THE DISTRIBUTED

DEPLOYMENT OF MOBILE
SENiSEORS

THE VORONOI DIAGRAM

CONSTRUCTION PROBLEM

IR
I e - N 7 - o 4) -~ }‘,':‘:T,
| s % 8 9 3% 3
= o e R ; :
%0 > P, e B 1
1 ° v x
{‘- 5 ; - : ‘1 pr e e (T .. .
g / T 27~ © TMSAS' X Prof. Tiziana Calamoneri
9’ -
»

Network Algorithms
A.y. 2025/26

O Y -
THE PROBLEM

.~ -
" .
Y

L)

Yot

THE DISTRIBUTED DEPLOYMENT PROBLEM (1)

About the deployment problem:

A centralized solution is not always desirable

because:
= Connection with a server is required
=Long delays are expected

= The solution is not fault-tolerant

The ability of moving around facilitates sensors
to self-deploy starting from any initial

configuration to a final distribution that
guarantees that the Aol is completely covered.

©

THE DISTRIBUTED DEPLOYMENT PROBLEM (2)

The self-deployment is necessary in ‘hostile”
environments:

Contaminated places, Fires, Battlefields..

In these cases, sensors should position
themselves and transmit the collected
information.

In general, each sensor repeatedly executes a
Look-Compute-Move cycle: based on what it sees
in its vicinity, it makes a decision on where to
move, and moves to its next position.

©

« Two sensors repel each other if

A POSSIBLE APPROACH:
VIRTUAL FORCES (1)

« Idea: sensors are similar to charged
particles (magnetic force) having aé-’:

mass (gravitational force).

they are too close

- Two sensors attract each other if ____

they are far but can anyway """""""
communicate : @

- Two sensors ignore each other if

they cannot communicate (too far) k@—> """ """""" |
- Friction to attenuate oscillations.)

A POSSIBLE APPROACH:
VIRTUAL FORCES (2)

(video HomVF) @

A POSSIBLE APPROACH:
VIRTUAL FORCES (3)

Weaknesses:
- It is necessary a manual tuning of parameters
« Sensor oscillation - possible solutions:
* Friction forces
- Stopping conditions
- In some versions, attracting effect of the border

and of the obstacles (e.g. when only repulsive
forces are considered)

()

A POSSIBLE APPROACH:
VIRTUAL FORCES (4)

Weaknesses (cntd): | _ ‘@r_\j L_H_,.,__,_‘%

- Sensors tend] J__ s
not to pass J} D ’5; -]l JI_
through doors

and narrows ~1 e F N ___FJ|_ LMUME

Ian

=~ Possible

students’

lesson

A PROTOCOL BASED ON
... VORONOI DIAGRAMS (1)

= Each sensor is assigned an Aol portion and it has to
take charge of it, trying to cover it as best as it can

= The sensor is "satisfied” if:
= [t completely cover its portion
or
= All its sensing radius is used to cover its portion

= [f a sensor is not “satisfied” it has to move in order
to improve its coverage

= Aol portions can be assigned according to the
Voronoi diagram. @

A PROTOCOL BASED ON
VORONOI DIAGRAMS (2)

(video HomVor)

VORONOI DIAGRAM (1)

Def. of Voronoi Diagram:

= 7. set of n distinct sites on the plane

«VD(9): partition of the plane into n
cells V, such that:
= each V; contains exactly one site
= if a point Q on the plane is in V;
then dist(Q, P;) < dist(Q, P;) for each
P, e &7 # 1.

VORONOI DIAGRAM (2)

=In other words: VD(%)
is a partition of the
plane into convex
regions {Vy, .., V,}, such
that V; contains exactly
one site P; € ©# and for
each other point in V,
the closest site in #'is

Voronoi cell

Voronoi axis

P;. Voronoi vertex

VORONOI DIAGRAM (3)

= Alternative def. of Voronoi Diagram:

= 2D projection of lower envelope of distance cones
centered at sites

VORONOI DIAGRAM (4)

Maps like this appear frequently in various
applications and under many names. To
mathematicians, they are known as Voronoi
diagrams.

Voronoi diagrams are rather natural
constructions, and it seems that they, or
something like them, have been in use for a
long time.

