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THE PROBLEM 

 

 Co-Channel reuse distance σ . 

 Minimum distance between stations   

 The goal of assigment’s algorithms is to 
assign channels to stations in a way such 
that the Co-Channel Reuse distance 
constraint and the minimum distance 
beetween close stations constraint are 
respected. The number of the channels used 
must be as small as possible. 

  
 



THE MODEL 

Graph G(V,E) such that                            

V = The stations set                        

E = Couples of close stations 

 d(u,v) = Distance between vertex u 

and vertex v 

 C = Set of non negative integers 

 σi = Minimum distance between 

channels assigned to vertices at 

distance i 

    



THE MODEL 

  L(σ1, σ2, …, σσ-1)-coloration of the graph 
G(V,E)  is a function f : V -> C  such that:          

    | f(u) – f(v) | ≥ σi  iff d(u,v) = i 

 k-L(σ1, σ2, …, σσ-1)-coloration  of the graph 
G(V,E) is a function:                                  
f : V -> {1,2, …, k} 

 λ(G) = The biggest color used in an 
optimal coloration of the graph G 

 λ(G)+1 = The number of colors used 



PROBLEMS STUDIED 

 

 We study problems with σ = 3  and σ = 4  

 

 In particular L(2,1)  and L(2,1,1) 

 

 Assignment costs 





CLIQUE Kn 

 

 

 

 

 If the graph G is a clique Kn  of n nodes, 

since the nodes are all adjacent to each 

other, we have that λ(G) = 2(n – 1) for both 

problems L(2,1)  and L(2,1,1) 

 For the classical vertex coloring problem n 

colors are requested to color the Kn clique  
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REDUCTION TO THE CLASSICAL 

VERTEX COLORING PROBLEM 

 Suppose we want to calculate the 

L(1,1,…,1)-coloration  of the graph 

G(V,E). 

 We can build the augmented graph       

Gσ(V, Eσ), where                                             

Eσ = { (u,v) such that  d(u,v)  ≤ σ – 1 } 



REDUCTION TO THE CLASSICAL 

VERTEX COLORING PROBLEM 

           G                                G4 

 

 

 

 

 

 

 The numbers of colors used, in a classical 
vertex coloring of the graph Gσ,  is a lower 
bound for the numbers of channels used in 
a L(1,1,…,1)-coloration  of the graph G 
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REDUCTION TO THE CLASSICAL 

VERTEX COLORING PROBLEM 

 If the graph Gσ have a Kn  clique, then n is 

a lower bound for the number of colors 

used 

 So n is a lower bound also for the 

number  of colors used in a L(1,1,…1)-
coloration of G 

 To refine this bound we need to find the 

maximum clique of the graph Gσ 



LOWER BOUNDS FOR L(k,1,…1) 

 A lower bound for the L(1,1,…1)-coloring 
of G is a lower bound for the    

L(k,1,…,1)-coloring  of G, with k ≥ 1 

 So lower bounds for L(1,1,1) are lower 

bounds for L(2,1,1) too and lower 

bounds for L(1,1) are also lower bounds 

for L(2,1) 



LEMMA 1 

 Consider the L(k,1,…,1)-coloration  of an 

augmented graph G(V,E), with k ≥2.          

λ(G) = |V| + 1  iff G′ has an hamiltonian 

path. 

 G′(V,E′)  is the complementh graph of G, 

where  E′ = { (u,v) such that (u,v) do not 
belongs to E } 



PROOF OF LEMMA 1            

(FIRST IMPLICATION →) 
 If  we want to satisfy the channel 

separation constraint, two vertices of G can 
have consecutive colors iff they are not 
adjacent.  So they are adjacent in G′. 

 If λ(G) = |V| + 1  then there is an ordering 
(v0, v1, …v|V|-1) of the vertices such that      
f(vi) = i 

 For what we’ve seen before,                     
every couple (vi-1, vi), in that ordered set, is 
an edge of E′ 

 So the ordered set (v0, v1, …v|V|-1)  represent 
an hamiltonian path in G′ 
 



PROOF OF LEMMA 1        

(SECOND IMPLICATION ← ) 

 If G′ has an hamiltonian path                

(v0, v1, …v|V|-1)  then we can build a 

function  f : V -> { 0,1, … |V| -1 } such that 

f(vi) = i  for every 0 ≤ i ≤ |V| -1  

 This function is clearly optimal for the 

L(k,1,…,1)-coloration  problem of G 



LEMMA 2 

 Let Sk  be a star graph with degree k. 

 Let c be the vertex with degree k of the 

star (the center of the star).  

