
Minimum Spanning Tree
on a Planar Graph
Tonomi Matsui

Reviewing the MST problem

● Tree - Subgraph that is minimally connected
(removing any edge will disconnect it);

● Spanning Tree - Subgraph that covers every
vertex and is a tree;

● Minimum spanning tree - Spanning tree with
the edges with lowest weights;

Reviewing the MST problem

● Forest - Set of trees;

● Maximal spanning forest - Forest that covers
every vertex (in a connected graph it is equal
to spanning tree).

Reviewing the MST problem

Required concepts

Planar Graph

Graph that can be drawn without the edges
crossing each other.

Dual Graph of a planar Graph
● G* = (V*, E) is a dual-graph of G = (V,E) when an

edge subset C E is a cycle of G iff C is a cut-set of
G*;

● Cut-set - Set of edges that will make the graph
disconnected if removed, but removing only a
subset does not disconnect;

● There are algorithms to find a Dual Graph in linear
time.

Dual Graph of a planar Graph

Deletion and contraction

● G\e denotes the graph obtained by deleting
the edge e from G;

● G/e denotes the graph obtained by
contracting e:
○ Contracting: Remove the edge and merge the

vertexes it was connecting.

Deletion and contraction

The Algorithm

The Algorithm

● An edge subset T E is a maximal spanning
forest of G iff E\T is a maximal spanning
forest of G*;

● If T is the minimum weight spanning forest of
G, then E\T is the maximum weight spanning
forest of G* and vice-versa.

The Algorithm
Let T and T* := null
Let G1 := G and G1* := G*
While true

if G1 and G1* are empty then return [T, T*]
v := vertex in G1 or G1*

The algorithm

if v contains a self-loop
f := edge with the self-loop
G1 := G1\f, G1* := G1*\f
if v belongs to G1 then T* := T*U{f}
if v belongs to G1* then T := T U{f}

The algorithm
if v contains no self-loop and belongs to G1

I := set of edges incident on v
e := edge in E with min weight
G1 := G1/e
G1* := G1*\e
T := TU{e}

The algorithm
if v contains no self-loop and belongs to G1*

I := set of edges incident on v
e := edge in E with max weight
G1 := G1\e
G1* := G1*/e
T* := T*U{e}

The algorithm - example

1

6
4

3

10

5

2

The algorithm - example

1

6
4

3

10

5

2

The algorithm - example

1

6
4

3

10

5

2

The algorithm - example

6

4

3

10

5

2

The algorithm - example

6

4

3

10

5

2

The algorithm - example

6

4

3

10

5

2

The algorithm - example

6

4

3

10

2

2

The algorithm - example

6

4

3

10

2

2

The algorithm - example

6

4

3

10

The algorithm - example

6

4

3

10

The algorithm - example
6

10
3

6

3

The algorithm - example

10
3

3

The algorithm - example

3

3

The algorithm - example

3

3

The algorithm - example

1

6
4

3

10

5

2

The algorithm - example

1

6
4

3

10

5

2

Performance

Number of iterations
● The number of iterations is at worst |V| + |V*| + |E|

● Simple to prove: In each iteration, either an edge or
a vertex is removed

Time for each iteration
● Let us assume the graphs are maintained by adjacency

lists:
○ Verifying if the graph is empty can be done in

constant time;
○ Chosing a vertex can be done in constant time;
○ Deleting an edge can be done in constant time.

● What about:
○ Choosing a min weight edge if a vertex has no self-

loops;
○ Contracting an edge.

Optimizing the algorithm
If we chose a vertex with degree smaller than 4:

● Choosing the edge with min/max weight requires
constant time;

● Contracting the edge requires moving of edges from
one vertex to another:

● Euler’s Formula guarantees that either G1 or G1* has at
least one vertex with degree smaller than 4.

Optimizing the algorithm
How to guarantee you choose the right vertex?

● Keep the vertices with degree smaller than 4 in a
container;

● When an edge is deleted, verify the cardinalities of the
affected vertices and put them in the container if
necessary;

● When an edge is contracted, remove the affected
vertices from the container, add the new vertex if the
cardinality is less than 4.

Conclusion
This algorithm:
● Chooses a vertex O(1);
● If it has a self-loop it deletes an edge O(1);
● Otherwise it chooses an edge with min/max O(3) weight

and:
○ Performs a deletion O(1);
○ Performs a contraction O(3).

● Performs |V| + |V*| + |E| steps in O(1), time, therefore its
complexity is O(|V| + |V*| + |E|)

● Better than other algorithms, which perform in O(mlog
(n))

?
Questions?

