HOW TO ASSIGN
 CHANNELS TO STATIONS IN A GRID NETWORK

EFFICIENT USE OF RADIO SPECTRUM IN WIRELESS NETWORKS WITH CHANNEL SEPARATION BETWEEN CLOSE STATIONS ALAN BERTOSSI - CRISTINA M. PINOTTI - RICHARD B. TAN

Course of Networks Algorithms

Marco Vitagliano
o Introduction
o Preliminary Concepts
o Assign Channel to Grids efficiently - Hexagonals

- Bidimensionals - Cellulars
o Conclusions

INTRODUCTION

THE PROBLEM

- Co-Channel reuse distance σ.
o Minimum distance between stations
o The goal of assigment's algorithms is to assign channels to stations in a way such that the Co-Channel Reuse distance constraint and the minimum distance beetween close stations constraint are respected. The number of the channels used must be as small as possible.

THE MODEL

- Graph $G(V, E)$ such that $V=$ The stations set $\mathrm{E}=$ Couples of close stations
o $d(u, v)=$ Distance between vertex u and vertex V
o $C=$ Set of non negative integers
○ $\sigma_{i}=$ Minimum distance between channels assigned to vertices at distance i

THE MODEL

- $L\left(\sigma_{1}, \sigma_{2}, . ., \sigma_{\sigma-1}\right)$-coloration of the graph $G(V, E)$ is a function $f: V->C$ such that: $|f(u)-f(v)| \geq \sigma_{i}$ iff $d(u, v)=i$
o $k-L\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\sigma-1}\right)$-coloration of the graph $G(V, E)$ is a function:
$f: V->\{1,2, \ldots, k\}$
○ $\lambda(G)=$ The biggest color used in an optimal coloration of the graph G
- $\lambda(G)+1=$ The number of colors used

PROBLEMS STUDIED

o We study problems with $\sigma=3$ and $\sigma=4$
o In particular $L(2,1)$ and $L(2,1,1)$
o Assignment costs

PRELIMINARY CONCEPTS

CLIQUE K n

- If the graph G is a clique K_{n} of n nodes, since the nodes are all adjacent to each other, we have that $\lambda(G)=2(n-1)$ for both problems $L(2,1)$ and $L(2,1,1)$
o For the classical vertex coloring problem n colors are requested to color the K_{n} clique

REDUCTION TO THE CLASSICAL VERTEX COLORING PROBLEM

o Suppose we want to calculate the $L(1,1, \ldots, 1)$-coloration of the graph $G(V, E)$.

- We can build the augmented graph $G_{o}\left(V, E_{\sigma}\right)$, where

$$
E_{\sigma}=\{(u, v) \text { such that } d(u, v) \leq \sigma-1\}
$$

REDUCTION TO THE CLASSICAL VERTEX COLORING PROBLEM

G

o The numbers of colors used, in a classical vertex coloring of the graph G_{σ}, is a lower bound for the numbers of channels used in a $L(1,1, \ldots, 1)$-coloration of the graph G

REDUCTION TO THE CLASSICAL VERTEX COLORING PROBLEM

- If the graph G_{σ} have a K_{n} clique, then n is a lower bound for the number of colors used
- So n is a lower bound also for the number of colors used in a $L(1,1, . . .1)$ coloration of G
- To refine this bound we need to find the maximum clique of the graph G_{σ}

LOWER BOUNDS FOR L(k,1,...1)

- A lower bound for the $L(1,1, \ldots, 1)$-coloring of G is a lower bound for the $L(k, 1, \ldots, 1)$-coloring of G, with $k \geq 1$
- So lower bounds for $L(1,1,1)$ are lower bounds for $L(2,1,1)$ too and lower bounds for $L(1,1)$ are also lower bounds for $L(2,1)$

LEMMA 1

o Consider the $L(k, 1, . ., 1)$-coloration of an augmented graph $G(V, E)$, with $k \geq 2$. $\lambda(G)=/ V /+1$ iff G^{\prime} has an hamiltonian path.
○ $G^{\prime}\left(V, E^{\prime}\right)$ is the complementh graph of G, where $E^{\prime}=\{(u, v)$ such that (u, v) do not belongs to E \}