 The biggest color used for the        

L(2,1)-coloration  of S  is :                        

k + 1     if    f(c) = 0 or  f(c) = k+1                      
k + 2   if   1 ≤ f(c) ≤ k 





HEXAGONAL GRIDS 

 

 

 

 

 

 

 

 An hexagonal grid H( r · c, E)  is a graph with r 
rows (from 0 to r - 1) and c columns          
(from 0 to c – 1), with r ≥ 3  and c ≥ 2. 

 A generic vertex u is denoted u = (i, j)  where i 
is his row and j is his column. 

 

 

 



HEXAGONAL GRIDS 

 

 

 

 

 

 

 Each vertex has degree 3, except for 

some vertices on the boards. 

 

 

 



EDGES OF AN HEXAGONAL GRID 

 A vertex (i, j) , which does not belongs 

to the board of the graph, is adjacent to 

the following 3 vertices: 

  1 – Vertex ( i – 1, j) 

  2 – Vertex ( i + 1, j) 

  3 – Vertex ( i, j + 1) or  Vertex ( i, j - 1)       
(it depends on whether i and j are both 

even or odd or one is even and the other 

is odd)                



LEMMA 3 

 For r ≥ 3  and c ≥ 3  there is a L(2, 1)-
coloration of an hexagonal grid H of size 

r · c  only if λ(H)=5 

 The proof follows the Lemma 2, since 

there is at least one vertex with degree 

3, that cannot be colored either 0 or 4. 



ALGORITHM HEXAGONAL 5-L(2,1) 

COLORING 

 

IF ( ( r ≥ 3 ) AND ( c ≥ 3 ) ) 

         Assign to each vertex u = (i, j) the   color   

f(u) = (2·i + 3·j) MOD 6 

 

This algorithm  is optimal for hexagonal 

grids with r ≥ 3 and c ≥ 3  

 

 



ALGORITHM HEXAGONAL 5-L(2,1) 

COLORING 
 

 

 

 

 

 White = 0, Black = 1 

 Red = 2, Yellow = 3 

 Green = 4, Blu = 5 

 

 

 



LEMMA 4 

 For r ≥ 3 and c ≥ 3, or r ≥ 5 and c = 2,  

there is a L(2, 1, 1)-coloration of an 

hexagonal grid H of size r · c  only if 

λ(H) ≥ 6 

 



PROOF OF LEMMA 4                      

(CASE r ≥ 3 AND c ≥ 3 ) 

 Consider  the augmented graph G4(V,E′) 
and his subset:                                    
S = {  (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1) } 

 

  Vertices in the subset S are mutually at 

distance 3 in H, so they form a clique in 

G4 

 Therefore, λ(H) > 5 



PROOF OF LEMMA 4                      

( SUBGRAPH INDUCED ) 

 Consider the subgraph Hs  induced by S 

and the vertex (3, 0).  

( 0, 0) 

( 1, 0) 

( 2 ,0 ) 

( 0, 1) 

( 1, 1) 

( 2, 1) 

( 3, 0) 



PROOF OF LEMMA 4                      

( SUBGRAPH INDUCED ) 

 To satisfy the co-channel reuse distance 

constraint, vertex (3, 0)  must get the 

same color as vertex (0, 1). 

 To satisfy the channel separation 

constraint , the colors assigned to 

vertices (2, 0)  and (3, 0)  must have a 

gap of at least 2. 

 



PROOF OF LEMMA 4                      

( SUBGRAPH INDUCED) 

 This is equivalent to add, in Hs , special 

edges                                                        
( (2, 0), (0, 1) ), ( (1, 1), (1, 0) ), ( (2, 1), (0, 0 ) ) 

( 0, 0) 

( 1, 0) 

( 2, 0) 

( 0, 1) 

( 1, 1) 

( 2, 1) 



PROOF OF LEMMA 4                      

( GRAPH COMPLEMENT ) 

 If we consider  Hs′ ( the complement  of 
graph Hs).  