VORONOI DIAGRAM (5)

Voronoi diagrams have been used by:

= anthropologists to describe regions of
influence of different cultures;

= crystallographers to explain the structure of
certain crystals and metals;

= ecologists to study competition between
plants;

= economists to model markets in a certain
economy;

VORONOI DIAGRAM (6)

Example of application 1:

in a desert where the only
water sources are a few
springs, for each of them, you
would like to determine the
locations nearest that spring.
The result could be a map in
which the terrain is divided

into regions of locations
nearest the various springs. ©®

VORONOI DIAGRAM (7)

Example of application 2: V

if one wants to determine a

location for their shop to ’ .
maximize the distance to its .

competitors, it is necessary to
find the center of the largest
empty circle, that must be a
vertex of the Voronoi
diagram. .

VORONOI DIAGRAM (8)

History:

= An informal study of
Voronoi diagrams dates
back to Descartes
(1644): he includes the
following figure with
his demonstration of
how matter is
distributed throughout
the solar system.

VORONOI DIAGRAM (9)

History (contd)

The English physicist Snow uses them for his
analysis of the London cholera outbreak of 1854:

Snow considers the pumps of drinking water
distributed throughout the city, and draws a map,
which essentially is the street pump's Voronoi cell.

This map supports Snow's hypothesis that the cholera
deaths are associated with contaminated water.

Snow recommends to the authorities to close the
contaminated pumps, and the cholera outbreak ends.

VORONOI DIAGRAM (10)

History (contd)

= Dirichlet uses Voronoi diagrams in his studies on
quadratic equations in 1850.

= Voronoi diagrams are so called in honor of the
Russian mathematician Georgy F. Voronoi, who
defined and studied them in the n-dimensional
space in 1908.

= They are also called Thiessen polygons in
meteorology in honor of the US meteorologist
Alfred H. Thiessen; Wigner-Seitz cells in physics,
fundamental domains in group theory and
fundamental polygons in topology.

VORONOI DIAGRAM (11)

Voronoi diagram of a single site

VORONOI DIAGRAM (12)

Voronoi diagram of two sites

The axis extends to
infinity in both directions,
generating two halfplanes

VORONOI DIAGRAM (13)

Voronoi diagram of some colinear sites

VORONOI DIAGRAM (14)

Voronoi diagram of 3 not colinear sites

Voronoi axes coincide
with the axes of the
segments pairwise
joining the sites

The Voronoi vertex
has degree 3

Obs. Only qne circle passes through
3 poi

Voronoi vertex is the center of
the circle passing through the 3

Aites (circumscribed to the triangle
generated by the 3 sites) @

halflines

VORONOI DIAGRAM (15)

Voronoi diagram of 4 not colinear sites

Segment

Limited cell / Unlimited cell

VORONOI DIAGRAM (16)

Not always 4 not colinear sites create a limited cell:

General position
assumption: each 3 sites

are not colinear and
each 4 sites are not
cocircular.

Thanks to this
assumption, all vertices
have degree 3!

VORONOI DIAGRAM PROPERTIES (1)

A point q on the plane lies on the Voronoi
segment between p; and p; iff the largest empty
circle centered in q touches only p; and p;

- A Voronoi segment is a subset of a Voronoi
axis, i.e., the set of points equally distant
from p; and p;

p; : sites of &
e : Voronoi segment
v : Voronoi vertex

VORONOI DIAGRAM PROPERTIES (2)

A point g in the plane is a Vornoi vertex iff the

largest empty circle centered in g touches at
least 3 sites of P.

A Voronoi vertex is the intersection of at least 3

axes, each generated by a pair of sites.

p; : sites of &
e : Voronoi segment
v : Voronoi vertex

VORONOI DIAGRAM
COMPLEXITY

VORONOI DIAGRAM COMPLEXITY (1)

«Th:|v| <2n - 5 and |e| £ 3n — 6 for each n > 3.