PROOF OF LEMMA 1 (FIRST IMPLICATION \rightarrow)

o If we want to satisfy the channel separation constraint, two vertices of G can have consecutive colors iff they are not adjacent. So they are adjacent in G^{\prime}.
o If $\lambda(G)=/ V \mid+1$ then there is an ordering ($V_{0}, V_{1}, \ldots V_{V-1}$) of the vertices such that $f\left(V_{i}\right)=i$
o For what we've seen before, every couple ($\mathrm{V}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}$), in that ordered set, is an edge of E^{\prime}
o So the ordered set ($V_{0}, V_{1,}, \ldots V_{V-1}$) represent an hamiltonian path in G^{\prime}

PROOF OF LEMMA 1 (SECOND IMPLICATION $\leftarrow)$

- If G^{\prime} has an hamiltonian path ($V_{0}, V_{1}, \ldots, V_{V-1}$) then we can build a function $f: V \rightarrow\{0,1, \ldots / V /-1\}$ such that $f\left(V_{i}\right)=i$ for every $0 \leq i \leq / V /-1$
- This function is clearly optimal for the $L(k, 1, \ldots, 1)$-coloration problem of G

LEMMA 2

o Let S_{k} be a star graph with degree k.
o Let c be the vertex with degree k of the star (the center of the star).
o The biggest color used for the $L(2,1)$-coloration of S is :
$k+1$ if $f(c)=0$ or $f(c)=k+1$
$k+2$ if $1 \leq f(c) \leq k$

ASSIGN CHANNELS TO GRIDS EFFICIENTLY

HEXAGONAL GRIDS

o An hexagonal grid $H(r \cdot c, E)$ is a graph with r rows (from 0 to $r-1$) and c columns (from O to $c-1$), with $r \geq 3$ and $c \geq 2$.
o A generic vertex u is denoted $u=(i, j)$ where i is his row and j is his column.

HEXAGONAL GRIDS

- Each vertex has degree 3, except for some vertices on the boards.

EDGES OF AN HEXAGONAL GRID

o A vertex (i, j), which does not belongs to the board of the graph, is adjacent to the following 3 vertices:

- 1 - Vertex ($i-1, j$)
- 2 - Vertex $(i+1, j)$
- 3 - Vertex ($i, j+1$) or Vertex (i, j - 1)
(it depends on whether i and j are both even or odd or one is even and the other is odd)

LEMMA 3

- For $r \geq 3$ and $c \geq 3$ there is a $L(2,1)$ coloration of an hexagonal grid H of size $r \cdot c$ only if $\lambda(H)=5$
- The proof follows the Lemma 2, since there is at least one vertex with degree 3 , that cannot be colored either 0 or 4 .

ALGORITHM HEXAGONAL 5-L(2,1) COLORING

$$
\begin{aligned}
& \text { IF }((\mathrm{r} \geq 3) \text { AND }(\mathrm{c} \geq 3)) \\
& \text { Assign to each vertex } u=(\mathrm{i}, \mathrm{j}) \text { the color } \\
& \mathrm{f}(\mathrm{u})=(2 \cdot \mathrm{i}+3 \cdot \mathrm{j}) \text { MOD } 6
\end{aligned}
$$

This algorithm is optimal for hexagonal grids with $r \geq 3$ and $c \geq 3$

ALGORITHM HEXAGONAL 5-L(2,1)
COLORING

- White = 0, Black = 1
- Yellow = 3
o Green $=4$, Blu $=5$

LEMMA 4

- For $r \geq 3$ and $c \geq 3$, or $r \geq 5$ and $c=2$, there is a $L(2,1,1)$-coloration of an hexagonal grid H of size $r \cdot c$ only if $\lambda(H) \geq 6$

> PROOF OF LEMMA 4 $($ CASE $r \geq 3$ AND $c \geq 3$)

- Consider the augmented graph $G_{4}\left(V, E^{\prime}\right)$ and his subset:
$S=\{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)\}$
- Vertices in the subset S are mutually at distance 3 in H, so they form a clique in G 4
o Therefore, $\lambda(H)>5$

PROOF OF LEMMA 4 (SUBGRAPH INDUCED)

- Consider the subgraph H_{s} induced by S and the vertex $(3,0)$.

