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We have already spoken about mobile sensor networks…

… and of the deployment problem.

A centralized solution is not always desirable because:

§ Connection with a server is required

§ Long delays are expected

§ The solution is not fault-tolerant

The ability of moving around facilitates sensors to self-

deploy starting from any initial configuration to a final

distribution that guarantees that the AoI is completely

covered. 3

The self-deployment is necessary in “hostile”

environments:

§ Contaminated places

§ Fires

§ Battlefields…

In these cases, sensors should position themselves and

transmit the collected information.
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• Idea: sensors are similar to charged

particles (magnetic force) having a 

mass (gravitational force)

• Two sensors repel each other if they

are too close

• Two sensors attract each other if

they are far but can anyway

communicate

• Two sensors ignore each other if

they cannot communicate (too far)

• Friction to attenuate oscillations
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(video HomVF)

Weaknesses:

• It is necessary a manual tuning of parameters

• Sensor oscillation – possible solutions:

• Friction forces

• Stopping conditions

• In some versions, attracting effect of the border and of the

obstacles (e.g. when only repulsive forces are considered)

• …
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Weaknesses (cntd):

• Sensors tend not

to pass through

doors and

narrows

Possible students’ 
lesson



Idea:

§ Each sensor is assigned an AoI portion and it has to take charge

of it, trying to cover it as best as it can

§ The sensor is “satisfied” if:

§ It completely cover its portion

or

§ All its sensing radius is used to cover its portion

§ If a sensor is not “satisfied” it has to move in order to improve its

coverage

§ AoI portions can be assigned according to the Voronoi diagram.
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(video HomVor)

VORONOI DIAGRAMS
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Suppose that you live in a desert

where the only sources of water are

a few springs scattered here and

there. For each spring, you would

like to determine the locations

nearest that spring. The result could

be a map, like the one shown here,

in which the terrain is divided into

regions of locations nearest the

various springs.
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Maps like this appear frequently in various applications

and under many names. To mathematicians, they are

known as Voronoi diagrams.

Voronoi diagrams are rather natural constructions, and

it seems that they, or something like them, have been

in use for a long time.
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Voronoi diagrams have been used by:

§ anthropologists to describe regions of influence of

different cultures;

§ crystallographers to explain the structure of certain

crystals and metals;

§ ecologists to study competition between plants;

§ economists to model markets in a certain economy;

§ …
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§ An informal study of Voronoi

diagrams dates back to

Descartes (1644): he

includes the following figure

with his demonstration of

how matter is distributed

throughout the solar system.

§ …
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§ …

§ The English physicist Snow uses them for his analysis of the
London cholera outbreak of 1854:
Snow considers the sources of drinking water, pumps distributed
throughout the city, and draws a line labeled "Boundary of equal
distance between Broad Street Pump and other Pumps," which
essentially indicates the Broad Street Pump's Voronoi cell.

This map supports Snow's hypothesis that the cholera deaths are
associated with contaminated water, in this case, from the Broad
Street Pump. Snow recommends to the authorities that the pump
handle be removed, after which action the cholera outbreak
quickly ends.

§ ...
16



§ Dirichlet uses Voronoi diagrams in his studies on

quadratic equations in 1850.

§ Voronoi diagrams are so called in honor of the Russian

mathematician Georgy F. Voronoi, who defined and

studied them in the n-dimensional space in 1908.

§ They are also called Thiessen polygons in meteorology in

honor of the US meteorologist Alfred H. Thiessen;

Wigner-Seitz cells in physics, fundamental domains in

group theory and fundamental polygons in topology.
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§ Def. of Voronoi Diagram:

§P : set of n distinct sites on the plane

§ VD(P): partition of the plane into n
cells Vi such that:

§ each Vi contains exactly one site

§ if a point Q on the plane is in Vi

then dist(Q, Pi) < dist(Q, Pj) for 

each Pi Î P, j ¹ i.
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§ In other words: VD(P) is a 

partition of the plane into

convex regions {V1, …, Vn}, 
such that Vi contains exactly

one site Pi Î P and for each

other point in Vi the closest site 

in P is Pi.
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Voronoi cell

Voronoi axis

Voronoi vertex

Voronoi diagram of a single site
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Voronoi diagram of two sites
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The axis extends to infinity in 

both directions, generating two 

halfplanes

Voronoi diagram of some colinear sites
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Voronoi diagram of 3 not colinear sites
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Obs. Only one circle passes through
3 points
The Voronoi vertex is the center of 
the circle passing through the 3 sites 
(circumscribed to the triangle 
generated by the 3 sites)

v

halflines

Voronoi axes coincide 
with the axes of the 
segments pairwise joining
the sites

The Voronoi vertex 

Has degree 3

Voronoi diagram of 4 not colinear sites
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v

Unlimited cell
Limited cell

Segment



Not always 4 not colinear sites create a limited cell:
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v

General position 

assumption: each 3 

sites are not colinear

and each 4 sites are not

cocircular.

Thanks to this

assumption, all vertices

have degree 3!
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A point q on the plane lies on the Voronoi segment 

between pi and pj iff the largest empty circle centered in q
touches only pi and pj.

– A Voronoi segment is a subset of a Voronoi axis, i.e. 

the set of point equally distant from pi and pj

e : Voronoi segment

v : Voronoi vertex

pi : sites of P

e
v

pi
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A point q in the plane is a Vornoi vertex iff the largest 

empty circle centered in q touches at least 3 sites of P.

A Voronoi vertex is the intersection of at least 3 axes, each 

generated by a pair of sites.

v
epi

pi : sites of P
e : Voronoi segment

v : Voronoi vertex
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§ Th.: |v| £ 2n - 5 and|e| £ 3n - 6 for each n ³ 3. 

§ Proof: (Easy case)
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…

Colinear sites à |v| = 0, |e| = n – 1

Proof of Th.: |v| £ 2n - 5 and|e| £ 3n - 6 for each n ³ 3 – cntd.

Proof: (General case)

§ Problem: A Voronoi diagram cannot be considered as a planar
graph because some of its edges and faces are unlimited

§ Solution: add a dummy node

§ Now the Voronoi diagram is a planar and connected graph à

Euler formula:

|v|-|e|+f=2

30e
pi

p¥

Proof of Th.: |v| £ 2n - 5 and|e| £ 3n - 6 for each n ³ 3 – cntd.

f=n+1. Euler formula becomes:

|v|-|e|+n+1=2 (1)

Moreover:

since deg(v)≥3 à 2|e|≥3|v|(2)

Joining (1) e (2):

|v|≤2n-5

|e|≤3n-6 n
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€ 

deg(v) = 2 | e |
v∈VD
∑
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§ The dual problem w.r.t. the decomposition of the plane

into Voronoi cell is the Delaunay triangulation (obtained

interescting each Voronoi axis with a segment joining the

generating sites)

§ Obs. Dual segments not necessarily intersect!
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§ Property: the circle circumscribed to a Delaunay triangle

does not contain any site inside it
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§ Property: no segment can

be illegal.

§ A segment is illegal if:

min αi<min βi

§ If e is an illegal edge, then

it is possible to swap the

triangles to get a

Delaunay triangulation.s
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α1

α4

α2

α3

α5
α6

β1

β3

β2
β4

β5
β6



§ Some papers exploit a Delaunay triangulation to route

sensors towards a position contributing to a complete

coverage.

§ There are several algorithms to compute a Delaunay

triangulation -> Possible lesson

§ The Voronoi Diagram can be computed as dual

construction of the Delaunay triangulation.

§ Otherwise…

37
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A Voronoi cell can be obtained repeatedly intersecting

opportune half-planes:
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This operation needs

to be iterated for each

site.
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How much does it cost to determine the intersection of

a certain number k of halfplanes?

From computational geometry, a possible algorithm

exploits the divide-et-impera technique…
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Divide:

The set of k halfplanes is recursively split until k single

halfplanes are obtained (Note: binary tree structure).

Impera:

The halfplane on each leaf is intersected with a

rectangle R (the search space). In this way, each leaf

contains now a polygon.

Combine:

Recursively, bottom-up, compute the intersection of two

sibling polygons and put the result on the father node.