 

 

 

 

 

 Since Hs′ consist of 2 component 
connected, it has no hamiltonian path 

( 0, 0) 

( 1, 0) 

( 2, 0) 

( 0, 1) 

( 1, 1) 

( 2, 1) 



PROOF OF LEMMA 4     

(CONCLUSION) 

 From the Lemma 1, we can conclude 

that  λ(H) ≥ 6 

 

 Lower bound in the case of r ≥ 5  and 

c = 2  can be proved by similar 

arguments  



ALGORITHM   HEXAGONAL–6–

L(2, 1, 1) COLORING 
 

 IF ( ( r ≥ 3 ) AND ( c ≥ 3 ) )  OR ( (r ≥ 5) AND ( c = 2 ) ) 

 

  FOR EACH vertex u = (i, j)  

 

   IF ( i MOD 6 = 0 AND j is even ) OR ( i MOD 6 = 3 AND j is odd ) 

    f(u) = 0  

   IF ( i MOD 6 = 0 AND j is odd ) OR ( i MOD 6 = 3 AND j is even ) 

    f(u) = 4 

   IF ( i MOD 6 = 1 AND j is even ) OR ( i MOD 6 = 4 AND j is odd ) 

    f(u) = 6 

   IF ( i MOD 6 = 1 AND j is odd ) OR ( i MOD 6 = 4 AND j is even) 

    f(u) = 2 

   IF ( i MOD 6 = 2 AND j is even ) OR ( i MOD 6 = 5 AND j is odd ) 

    f(u) = 1 

   IF ( i MOD 6 = 2 AND j is odd ) OR ( i MOD 6 = 5 AND j is even ) 

    f(u) = 5 
 

 

 

 

 

    



ALGORITHM HEXAGONAL–6–L(2, 1, 1) 

COLORING 
 

 

 

 

 

 White = 0, Black = 1 

 Red = 2, Yellow = 3 

 Green = 4, Blu = 5, Violet = 6 

 

 

 



CORRECTNESS OF THE 

ALGORITHM 

 We have to proof that: 

 The channel  separation constraint is 

verified 

  The co-channel reuse constraint is 

verified 

 

 



CORRECTNESS (THE CHANNEL 

SEPARATION CONSTRAINT )  
 Let u=(i, j)  be a vertex 

 For any adjacent v of u such that                     
v = (i, j+1) or v = (i, j-1), it has:                      
f(v)=f(u)+4  or f(v)=f(u)-4 

 Moreover, any pair (u, v) of adjacent vertices 
on the same coloumn can be colored only in 
this manners:                                               
f(u) = 0 and f(v) = 6                                               
f(u) = 6 and f(v) = 1                                               
f(u) = 1 and f(v) = 4                                               
f(u) = 4 and f(v) = 2                                                             
f(u) = 2 and f(v) = 5                                               
f(u)=  5 and f(v) = 0 



CORRECTNESS (THE CHANNEL 

SEPARATION CONSTRAINT )  

 Therefore, a gap between the colors 

assigned to each pair of adjacent 

vertices is at least 2 

 So we can conclude that the channel 

separation constraint is verified 



CORRECTNESS (THE CO-

CHANNEL REUSE CONSTRAINT )  

 Each row of H is colored with 2 colors and 
any 3 consecutive rows are colored with 
different colors. 

 Vertices (i, j) and (i, j+1) are colored, 
respectively, as vertices (i+3, j+1) and 
(i+3, j).  Hence, two vertices in rows i and 
(i+3)  get the same color if their distance is 
at least 4 

 The i-th and the (i+6)-th rows are colored 
the same. Hence the same color can be 
reused only in two vertices at distance 6. 

 



CORRECTNESS (THE CO-

CHANNEL REUSE CONSTRAINT )  

 Finally all the even (and  the odd ) 

column are colored in the same way. 

 But the distance between vertices (i, j) 
and (i, j+2)  is at least 4, since there are 

no consecutive horizontal edges. 

 So, the co-Channel Reuse distance 

constraint is verified too. 



BIDIMENSIONAL GRIDS 

 

 

 

 

 

 

 A Bidimensional grid B(r · c, E) is obtained 
from an hexagonal grid of the same size, 
simply connecting all the pair of 
consecutive nodes lying on the same row 

 

 

 



BIDIMENSIONAL GRIDS 

 

 

 

 

 

 

 A generic vertex (i, j), that is not lying on 
the board, is adjacent to vertices:              
(i-1, j), (i+1, j), (i, j-1), (i, j+1) 

 Therefore, a vertex v has degree at most 4 

 

 

 



 LEMMA 5 

 The optimal L(2, 1)-coloring  of a 

bidimensional grid B(r · c, E), where r ≥ 3 
and c ≥ 3, has λ(B)=6 

 From the Lemma 2, since there is at 

least a vertex with degree 4, we cannot 

color it with color 0 or 5. 