= Proof: (Easy case)

Colinear sites 2 |v| =0, le|] =n -1

VORONOI DIAGRAM COMPLEXITY (2)

Proof of Th.: |v| < 2n - 5 and le] £ 3n — 6 for each n > 3 - contd.
Proof: (General case)

= Problem: A Voronoi diagram cannot be considered as

are unlimited ----------------

= Solution: add a dummy node

graph - Euler formula
v e [+£=2
p. &,

VORONOI DIAGRAM COMPLEXITY (3)

Proof of Th.:|v| < 2n — 5 and |e| < 3n — 6 for each n > 3 - contd.
f=n+1. Euler formula becomes:
vl-lel+n+1=2 (1)

Moreover: Edeg(") =2lel

v&VD

since deg(v)23 2> 2le [23|v | (2)

Joining (1) e (2):
lv|[¢2n-5
le|l<3n-6

THE DUAL PROBLEM OF
THE VORONOI

oY

|

THE DUAL PROBLEM OF THE
VORONOI DIAGRAM

= The dual problem w.r.t. the decomposition of
the plane into Voronoi cell is the Delaunay
triangulation (obtained interescting each
Voronoi axis with a segment joining the
generating sites)

DELAUNAY TRIANGULATION (1)

= Obs. Dual segments not necessarily intersect!

DELAUNAY TRIANGULATION (2)

= Property: the circle circumscribed to a Delaunay
triangle does not contain any site inside it

DELAUNAY TRIANGULATION (3)

= A segment is illegal if:
min o.<min (;

= Property: no segment can
be illegal.

= If e is an illegal edge,
then it is possible to
swap the triangles to get

a Delaunay triangulation.

Not Delaunay

\/\
B,
B B,
N
Bs B B, |

DELAUNAY TRIANGULATION (4)

= Some papers exploit a Delaunay triangulation to
route sensors towards a position contributing to
a complete coverage.

= There are several algorithms to compute a
Delaunay triangulation

= The Voronoi Diagram can be computed as dual
construction of the Delaunay triangulation.

= Otherwise...

ALGORITHMS TO
COMPUTE THE VORONOI
DIAGRAM

ALGORITHM BASED ON THE
INTERSECTION OF HALF-PLANES (1)

A Voronoi cell can be obtained repeatedly
intersecting opportune half-planes:

ALGORITHM BASED ON THE
INTERSECTION OF HALF-PLANES (2)

ALGORITHM BASED ON THE
INTERSECTION OF HALF-PLANES (3)

This operation
needs to be
iterated for each
site.

ALGORITHM BASED ON THE
INTERSECTION OF HALF-PLANES (4)

e Each of the n Voronoi cells is the result of
the intersection of a number k of
halfplanes with k=0(n)

* Cost to determine the intersection of a
certain number k of halfplanes?
From computational geometry, a possible
algorithm exploits the divide-et-impera
technique...

ALGORITHM BASED ON THE
INTERSECTION OF HALF-PLANES (5)

DIVIDE: The set of k halfplanes is recursively
split until k single halfplanes are obtained (bin.
tree structure).

IMPERA: The halfplane on each leaf is intersected
with a rectangle R (the search space). In this way,
each leaf contains now a polygon.

COMBINE: Recursively, bottom-up, compute the
intersection of two sibling polygons and put the
result on the father node.

©

ALGORITHM BASED ON THE
INTERSECTION OF HALF-PLANES (6)

Time Complexity of the Combine step:
FACT 1: Two polygons with p and p’ vertices
each, they can be intersected in O(p+p’) time.

FACT 2: It can be proved that the computational
time of the whole algorithm is O(k log k)

FACT 3: This is optimum because the sorting
problem (using comparisons) can be reduced to
the intersection of halfplanes.

©

ALGORITHM BASED ON THE
INTERSECTION OF HALF-PLANES (7)

Computational Time of the whole algorithm to
compute the Voronoi diagram through the
intersection of halfplanes:

in order to find a single cell, O(n) halfplanes
need to be intersected, so O(n log n) per cell
and O(n? log n) for the whole algorithm.

Can we do better?

INTUITION (1)

Not all the site pairs give raise to an axis!

INTUITION (2)

= Idea: use a well known technique in
computational geometry.

= The sweep line is used to solve geometrical
bidimensional problems through a sequence of
almost onedimensional subproblems.

INTUITION (3)

= Example: [Bentley, Ottmann'79] Compute the
intersection points of n segments sweeping
the plane with a horizontal line.