44

Time Complexity of Combine:

Let p and p’ be the number of vertices of two general

polygons that have to be intersected at some step of the

algorithm. This can be done in O(p+p’) time.

It can be proved that the time complexity of the whole

algorithm is O(k log k) – where k is the # of halfplanes to be

intersected – and this is optimum because the sorting

problem (using comparisons) can be reduced to the

intersection of halfplanes.
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Time Complexity of the whole algorithm to compute the

Voronoi diagram:

in order to find a single cell, O(n) halfplanes need to be

intersected, so O(n log n) per cell and O(n2 log n) for the

whole algorithm.
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Not all the site pairs give raise to an axis!

epi

§ Idea: use a well known technique in computational geometry.

§ The sweep line is used to solve geometrical bidimensional

problems through a sequence of almost onedimensional

subproblems.

§ Example: [Bentley, Ottmann‘79] Compute the intersection points of

n segments sweeping the plane with a horizontal line.

§ When the sweep line moves, it encounters objects, and the

algorithm solves the single problem related to each single

object.
47

§ This method cannot work as it is for Voronoi

diagrams, because it would be necessary to “predict”

the site position before the sweep line encounters

them.

§ Fortune [1986] designed an algorithm based on a

different line, called beach line.

48



Points that are closer to p

Points that are closer to l

§ Idea: instead of considering the distance between sites, we introduce 
a line sweeping the plane (sweep line) helping us to compare 
distances.

§ Somehow, this line “discovers” the Voronoi diagram on the just 
sweeped plane portion.

§ Note. Given any point p and any external line l, the set of points
equally distant from p and l is a parabola Pp,l.
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§ Consider any point q=(qx, qy). 

§ The sweep line is horizontal and its y-coordinate is ly. Hence

dist(q,l)=ly-qy.

§ Given another point p, q lies on the parabola generated by p
and l iff dist(q,p)=ly-qy.

§ More in general:

§ dist(q,p)< ly-qy if q lies above the parabola
§ dist(q,p)=ly-qy if q lies on the parabola
§ dist(q,p)>ly-qy if q lies under the parabola
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l

p
q

§ The sweep line goes down.

§ At each instant, consider the sites above the sweep line and 

the parabolas they define with the sweep line.

§ Example:
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§ Define the beach line as the

line formed by the union of the

lower parabola arches.

§ In other words: each vertical

line crosses many parabolas;

the lower intersection point

belongs to the beach line.

§ Note. Each arch of the beach

line is associated with a site

above the sweep line.

52

To see an animation of the beach 
line:
https://www.youtube.com/watch?v
=k2P9yWSMaXE

Nice videos at:
https://www.youtube.com/watch?v=7eCrH
Av6sYY
https://www.youtube.com/watch?v=Y5X1T
vN9TpM



53

§ Notice that if a point is above the beach line, it is closer to

one of the sites above the sweep line than to the sweep

line itself.

§ In other words, this point lies inside the Voronoi cell of a

site that the sweep line has already encountered.

§ Hence, the Voronoi diagram above the beach line is

completely determined by the sites above the sweep line.
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Let us determine the condition such that the beach line

passes through any point q.

If q is touched by the portion of beach line generated by

pi, it will enter in the Voronoi cell of pi. So:

dist(q,p1)≤dist(q, pi) for any other i≠1.

Point q lies on the parabola generated by p1 and l iff

dist(q, p1)=ly-qy.

55

…

Joining the inequality and the condition:

dist(q, pi)≥dist(q,p1)=ly-qy=dist(q,l).

Remind that dist(q,p)>dist(q,l) if q lies under Pp,l

So q is on Pp1,l and under any other parabola Ppi,l, i.e. q is

on the beach line. In other words:

When a point appears on the beach line, it is on the

parabola associated to its closest site

56



§ Points on the beach line lying at the intersection of two

parabola archs are called breakpoints.

§ Breakpoints are at the same time closest to two sites. In

other words,

Breakpoints lie on the segments of the Voronoi diagram

§ In order to construct the Voronoi diagram, it is enough to

keep trace of the breakpoints.