ALGORITHM BIDIMENSIONAL     

6-L(2,1) COLORING 

 

IF ( ( r ≥ 3 ) AND ( c ≥ 3 ) ) 

         Assign to each vertex u = (i, j) the   color   

f(u) = (2·i + 4·j) MOD 7 

 

 

 



ALGORITHM BIDIMENSIONAL 6-L(2,1) 

COLORING 
 

 

 

 

 

 White = 0, Black = 1 

 Red = 2, Yellow = 3 

 Green = 4, Blu = 5, Violet = 6 

 

 

 



LEMMA 6 

 For r ≥ 5 and c ≥ 4, or r ≥ 4 and c ≥ 5,  

there is a L(2, 1, 1)-coloration of a 

bidimensional grid B of size r · c only if 

λ(H) ≥ 8 

 



PROOF OF LEMMA 6                                      

( CASE r ≥ 5 AND c ≥ 4 )  
 Let us consider the augmented graph B4. 

For any pair of vertices u = (i, j) and          
v= (i+3, j), let Su,v  the following set:                           
{ (i, j), (i+1, j), (i+2, j), (i+3, j), (i+1, j-1), 
(i+2, j-1), (i+1, j+1), (i+2, j+1) } 

 All of vertices that belongs to Su,v are 
pairwaise at distance no more than 3 

 To satisfy the co-channel reuse distance 
constraint all of those vertices must be 
colored with  different colors, since both 
Su,v and Su,v′ induce a clique in B4 



PROOF OF LEMMA 6                                       

 Now, consider  the set:                              

Lu,v = Su,v U { all the vertices of B at 
horizontal distance 1 to a vertex on the 
border of Su,v } 
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PROOF OF LEMMA 6 

 

 

 

 

 

 Let us consider vertices: a=(i, j+1), b=(i+1, 
j+2)  and the bidimensional grid M induced by 
Su,v. 

 Su,v  has been assigned to all different colors 
 If we want to use only 8 colors, vertices b and a 

must be assigned to the two colors used for the 
vertices z and v 
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PROOF OF LEMMA 6 

 The color assigned to vertices a and b 

must be at least 2  from the color 

assigned to the vertex                            

s = (i+1, j+1). 

 This is equivalent to add two edges:    

(s, z) and (s,v) to the augmented graph. 

 Similar arguments we can repeat for the 

pairs of vertices: (c, d), (e, f), (g, h) 

 So we can add other edges  



PROOF OF LEMMA 6 

 

 

 

 

 

 Either f  or e are colored as vertex u. 
 Colors f(u) and f(v) must be assigned to two 

adjacent vertices in the set { e, f, g, h }, in 
particular f(u) can be assigned to vertex e and 
f(v) can be assigned to vertex h. 

 Thus, one further edge can be added: (u, v) 
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PROOF OF LEMMA 6 

 

 

 

 

 
 Let us consider the subgraph M  with vertices   

{ u, p, t, s, z, w, y, v } and let us build its 
complement, M′ 

 Since M′ consist of two connected 
components, M’ does not contains an 
Hamiltonian path 
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PROOF OF LEMMA 6 

 Recalling Lemma 1 we can conclude 

that there is no 7-L(2,1,1)-coloring  for a 

bidimensional grids of size r · c, where     

r ≥ 5 and c ≥ 4 

 The proof when r ≥ 4  and c ≥ 5  is 

analogous.  

 Hence λ(B) ≥ 8 



ALGORITHM GRID–8–L(2, 1, 1) 

COLORING 
 IF ( ( r ≥ 5) AND ( c ≥ 4 ) )  OR ( (r ≥ 4) AND ( c ≥ 5 ) ) 

 

  FOR EACH vertex u = (i, j)  

 

   IF ( (i + j) MOD 4 = 0  AND  i is even AND  j is even )  

    f(u) = 0  

   IF ( (i + j) MOD 4 = 0  AND  i is odd   AND  j is odd)  

    f(u) = 1 

   IF (( i + j) MOD 4 = 1  AND  i is even AND  j is odd )  

    f(u) = 7 

   IF ( (i + j) MOD 4 = 1  AND  i is odd   AND  j is even)  

    f(u) = 8 

   IF ( (i + j) MOD 4 = 2  AND  i is even   AND  j is even )  

    f(u) = 2  

   IF ( (i + j) MOD 4 = 2  AND  i is odd   AND  j is odd)  

    f(u) = 3 

   IF ( (i + j) MOD 4 = 3  AND  i is odd   AND  j is even )  

    f(u) = 5  

   IF ( (i + j) MOD 4 = 3  AND  i is even  AND  j is odd)  

    f(u) = 6 
 



ALGORITHM GRID–8–L(2, 1, 1) 

COLORING 
 

 

 

 

 

 White = 0, Black = 1, Red = 2 

 Yellow = 3, Azure = 4, Blu = 5 

 Violet = 6, Green = 7, Brown = 8 

 

 

 



CORRECTNESS OF THE ALGORITHM 

(CHANNEL SEPARATION CONSTRAINT) 

 The channel separation coinstrant is 
verified by construction of the algorithm 

 If color c is assigned to a vertex (i, j),  color 
c+1 is assigned to the vertex  (i′, j′), where:                                                         
- ( i′ mod 2 ) ≠ ( i mod 2)                                      
- ( j′ mod 2 ) ≠ ( j mod 2) 

 Vertices (i, j) and (i′, j′)  are at distance at 
least 2 

 So, any two consecutive vertices cannot be 
assigned to consecutive colors.  



