\stackrel{\text { ® }}{0} \mathrm{~b}\) & 10 (1) \\
\hline d & 8 (6) & , & 16 (1) \\
\hline
\end{tabular}
\[
\mathrm{w}(\mathrm{c}, \mathrm{~d})+\mathrm{C}=1+1=2 \quad \square \mathrm{D}^{\mathrm{c}}(\mathrm{~b}, \mathrm{~d})=2
\]

\section*{Decreasing links: "good news travel fast"}

Why does the algorithm stabilize?
- \((S, X)=\) arc that we decreased by the amount \(\delta\)
- \(\mathrm{T}=\) any destination
- Assume for simplicity that all cycles have cost >0 \(\square\) Shortest path between any pair of nodes must be simple
- Consider the path \(\mathrm{S} \longrightarrow \mathrm{X} \sim \sim\)
\[
\text { shortest path from } \mathrm{X} \text { to } \mathrm{T} \leadsto \text { simple }
\]
\[
\Rightarrow \text { cannot contain }(\mathrm{S}, \mathrm{X})
\]
\(\square\) The cost of \(\mathrm{S} \longrightarrow \mathrm{X} \sim \mathrm{T}\) decreases by exactly \(\delta\)

\section*{Decreasing the cost of a link: an example}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{neighbors} \\
\hline \(D^{\text {b }}\) & d \\
\hline & (1) \(9 \quad 12\) \\
\hline \(\stackrel{\circ}{\circ} \mathrm{c}\) & (6) 811 \\
\hline d & (7) 910 \\
\hline
\end{tabular}
neighbors
\begin{tabular}{c|ccc}
\(\mathrm{D}^{\mathrm{c}}\) & a & b & d \\
\hline\(\dot{\mathrm{a}}\) & 5 & 1 & 3 \\
\hline\(\dot{0}\) & 3 & 3 & \\
\hline b & 6 & 0 & 2 \\
d & 11 & 7 & 1
\end{tabular}

Msg dest. Msg source Path dest. Cost

No more messages remain: the algorithm has found a stable
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{neighbors} & \multicolumn{2}{|r|}{neighbors} \\
\hline \(D^{\text {a }}\) & b c & \(D^{\text {d }}\) & b c \\
\hline & (1) 5 & & 11 (2) \\
\hline \(\stackrel{\text { ® }}{0}\) & 7 (5) & - & 10 (1) \\
\hline d & 8 (6) & c & 16 (1) \\
\hline
\end{tabular}

Decreasing links: "good news travel fast"
The cost of \(\Pi_{\mathrm{ST}}=\mathrm{S} \longrightarrow \mathrm{X} \sim \sim \mathrm{T}\) decreases by exactly \(\delta\)
1) If \(\Pi_{S T}\) was shortest, the cost of the shortest path from \(S\) to T changes
2) If \(\Pi_{\mathrm{ST}}\) was not shortest, it may become preferable to the old shortest path from S to T

In any case, if \(\Pi_{\text {ST }}\) is shortest after decreasing ( \(\mathrm{S}, \mathrm{X}\) ), it must be simple (no cycle has cost 0 ), it is a path really existing in \(G\) and we know exactly its cost
\(\Rightarrow\) The messages sent to the neighbors of S contain correct info
With similar arguments: the neighbors of S will correctly propagate this information backwards

\section*{Increasing links: "bad news travel slow"}
- \((\mathrm{S}, \mathrm{X})=\) arc that we increased by the amount \(\delta\)
- \(\mathrm{T}=\) any destination
- If \(\mathrm{S} \longrightarrow \mathrm{X} \sim \sim \sim T\) was shortest before the update, it may no longer be the shortest path after increasing (S,X)
- Replacement path \(=\) minimum in row T of \(\mathrm{D}^{\mathrm{S}}\)
- The replacement path may not be simple and may contain (S,X)
\[
S \rightarrow Y \sim \sim \sim S \rightarrow X \sim S \sim \sim \sim T
\]

In this case we should increase its cost by \(\delta\), but the algorithm doesn't know when this is necessary
\(\Rightarrow\) The messages sent to the neighbors of S may contain wrong info and the algorithm may not stabilize!