= When the sweep line moves, it encounters
objects, and the algorithm solves the single
problem related to each single object.

INTUITION (4)

= This method cannot work as it is for Voronoi
diagrams, because it would be necessary to
"predict” the site position before the sweep
line encounters them.

= Fortune [1986] designed an algorithm based on
a different line, called beach line.

FORTUNE ALGORITHM (1)

= Idea: we introduce a line / sweeping the plane
(sweep line) helping us to compare distances.

= Somehow, ["discovers” the Voronoi diagram on
the just sweeped plane portion.

=« Note. Given any point p, the set of points equally
distant from p and [/ is a parabola P;.

— Points that are closer to p

| Points that are closer to /

()

FORTUNE ALGORITHM (2)

- Consider any point g=(g,, q,).

= The sweep line [is horizontal and its y-coordinate
is 1,. Hence dist(q,/)=1,-q,.

= Given another point p, q lies on the parabola
generated by p and [/ iff dist(q,p)=1,-q,.

= More in general:

= dist(q,p)< 1,-q, if g lies above the parabola

- dist(q,p)=l,-q, if q li th bola !
(q.p)=1,-q, if q lies on the parabo
= dist(q,p)>1,-q, if q lies under the parabola

Il

FORTUNE ALGORITHM (3)

= The sweep line [/ goes down.

= At each instant, consider the sites above [/ and the
parabolas they define with /L

= Example:

FORTUNE ALGORITHM (4)

= Define the beach line b as the
line formed by the union of \
the lower parabola arches. \ °

= In other words: each vertical Sae =

line crosses many parabolas; \°/

the lower intersection point
belongs to &.

= Note. Each arch of 56 is
associated with a site above [

FORTUNE ALGORITHM (5)

= If a point is above b, it is closer to one of the
sites above [/ than to [itself.

= In other words, this point lies inside the Voronoi
cell of a site that [/ has already encountered.

= Hence, the Voronoi diagram above 6 is completely
determined by the sites above /.

To see an animation of the beach line:
https://www.youtube.com/watch?v=k2P9yWSMaXE @

FORTUNE ALGORITHM (6)

Let us determine the condition such that 5/
passes through any point g.

If q is touched by the portion of 6 generated by
p;, it will enter in the Voronoi cell of p;. So:

dist(q,p;)sdist(q, p;) for any other j#i.

Point q lies on the parabola generated by p; and
[iff

dist(q, pi)=l,-q,.

©

FORTUNE ALGORITHM (7)

Joining the inequality and the condition:
dist(qg, p;)=dist(q,p;)=1,-q,=dist(q,1).
Remind that dist(qg,p)>dist(q,1) if q lies under Py,

So, q is on P, and under any other parabola P,

i.e. q is on b. In other words:

When a point appears on b, it is on the parabola
associated to its closest site

©

FORTUNE ALGORITHM (8)

= Points on 6 lying at the intersection of two
parabola archs are called breakpoints.

= Breakpoints are at the same time closest to two
sites. In other wozrds,

Breakpoints lie on the segments of the Voronoi
diagram

= In order to construct the Voronoi diagram, it is
enough to keep trace of the breakpoints.

FORTUNE ALGORITHM (9)

Determine segments:

= A pair of breakpoints, corresponding to a segment
in the Voronoi diagram, appear on b exactly when
the sweep line encounters a new site = site event.

()

FORTUNE ALGORITHM (10)

s

L / \ / ® / o/
o / " R o / A . 7/
. - | i / 4 £f | p <2 / - L]
SN 4 ¥ / S~ ” £y i 7. 7 /
S~ / Tt 210 4 \ | S— /
/ \ B N,
,.,. A / ~ .,.< £ \ J e S .
\ \o/ \ / Y
o * -
° ° °

Determine vertices:

= While / moves, breakpoints move too, and they

follow a segment; they reach a vertex when a
parabola arch disappear.