57

Determine segments:

§ A pair of breakpoints, corresponding to a segment in the

Voronoi diagram, appear on the beach line exactly when the

sweep line encounters a new site ⇒ site event.
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Determine vertices:

§ While the sweep line moves, breakpoints move too, and they

follow a segment; they reach a vertex when a parabola arch

disappear.
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a new parabola arch appearing on the beach line:
Easy to detect: it appears when the sweep line encounters a site.
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a parabola arch disappearing from the beach line
Easy to detect: when this arch is reduced to a single point x, it lies on
3 parabolas:

� The one containing the disappearing arch
� The one to its right
� The one to its left

So x is equally distant from 3 sites,
corresponding to these 3 parabola arches ⇒ a circle centered
at x passes through these 3 sites.
• We determine a Voronoi vertex when the sweep line has

finished to sweep this circle ⇒ circle event.



Fortune Algorithm

§ Resume: In order to determine segments and vertices of

the Voronoi diagram, keep trace of the parabola arches

appearing and disappearing on the beach line.

§ Imagine to walk on the beach line left to right and sort the

order of the sites producing the parabola arches on it.

§ This order cannot change until either a site event or a circle

event happens.

§ Breakpoints are implicitely stored as intersections of

parabola arches on the beach line.
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Fortune algorithm (cntd.)

§ If the next event encountered by the beach line is:

§ A site event, insert the new site in the list of sites in the

order indicated by its parabola arch and store a new

segment in the Voronoi diagram.

§ a circle event, store both the new Voronoi vertex and the

information that it is an extreme of the segments

corresponding to two breakpoints joining in a single point.

§ In both cases, verify whether a new triple of sites producing a

next circle event has been discovered.

§ The Voronoi diagram is computed considering the (finite)

sequence of these events.
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Time complexity analysis

(typical scheme of all the algorithms based on the sweep line)

§ Each event takes O(1) time to be detected + a constant

number of accesses to the data structures to be stored.

§ Each data structure contains O(n) information

§ Each one of these accesses costs O(logn) time

§ The whole time complexity is O(n log n), and the occupied

space is O(n).
§ This time complexity is optimum because the sorting problem

(based on comparisons) can be reduced to the computation of

the Voronoi diagram. 63

¢ Fortune algorithm is an efficient way to compute the Voronoi
diagram.

¢ Whatever algorithm you use, it is reasonable to think that the time
complexity grows up with the growth of the number of sites.

¢ The algorithm based on the

intersection of halfplanes runs

in O(n2 log n) time if there are

n sites.

¢ Fortune algorithm runs in

O(n log n) time.

64
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HETEROGENEOUS SENSORS

Sensors are not necessarily all equal. We speak about a

heterogeneous sensor network if:

§ the devices are different

§ The sensing and communicating ability depend on their

position (not smooth terrain, obstacles, …)

The previously described approaches (based on virtual

forces and on Voronoi cells) do not work well with

heterogeneous sensors:

§ Virtual forces: forces depend on the distance

§ Voronoi: cells do not take into account the coverage

capability
66

§ The protocol based on the

construction of Voronoi cells

would assign:

§ The left halfplane to s1

(included the blue zone)

§ The right halfplane to s2

67

VorDesired
line

s1 s2

Stale situation:

§ the sensors on the left (big

circles) do not move since they

completely cover their cells

§ the sensors on the right (small

circles) do not move since their

circles are completely used to

cover a portion of their cell (in

other words, their coverage

capacity is maximized).

68
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(video HetVor) 
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• In the known algorithms, the heterogeneity is ignored
• We introduce a new notion of distance
keeping into account:
w The Euclidean distance

w The heterogeneity of the devices

• There are many possibilities, but we aim at having:
w Diagrams with straigh edges (convex polygons)

w a distance whose set of points equally distant from two

sensors contains the intersection of their sensing circles

s1 s2
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[W. Blaschke. Vorlesungen uber Differentialgeometrie III. Springer Berlin. 1929]