\section*{"Count to infinity" problem}


Increasing links: sending wrong info

\begin{tabular}{c|ccc}
\multicolumn{4}{c}{ neighbors } \\
\(D^{b}\) & \(a\) & \(c\) & \(d\) \\
\hline\(\pm\) & & 1 & 10 \\
\hline 0 & 13 \\
0 & \(c\) & 6 & 8 \\
\hline & 11 \\
\(d\) & 7 & 9 & 10
\end{tabular}
neighbors
\begin{tabular}{c|ccc}
\(D^{c}\) & \(a\) & \(b\) & \(d\) \\
\hline\(\dot{y}\) & 5 & 2 & 4 \\
\hline 0 & 6 & 1 & 3 \\
0 & \(b\) & 11 & 8 \\
\hline\(d\) & 1
\end{tabular}

In \(\mathbf{D}^{\mathbf{c}}\) and \(\mathbf{D}^{\mathbf{d}}\), increase all entries in columns d and \(\mathbf{c}\) by 99

In \(\mathbf{D}^{\mathbf{c}}, \mathbf{D}^{\mathbf{c}}(\mathrm{d}, \mathrm{b})=8\) is the new minimum in row \(d\) of \(D^{c}\), but there is no path in
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{neighbors} & \multicolumn{2}{|r|}{neighbors} \\
\hline \(D^{\text {a }}\) & & \(D^{\text {d }}\) & b \\
\hline & (1) 6 & & 11 (3) \\
\hline \(\stackrel{\circ}{0}\) & 7 (5) & \(\stackrel{\text { © }}{0} \mathrm{~b}\) & 10 (2) \\
\hline d & 8 (6) & c & 16 (1) \\
\hline
\end{tabular}
"Count to infinity" problem

\[
\mathrm{w}(\mathrm{a}, \mathrm{~b})+\mathrm{C}=1+3=4 \quad \square \mathrm{D}^{\mathrm{a}}(\mathrm{c}, \mathrm{~b})=4
\]

\section*{"Count to infinity" problem}

neighbors

\[
\mathrm{w}(\mathrm{~b}, \mathrm{a})+\mathrm{C}=1+4=5 \quad \square \mathrm{D}^{\mathrm{b}}(\mathrm{c}, \mathrm{a})=5
\]

\section*{How to make things work}
- Different solutions proposed to solve the problem (poisoned reverse, ...
- None of them really general
- To solve the problem completely we should keep information about the entire path to a destination (path vector protocols)
- But messages in that case are much bigger

\section*{"Count to infinity" problem}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{neighbors} & neighbors & neighbors \\
\hline & \(D^{\text {a }}\) & \(b \quad D^{\text {b }}\) & a c & \\
\hline \[
\frac{1}{\frac{1}{a}}
\] & \(\cdots\) ¢ & (1) \(\begin{array}{lll}\text { (1) } & \\ \text { (6) } \\ \text { ( }\end{array}\) & (1) \(\infty\)
(5) \(\infty\) & \(\begin{array}{ll}\text { ¢ } & \\ \text { ¢ } \\ \text { ¢ } \\ \\ b\end{array}\) \\
\hline & Msg destination & Msg/path source & Path destination & Cost \\
\hline & a & b & c & 3 \\
\hline & b & a & c & 4 \\
\hline & a & b & c & 5 \\
\hline & b & a & c & 6 \\
\hline \multicolumn{5}{|c|}{\(\mathrm{w}(\mathrm{a}, \mathrm{b})+\mathrm{C}=1+5=6 \quad \square \mathrm{D}^{\mathrm{a}}(\mathrm{c}, \mathrm{b})=6\)} \\
\hline
\end{tabular}

\section*{Hierarchical Routing}

Our routing study thus far - idealization all routers identical
network "flat"
... not true in practice
scale: with 50 million
destinations:
administrative autonomy
■ internet \(=\) network of networks
- can't store all dest's in routing tables!
- routing table exchange would swamp links!
- each network admin may want to control routing in its own network

\section*{Hierarchical Routing}
- aggregate routers into regions, "autonomous systems" (AS)
- routers in same AS run same routing protocol
> "intra-AS" routing protocol
\(>\) routers in different AS can run different intraAS routing protocol
- gateway routers
- special routers in AS
- run intra-AS routing protocol with all other routers in AS
- also responsible for routing to destinations outside AS
\(>\) run inter- \(A S\) routing protocol with other gateway routers```