FORTUNE ALGORITHM (11)

a new parabola arch appearing on the beach line:

Easy to detect: it appears when [/ encounters a site.

a parabola arch disappearing from the beach line:

Easy to detect: when this arch is reduced to a smgle point
x, it lies on 3 parabolas:
+ The one containing the disappearing arch
e The one to its right |
e The one to its left

So x is equally distant from 3 sites

= a circle centered at x passes through these 3 sites.
We determine a Voronoi vertex when [has finished
to sweep this circle = circle event.

()

FORTUNE ALGORITHM (12)

Fortune Algorithm

=Resume: In order to determine segments and
vertices of the Voronoi diagram, keep trace of the
parabola arches appearing and disappearing on b.

= Imagine to walk on & left to right and sort the
order of the sites producing the parabola arches
on it.

= This order cannot change until either a site event
or a circle event happens.

()

FORTUNE ALGORITHM (13)

Fortune algorithm (contd.)

= Breakpoints are implicitely stored as intersections

of parabola arches on b&.

= If the next event encountered by b is:

= A site event, insert the new site in the list of
sites in the order indicated by its parabola arch
and store a new segment in the Voronoi diagram.

=a circle event, store both the new Voronoi vertex
and the information that it is an extreme of the
segments corresponding to two breakpoints

joining in a single point.

©

FORTUNE ALGORITHM (14)

Fortune algorithm (contd.)

= In both cases, verify whether a new triple of sites
producing a next circle event has been discovered.

= The Voronoi diagram is computed considering the
(finite) sequence of these events.

COMPUTATIONAL TIME ANALYSIS

(typical scheme of all the algorithms based on the sweep line)

= Each event takes O(1) time to be detected + a
constant number of accesses to the data
structures to be stored.

« Each data structure contains O(n) information

= Each one of these accesses needs O(logn) time

= The whole computational time is O(n log n), and
the occupied space is O(n).

= This time is optimum because the sorting
problem (based on comparisons) can be reduced
to the computation of the Voronoi diagram.

©

CONCLUSIONS

o The time

complexity for

computing a Voronoi

diagrams clearly grows up with the growth of the

number of sites.

o The algorithm based on
the intersection of
halfplanes runs in
O(n? log n) time if
there are n sites.

o Fortune algorithm runs
in O(n log n) time.

computational effort

Half-planes /

/
y

,-//

Fortune

> =" 3 2

= - number of si tesj
/

HETEROGENEOUS

HETEROGENEOUS SENSORS (1)

Sensors are not necessarily all equal. In a
heterogeneous sensor network:

= the devices are different or

= the sensing and communicating ability depend
on their position (not smooth terrain,

obstacles, ...)

HETEROGENEOUS SENSORS (2)

The previously described approaches (based on
virtual forces and on Voronoi cells) do not work

well with heterogeneous sensors:
= Virtual forces: forces depend on the distance
= Voronoi: cells do not take into account the

coverage capability

LIMITATIONS OF THE PROTOCOLS
BASED ON VORONOI CELLS (1)

Desired
= A protocol based on the line

construction of Voronoi
cells would assign:

= The left halfplane
(included the blue zone)
to s;

= The right halfplane
(included the blue zone)
to s>

Vor

LIMITATIONS OF THE PROTOCOLS
BASED ON VORONOI CELLS (2)

Stale situation:

= the sensors on the left (big
circles) do not move since they
completely cover their cells

= the sensors on the right (small
circles) do not move since their
circles are completely used to

cover a portion of their cell (in

other words, their coverage
capacity is maximized).

LIMITATIONS OF THE PROTOCOLS
BASED ON VORONOI CELLS (3)

(video HetVor) @

A NEW NOTION OF DISTANCE

* In the known algorithms, the heterogeneity
is usually ignored

 New notion of distance
keeping into account:
= The Euclidean distance
= The heterogeneity of the devic

- Many possibilities, wish to have:
= Diagrams with straigh edges (convex polygons)
= the set of points equally distant from two

sensors contains the intersection of their

sensing circles ©
(2)

LAGUERRE DISTANCE (1)

[W. Blaschke. Vorlesungen uber Differentialgeometrie III. Springer
Berlin. 1929]

 Defined in R3

- Given two points P=(x,y,z) and Q=(x',y’,z), their
Laguerre distance is:
= d2(P,Q)=(x-x")2+(y-y')>~(z-2')?