CORRECTNESS OF THE ALGORITHM 

(CO-CHANNEL REUSE CONSTRAINT) 

 To verify that the co-Channel Reuse 

Distance constraint is verified it’s 

enough to note that two vertices            

u = (i , j) and v = (h , k) are assigned to 

the same color iff : 

 d(u,v) = 4  

 Both  | i – h | and  | j – k | are even. 

 



 CELLULAR GRIDS 

 

 

 

 

 

 

 A cellular grid C  of size r · c  is obtained 
from a bidimensional grid of the same size, 
augmenting the set of edges with left-to-
right diagonal connections. 

 

 

 



 CELLULAR GRIDS 

 

 

 

 

 

 

 So, a vertex u = (i, j), that is not lying on 
the board, is connected with vertices:  (i-1, 
j), (i+1, j), (i, j-1), (i, j+1), (i-1, j-1),  (i+1, 
j+1). 

 Therefore it has degree 6 
 

 

 



L(2,1) COLORING FOR A 

CELLULAR GRID 

 If one of this condition is verified :            

-  r ≥ 5  and  c ≥ 3                                             
-  r ≥ 3  and  c ≥ 5                                              
-  r ≥ 4  and  c ≥ 4  

 Then  an optimal L(2,1)  coloring of  a 

cellular grid C has λ(C) = 8 



ALGORITHM CELLULAR 8-L(2,1) 

COLORATING 

 

 

IF ( ( r ≥ 4 ) AND ( c ≥ 4 ) )    OR    ( ( r ≥ 5 ) 

AND ( c ≥ 3 ) )       OR        ( ( r ≥ 3 ) AND 

( c ≥ 5 ) ) 

         Assign to each vertex u = (i, j) the   color   

f(u) = (3·i + 2·j) MOD 9 

 



ALGORITHM L(2,1,1) COLORING 

FOR A CELLULAR GRID 
 If r ≥ 4  and  c ≥ 4  an optimal L(2,1,1) 

coloring of a cellular grid has λ(C) = 11  
 

 

 

 

IF ( ( r ≥ 4) AND ( c ≥ 4 )) 

 

  FOR EACH vertex u = (i, j)  

 

   IF ( (i + j) MOD 6 = 2  AND  i is even AND  j is even )  

    f(u) = 0  

   IF ( (i + j) MOD 6 = 0  AND  i is even   AND  j is even)  

    f(u) = 1 

   IF (( i + j) MOD 6 = 4  AND  i is even AND  j is even )  

    f(u) = 2 

 

 



ALGORITHM L(2,1,1) COLORING 

FOR A CELLULAR GRID 
 

              IF ( (i + j) MOD 6 = 1  AND  i is odd AND  j is even )  

    f(u) = 3 

   IF ( (i + j) MOD 6 = 3  AND  i is odd   AND  j is even)  

    f(u) = 4 

   IF (( i + j) MOD 6 = 5  AND  i is odd AND  j is even )  

    f(u) = 5 

   IF ( (i + j) MOD 6 = 5  AND  i is even   AND  j is odd)  

    f(u) = 6 

   IF ( (i + j) MOD 6 = 2  AND  i is odd   AND  j is odd )  

    f(u) = 7  

   IF ( (i + j) MOD 6 = 4  AND  i is odd   AND  j is odd)  

    f(u) = 8 

   IF ( (i + j) MOD 6 = 1  AND  i is even   AND  j is odd )  

    f(u) = 9  

   IF ( (i + j) MOD 6 = 3  AND  i is even  AND  j is odd)  

    f(u) = 10 

            IF ( (i + j) MOD 6 = 0  AND  i is odd AND  j is odd )  

    f(u) = 11 
 

 



CONCLUSIONS 

L(2, 1) L(2, 1, 1) 

HEXAGONAL GRIDS 6 Colors 7 Colors 

BIDIMENSIONAL 

GRIDS 

6 Colors 9 Colors 

CELLULAR GRIDS 9 Colors 12 Colors 