PROOF OF LEMMA 4 (SUBGRAPH INDUCED)

o To satisfy the co-channel reuse distance constraint, vertex $(3,0)$ must get the same color as vertex (0, 1).
o To satisfy the channel separation constraint , the colors assigned to vertices $(2,0)$ and $(3,0)$ must have a gap of at least 2.

PROOF OF LEMMA 4 (SUBGRAPH INDUCED)

o This is equivalent to add, in H_{s}, special edges
$((2,0),(0,1)),((1,1),(1,0)),((2,1),(0,0))$

PROOF OF LEMMA 4 (GRAPH COMPLEMENT)

- If we consider $\mathrm{H}_{\mathrm{s}}{ }^{\prime}$ (the complement of graph H_{s}).

- Since $H_{s}{ }^{\prime}$ consist of 2 component connected, it has no hamiltonian path

PROOF OF LEMMA 4 (CONCLUSION)

o From the Lemma 1, we can conclude that $\lambda(H) \geq 6$

- Lower bound in the case of $r \geq 5$ and $c=2$ can be proved by similar arguments

ALGORITHM HEXAGONAL-6L(2, 1, 1) COLORING

$\operatorname{IF}((\mathrm{r} \geq 3) \operatorname{AND}(\mathrm{c} \geq 3)) \operatorname{OR}((\mathrm{r} \geq 5) \operatorname{AND}(\mathrm{c}=2))$
FOR EACH vertex $u=(i, j)$
IF (i MOD $6=0$ AND j is even $) \mathrm{OR}(\mathrm{i} \mathrm{MOD} 6=3 \mathrm{AND} \mathrm{j}$ is odd $)$

$$
f(u)=0
$$

$\operatorname{IF}(\mathrm{i}$ MOD $6=0 \mathrm{AND} \mathrm{j}$ is odd $) \mathrm{OR}(\mathrm{i}$ MOD $6=3 \mathrm{AND} \mathrm{j}$ is even $)$ $f(u)=4$
$\operatorname{IF}(\mathrm{i} \mathrm{MOD} 6=1 \mathrm{AND} \mathrm{j}$ is even $) \mathrm{OR}(\mathrm{i} \mathrm{MOD} 6=4 \mathrm{AND} \mathrm{j}$ is odd $)$ $f(u)=6$
$\operatorname{IF}(\mathrm{i}$ MOD $6=1$ AND j is odd $) \mathrm{OR}(\mathrm{i}$ MOD $6=4$ AND j is even $)$ $f(u)=2$
IF (i MOD $6=2$ AND j is even) $\mathrm{OR}(\mathrm{i} \mathrm{MOD} 6=5$ AND j is odd $)$ $f(u)=1$
IF (i MOD $6=2$ AND j is odd $) \mathrm{OR}(\mathrm{i}$ MOD $6=5$ AND j is even $)$ $f(u)=5$

ALGORITHM HEXAGONAL-6-L(2, 1, 1)

 COLORING- White = 0 , Black = 1
- Yellow = 3
o Green = 4, Blu = 5,

CORRECTNESS OF THE ALGORITHM

- We have to proof that:
- The channel separation constraint is verified
- The co-channel reuse constraint is verified

CORRECTNESS (THE CHANNEL SEPARATION CONSTRAINT)

- Let $u=(i, j)$ be a vertex
o For any adjacent v of u such that
$v=(i, j+1)$ or $v=(i, j-1)$, it has:
$f(v)=f(u)+4$ or $f(v)=f(u)-4$
- Moreover, any pair (u, v) of adjacent vertices on the same coloumn can be colored only in this manners:
$f(u)=0$ and $f(v)=6$
$f(u)=6$ and $f(v)=1$
$f(u)=1$ and $f(v)=4$
$f(u)=4$ and $f(v)=2$
$f(u)=2$ and $f(v)=5$
$f(u)=5$ and $f(v)=0$

CORRECTNESS (THE CHANNEL SEPARATION CONSTRAINT)

o Therefore, a gap between the colors assigned to each pair of adjacent vertices is at least 2
o So we can conclude that the channel separation constraint is verified

CORRECTNESS (THE CO-

 CHANNEL REUSE CONSTRAINT)o Each row of H is colored with 2 colors and any 3 consecutive rows are colored with different colors.
o Vertices (i, j) and ($i, j+1$) are colored, respectively, as vertices $(i+3, j+1)$ and $(i+3, j)$. Hence, two vertices in rows i and ($i+3$) get the same color if their distance is at least 4
o The i-th and the ($i+6$)-th rows are colored the same. Hence the same color can be reused only in two vertices at distance 6.