« P can be seen as the (oriented) circle centered at
(x,y) and having radius |z |

@

LAGUERRE DISTANCE (2)

- Given two circles % and %, centered at C; and
C, respectively, and with radii r; and r,, their
Laguerre distance is:
¢ di2A(G,)= deg?(Cq, Co) - (r1- 12)2

- The Laguerre distance between a point P=(x,y)
and a circle @=(x",y',r) is:
¢ d2(P, @)=(x-x")2+(y-y")2-12

LAGUERRE DISTANCE (3)

Lemma. Given two circles % and % centered at C;
and C, (C;#C,) and radii r; and r,, the sets of
point equally distant from # and %, (called
radical axis) is a straight line orthogonal to the

segment joining C; and C..

N\
N

LAGUERRE DISTANCE (4)

Lemma. Given two circles % and # centered at C;
and C, (C;2C5) and having radii r; and rp, their
centers may lie on the same side w.r.t. the radical
axis (if and only if dg2(Cy,C5) < [ri2-159)).

Possible positions of the radical axis of two cricles

% and 7
D (@ (€

VORONOI-LAGUERRE DIAGRAM (1)

Voronoi-Laguerre diagram of &, .., &
» Vi=n{pe 2| d?(4GP)<d?5P)}

[H. Imai, M. Iri, K. Murota. "Voronoi Diagram in the Laguerre Geometry and its
Applications”. SIAM J. Comput. 14(1), 93-105. 1985

They have similarities
and differences w.r.t.
the classical Voronoi
diagrams...

@

VORONOI-LAGUERRE DIAGRAM (2)

Similarities:

- Voronoi-Laguerre polygons partition the plane

« V; is always convex because it is the
intersection of some halfplanes

« if 1;=0 for each i=1, .., n, the Voronoi-Laguerre
diagram is in fact the classical Voronoi
diagram.

VORONOI-LAGUERRE DIAGRAM (3)

Differences:
% can be external to V;
(see @)

- V; can be empty (e.g. if
%'is inside the union of
other circles - see #)

VORONOI-LAGUERRE DIAGRAM (4)

- Theorem. Given n circles 7 centered at Ci=(xjy;)
and having radii r;, i=1, .., n, let V; be their
Voronoi-Laguerre polygons.

For each i and j, Vin4c@.

In other words, the intersection of V; with a
circle 7 is included in #

()

ALGORITHM BASED ON
VORONOI-LAGUERRE DIAGRAM (1)

Algorithm executed by each sensor s;:

« Compute V;

- If s; is inside V;, move toward the minimax (at
most by d;m¥=r,,/2-1; wherer,,=min; r;t*) if the
coverage of V; is increased

- If s; is outside V;, move toward the minimax (by
at most d;max=r,,/2-1,)

- if V, is empty, do nothing.

()

ALGORITHM BASED ON
VORONOI-LAGUERRE DIAGRAM (2)

Initial Configuration

Small circles
Many of them move
because they are
external w.r.t.
their polygon

Big Circles

Some of them move to

better cover their
polygons

Initial Confiquration Round 6 Round 9 Round 12:
g The Stale is solved!

ALGORITHM BASED ON
VORONOI-LAGUERRE DIAGRAM (3)

(video HetVorlag) @

PROPERTIES OF THE ALGORITHM (2)

- Exploiting the minimax, we define a curve polygon
V'i generated intersecting the “"local” polygon with
the circle of radius d;m+r;=1,,/2.

©

PROPERTIES OF THE ALGORITHM (3)

Lemma. V' n V=0 V i #]
Lemma. Vi=zj VN Gc &

In other words, each curve polygon can be
covered by the sensor generating it better
than by any other sensor.

PROPERTIES OF THE ALGORITHM (6)

* Th. The algorithm converges.

* Convergence does not imply termination.

* In order to guarantee termination, we introduce
a minimum movement threshold g, so that
sensors do not move if they are suppose to do

by less than E.

* Corollary. The algorithm, with the addition of
the minimum movement threshold, terminates.

()

MORE COMPLEX PROBLEMS

* Obstacles and terrain asperities
= Anisotropy

= Movement obstacles

* AOI with complex shape

= concave regions and corridors

