## Minimum Spanning Tree on a Planar Graph

Tonomi Matsui

## Reviewing the MST problem

- Tree - Subgraph that is minimally connected (removing any edge will disconnect it);
- Spanning Tree - Subgraph that covers every vertex and is a tree;
- Minimum spanning tree - Spanning tree with the edges with lowest weights;


## Reviewing the MST problem

- Forest - Set of trees;
- Maximal spanning forest - Forest that covers every vertex (in a connected graph it is equal to spanning tree).


## Reviewing the MST problem



## Required concepts

## Planar Graph

Graph that can be drawn without the edges crossing each other.


## Dual Graph of a planar Graph

- $G^{*}=\left(V^{*}, E\right)$ is a dual-graph of $G=(V, E)$ when an edge subset $C \subseteq E$ is a cycle of $G$ iff $C$ is a cut-set of $G^{*}$;
- Cut-set - Set of edges that will make the graph disconnected if removed, but removing only a subset does not disconnect;
- There are algorithms to find a Dual Graph in linear time.


## Dual Graph of a planar Graph



## Deletion and contraction

- Gle denotes the graph obtained by deleting the edge $e$ from $G$;
- G/e denotes the graph obtained by contracting $e$ :
- Contracting: Remove the edge and merge the vertexes it was connecting.


## Deletion and contraction



The Algorithm

## The Algorithm

- An edge subset $T \subseteq E$ is a maximal spanning forest of $G$ iff $E \backslash T$ is a maximal spanning forest of $G^{*}$;
- If $T$ is the minimum weight spanning forest of $G$, then $E \backslash T$ is the maximum weight spanning forest of $G^{*}$ and vice-versa.


## The Algorithm

Let T and $\mathrm{T}^{*}$ := null
Let G1 $:=\mathrm{G}$ and $\mathrm{G1} *:=\mathrm{G} *$
While true
if G1 and G1* are empty then return [T, T* v := vertex in G1 or G1*

## The algorithm

if v contains a self-loop
$\mathrm{f}:=$ edge with the self-loop
G1 := G1\f, G1* := G1*\f
if $v$ belongs to $G 1$ then $T^{*}:=T^{*} U\{f\}$
if $v$ belongs to $\mathrm{G1} *$ then $\mathrm{T}:=\mathrm{T} U\{f\}$

## The algorithm

if v contains no self-loop and belongs to G1
I := set of edges incident on v
e := edge in $E$ with min weight
G1 : $=$ G1/e
G1* := G1* $\backslash e$
$\mathrm{T}:=\mathrm{TU}\{\mathrm{e}\}$

## The algorithm

if v contains no self-loop and belongs to G1*
I := set of edges incident on v
e := edge in E with max weight
G1 : = G1 \e
G1* := G1*/e
$\mathrm{T}^{*}:=\mathrm{T}^{*} \mathrm{U}\{\mathrm{e}\}$

## The algorithm - example



## Performance

## Number of iterations

- The number of iterations is at worst $|V|+\left|V^{*}\right|+|E|$
- Simple to prove: In each iteration, either an edge or a vertex is removed


## Time for each iteration

- Let us assume the graphs are maintained by adjacency lists:
- Verifying if the graph is empty can be done in constant time;
- Chosing a vertex can be done in constant time;
- Deleting an edge can be done in constant time.
- What about:
- Choosing a min weight edge if a vertex has no selfloops;
- Contracting an edge.


## Optimizing the algorithm

If we chose a vertex with degree smaller than 4:

- Choosing the edge with min/max weight requires constant time;
- Contracting the edge requires moving of edges from one vertex to another: $O\left(\min \left\{d_{G 1}(v), d_{G 1}(u)\right\}\right)=O(3)=O(1)$
- Euler's Formula guarantees that either $G 1$ or $G l^{*}$ has at least one vertex with degree smaller than 4.


## Optimizing the algorithm

How to guarantee you choose the right vertex?

- Keep the vertices with degree smaller than 4 in a container;
- When an edge is deleted, verify the cardinalities of the affected vertices and put them in the container if necessary;
- When an edge is contracted, remove the affected vertices from the container, add the new vertex if the cardinality is less than 4.


## Conclusion

This algorithm:

- Chooses a vertex $O(1)$;
- If it has a self-loop it deletes an edge $O(1)$;
- Otherwise it chooses an edge with min/max $O(3)$ weight and:
- Performs a deletion $O(1)$;
- Performs a contraction $O(3)$.
- Performs $|V|+\left|V^{*}\right|+|E|$ steps in $O(1)$, time, therefore its complexity is $O\left(|V|+\left|V^{*}\right|+|E|\right)$
- Better than other algorithms, which perform in $O(m l o g$ (n))


## Questions?