CORRECTNESS (THE CO-

 CHANNEL REUSE CONSTRAINT)o Finally all the even (and the odd) column are colored in the same way.
o But the distance between vertices (i, j) and $(i, j+2)$ is at least 4 , since there are no consecutive horizontal edges.

- So, the co-Channel Reuse distance constraint is verified too.

BIDIMENSIONAL GRIDS

o A Bidimensional grid $B(r \cdot c, E)$ is obtained from an hexagonal grid of the same size, simply connecting all the pair of consecutive nodes lying on the same row

BIDIMENSIONAL GRIDS

o A generic vertex (i, j), that is not lying on the board, is adjacent to vertices:
(i-1, j), $(i+1, j),(i, j-1),(i, j+1)$
o Therefore, a vertex v has degree at most 4

LEMMA 5

o The optimal $L(2,1)$-coloring of a bidimensional grid $B(r \cdot c, E)$, where $r \geq 3$ and $c \geq 3$, has $\lambda(B)=6$
o From the Lemma 2, since there is at least a vertex with degree 4, we cannot color it with color 0 or 5 .

ALGORITHM BIDIMENSIONAL 6-L(2,1) COLORING

$\operatorname{IF}((r \geq 3)$ AND ($\mathrm{c} \geq 3))$
Assign to each vertex $u=(i, j)$ the color $f(u)=(2 \cdot i+4 \cdot j)$ MOD 7

ALGORITHM BIDIMENSIONAL 6-L(2,1)

 COLORING- White = 0, Black = 1
- Yellow = 3
o Green = 4, Blu = 5,

LEMMA 6

o For $r \geq 5$ and $c \geq 4$, or $r \geq 4$ and $c \geq 5$, there is a $L(2,1,1)$-coloration of a bidimensional grid B of size $r \cdot c$ only if $\lambda(H) \geq 8$

> PROOF OF LEMMA 6 $($ CASE $r \geq 5$ AND $c \geq 4$)
o Let us consider the augmented graph B_{4}. For any pair of vertices $u=(i, j)$ and $v=(i+3, j)$, let $S_{u, v}$ the following set:
$\{(i, j),(i+1, j),(i+2, j),(i+3, j),(i+1, j-1)$,
$(i+2, j-1),(i+1, j+1),(i+2, j+1)\}$
o All of vertices that belongs to $S_{u, v}$ are pairwaise at distance no more than 3

- To satisfy the co-channel reuse distance constraint all of those vertices must be colored with different colors, since both $S_{u, v}$ and $S_{u, v}$ ' induce a clique in B_{*}

PROOF OF LEMMA 6

- Now, consider the set:
$L_{u, v}=S_{u, v} U$ \{ all the vertices of B at horizontal distance 1 to a vertex on the border of $S_{u, v}$ \}

PROOF OF LEMMA 6

- Let us consider vertices: $a=(i, j+1), b=(i+1$, $j+2$) and the bidimensional grid M induced by $S_{u, v}$.
- $S_{u, V}$ has been assigned to all different colors
- If we want to use only 8 colors, vertices b and a must be assigned to the two colors used for the vertices z and v

PROOF OF LEMMA 6

- The color assigned to vertices a and b must be at least 2 from the color assigned to the vertex $s=(i+1, j+1)$.
- This is equivalent to add two edges: (S, z) and (S, V) to the augmented graph.
- Similar arguments we can repeat for the pairs of vertices: $(c, d),(e, f),(g, h)$
- So we can add other edges

PROOF OF LEMMA 6

o Either f or e are colored as vertex u.

- Colors $f(u)$ and $f(v)$ must be assigned to two adjacent vertices in the set $\{e, f, g, h\}$, in particular $f(u)$ can be assigned to vertex e and $f(v)$ can be assigned to vertex h.
o Thus, one further edge can be added: (u, v)

PROOF OF LEMMA 6

- Let us consider the subgraph M with vertices $\{u, p, t, s, z, w, y, v\}$ and let us build its complement, M^{\prime}
- Since M^{\prime} consist of two connected components, M^{\prime} does not contains an Hamiltonian path

PROOF OF LEMMA 6

o Recalling Lemma 1 we can conclude that there is no $7-L(2,1,1)$-coloring for a bidimensional grids of size $r \cdot c$, where $r \geq 5$ and $c \geq 4$
o The proof when $r \geq 4$ and $c \geq 5$ is analogous.
o Hence $\lambda(B) \geq 8$

ALGORITHM GRID-8-L(2, 1, 1) COLORING

$\operatorname{IF}((\mathrm{r} \geq 5) \operatorname{AND}(\mathrm{c} \geq 4))$ OR $((\mathrm{r} \geq 4) \operatorname{AND}(\mathrm{c} \geq 5))$
FOR EACH vertex $u=(i, j)$

$$
\begin{aligned}
& \operatorname{IF}((i+j) \text { MOD } 4=0 \text { AND } i \text { is even AND } j \text { is even }) \\
& f(u)=0 \\
& \operatorname{IF}((i+j) \text { MOD } 4=0 \text { AND } i \text { is odd AND } j \text { is odd }) \\
& f(u)=1 \\
& \operatorname{IF}((\mathrm{i}+\mathrm{j}) \text { MOD } 4=1 \text { AND } \mathrm{i} \text { is even AND } \mathrm{j} \text { is odd }) \\
& f(u)=7 \\
& \operatorname{IF}((\mathrm{i}+\mathrm{j}) \operatorname{MOD} 4=1 \text { AND } \mathrm{i} \text { is odd AND } \mathrm{j} \text { is even }) \\
& f(u)=8 \\
& \operatorname{IF}((i+j) \text { MOD } 4=2 \text { AND } i \text { is even AND } j \text { is even }) \\
& f(u)=2 \\
& \operatorname{IF}((i+j) \text { MOD } 4=2 \text { AND } i \text { is odd AND } j \text { is odd }) \\
& f(u)=3 \\
& \operatorname{IF}((i+j) \text { MOD } 4=3 \text { AND } i \text { is odd AND } j \text { is even }) \\
& f(u)=5 \\
& \operatorname{IF}((i+j) \text { MOD } 4=3 \text { AND } i \text { is even AND } j \text { is odd }) \\
& f(u)=6
\end{aligned}
$$

ALGORITHM GRID-8-L(2, 1, 1) COLORING

- White = 0, Black = 1 ,
- Yellow = 3, Azure $=4$, Blu = 5

○ Violet $=6$, Green $=7$, Brown $=8$

CORRECTNESS OF THE ALGORITHM (CHANNEL SEPARATION CONSTRAINT)

- The channel separation coinstrant is verified by construction of the algorithm
- If color c is assigned to a vertex (i, j), color $c+1$ is assigned to the vertex $\left(i^{\prime}, j^{\prime}\right)$, where:
- $\left(i^{\prime} \bmod 2\right) \neq(i \bmod 2)$
- $\left(j^{\prime} \bmod 2\right) \neq(j \bmod 2)$
- Vertices (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are at distance at least 2
- So, any two consecutive vertices cannot be assigned to consecutive colors.

CORRECTNESS OF THE ALGORITHM (CO-CHANNEL REUSE CONSTRAINT)

- To verify that the co-Channel Reuse Distance constraint is verified it's enough to note that two vertices $u=(i, j)$ and $v=(h, k)$ are assigned to the same color iff :
- $d(u, v)=4$
o Both /i-h/and /j-k/are even.

CELLULAR GRIDS

- A cellular grid C of size $r \cdot c$ is obtained from a bidimensional grid of the same size, augmenting the set of edges with left-toright diagonal connections.

CELLULAR GRIDS

o So, a vertex $u=(i, j)$, that is not lying on the board, is connected with vertices: ($i-1$, $j),(i+1, j),(i, j-1),(i, j+1),(i-1, j-1),(i+1$, $j+1$).
o Therefore it has degree 6

L(2,1) COLORING FOR A CELLULAR GRID

- If one of this condition is verified :
- $r \geq 5$ and $c \geq 3$
- $r \geq 3$ and $c \geq 5$
- $r \geq 4$ and $c \geq 4$
- Then an optimal $L(2,1)$ coloring of a cellular grid C has $\lambda(C)=8$

ALGORITHM CELLULAR 8-L(2,1) COLORATING

$$
\begin{array}{lll}
\operatorname{IF}((\mathrm{r} \geq 4) \text { AND }(\mathrm{c} \geq 4)) & \text { OR } \quad((\mathrm{r} \geq 5) \\
\text { AND }(\mathrm{c} \geq 3)) & \text { OR } & ((\mathrm{r} \geq 3) \text { AND } \\
(\mathrm{c} \geq 5)) & &
\end{array}
$$

Assign to each vertex $u=(i, j)$ the color $f(u)=(3 \cdot i+2 \cdot j)$ MOD 9

ALGORITHM L(2,1,1) COLORING FOR A CELLULAR GRID

O If $r \geq 4$ and $c \geq 4$ an optimal $\mathrm{L}(2,1,1)$ coloring of a cellular grid has $\lambda(C)=11$
$\operatorname{IF}((r \geq 4)$ AND $(c \geq 4))$
FOR EACH vertex $\mathrm{u}=(\mathrm{i}, \mathrm{j})$

$$
\begin{aligned}
& \text { IF }((i+j) \text { MOD } 6=2 \text { AND } i \text { is even AND } j \text { is even }) \\
& f(u)=0 \\
& \operatorname{IF}((i+j) \text { MOD } 6=0 \text { AND } i \text { is even AND } j \text { is even }) \\
& f(u)=1 \\
& \text { IF }((i+j) \text { MOD } 6=4 \text { AND } i \text { is even AND } j \text { is even }) \\
& f(u)=2
\end{aligned}
$$

ALGORITHM L(2,1,1) COLORING FOR A CELLULAR GRID

$$
\begin{aligned}
& \operatorname{IF}((\mathrm{i}+\mathrm{j}) \text { MOD } 6=1 \text { AND } \mathrm{i} \text { is odd AND } \mathrm{j} \text { is even }) \\
& f(u)=3 \\
& \operatorname{IF}((\mathrm{i}+\mathrm{j}) \text { MOD } 6=3 \text { AND } \mathrm{i} \text { is odd AND } \mathrm{j} \text { is even }) \\
& f(u)=4 \\
& \operatorname{IF}((\mathrm{i}+\mathrm{j}) \text { MOD } 6=5 \text { AND } \mathrm{i} \text { is odd AND } \mathrm{j} \text { is even }) \\
& f(u)=5 \\
& \operatorname{IF}((\mathrm{i}+\mathrm{j}) \text { MOD } 6=5 \text { AND } \mathrm{i} \text { is even AND } \mathrm{j} \text { is odd }) \\
& f(u)=6 \\
& \operatorname{IF}((\mathrm{i}+\mathrm{j}) \text { MOD } 6=2 \text { AND } \mathrm{i} \text { is odd AND } \mathrm{j} \text { is odd }) \\
& f(u)=7 \\
& \operatorname{IF}((i+j) \text { MOD } 6=4 . \text { AND } i \text { is odd AND } j \text { is odd }) \\
& f(u)=8 \\
& \operatorname{IF}((i+j) \text { MOD } 6=1 \text { AND } i \text { is even AND } j \text { is odd }) \\
& f(u)=9 \\
& \operatorname{IF}((\mathrm{i}+\mathrm{j}) \text { MOD } 6=3 \text { AND } \mathrm{i} \text { is even AND } \mathrm{j} \text { is odd }) \\
& f(u)=10 \\
& \operatorname{IF}((i+j) \text { MOD } 6=0 \text { AND } \mathrm{i} \text { is odd AND } \mathrm{j} \text { is odd }) \\
& f(u)=11
\end{aligned}
$$

CONCLUSIONS

	L(2,1$)$	L($(2,1,1)$
HEXAGONAL GRIDS	6 Colors	7 Colors
BIDIMENSIONAL GRIDS	6 Colors	9 Colors
CELLULAR GRIDS	9 Colors	12 Colors

$$
\begin{array}{|l|}
\hline ? \\
\hline
\end{array}
$$