• Defined in R3

• Given two points P=(x,y,z) and Q=(x’,y’,z’), their Laguerre

distance is:

w dL
2(P,Q)=(x-x’)2+(y-y’)2-(z-z’)2

• P can be seen as the (oriented) circle centered at (x,y) and

having radius |z|
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• Given two circles C1 and C2, centered at C1 and C2

respectively, and with radii r1 and r2, their Laguerre

distance is:

w dL
2(C1, C2)= dE

2(C1, C2 ) - (r1 - r2 )2

• The Laguerre distance between a point P=(x,y) and a

circle C=(x’,y’,r) is:

w dL
2(P,C)=(x-x’)2+(y-y’)2-r2



73

Lemma. Given two circles C1 and C2 centered at C1 and

C2 (C1≠C2) and radii r1 and r2, the sets of point equally

distant from C1 and C2 is a straight line (called radical axis)

orthogonal to the segment joining C1 and C2 and at

distance k from C1, where

C1

C2

€ 

k =
dE (C1,C2)

2
+

r1
2 − r2

2

2dE (C1,C2)
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Proof. Consider the set of points P(t)=(x(t), y(t)) equally

distant from C1 and C2, i.e. such that
dL(P(t), C1)=dL(P(t), C2).

• If C1=C2 and r1=r2 Þ P(t) is the whole plane

• If C1=C2 and r1¹r2 Þ P(t) is the empty set

• If C1¹C2:

x(t)2+y(t)2-r1
2=(dE(C1,C2)-x(t))2+y(t)2-r2

2 ◼

C1

C2

dL
2(P,C)=(x-x’)2+(y-y’)2-r2
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Lemma. Given two circles C1 and C2 centered at C1 and C2

(C1≠C2) and having radii r1 and r2, their centers lie on the

same side w.r.t. the radical axis if and only if

dE
2(C1,C2) < |r1

2-r2
2|.

Proof. The axis can lie either to the right or to the left.

• Right:

dE
2(C1,C2) £ r1

2-r2
2 Þ r1³ r2

• Left:

dE
2(C1,C2) £ r2

2-r1
2 Þr2³ r1 n

C1

C2

€ 

k =
dE (C1,C2)

2
+

r1
2 − r2

2

2dE (C1,C2)
≥ dE (C1,C2)

€ 

dE (C1,C2)
2

+
r1
2 − r2

2

dE (C1,C2)
≤ 0
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Possible positions of the radical axis of two cricles C1 and C2
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Voronoi-Laguerre diagram ofC1, …, Cn:
w Vi = Ç {p ÎR2 | dL

2(Ci,P) < dL
2(Cj,P)}

[H. Imai, M. Iri, K. Murota. “Voronoi Diagram in the Laguerre Geometry and its
Applications”. SIAM J. Comput. 14(1), 93-105. 1985]

They have similarities and 
differences w.r.t. the 
classical Voronoi
diagrams…
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Similarities:

• Voronoi-Laguerre polygons partition the plane

• Vi is always convex because it is the intersection of

some halfplanes

• if ri=0 for each i=1, …, n, theVoronoi-Laguerre diagram

is in fact the classical Voronoi diagram.
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Differences:

• Ci can be external to Vi (see C2)

• Vi can be empty (e.g. if Ci is

inside the union of other circles

- see C3)

V(C1 )V(C2 )

C2 C1

V(C3)V(C2 )

C2 C3C1
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• Theorem. Given n circles Ci centered at Ci=(xi,yi) and

having radii ri, i=1, …, n, let Vi be their Voronoi-Laguerre

polygons.

For each i and j, ViÇCjÍCi.

In other words, the intersection of Vi with a circle Cj is

included in Ci.
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Proof. By contradiction, assume that there exists a point PÍ Vi
covered by Cj but non by Ci, for some j¹i.

• Since PÍ Vi it holds dL(P, Ci) < dL(P, Cj) for each j¹i, i.e.

dE
2(P,Ci)-ri

2<dE
2(Cj,P)-rj

2

• Since P is in Cj but non in Ci,

dE
2(P,Cj)£rj

2 and dE
2(P,Ci) > ri

2

• Combining:

dE
2(P,Ci)-dE

2(P,Ci)<dE
2(P,Ci)-ri

2<dE
2(Cj,P)-rj

2 £rj
2-rj

2

0<0 

Contradiction. n
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Algorithm executed by each sensor si:

• Compute Vi

• If si is inside Vi, move toward the minimax (at most by 

di
max=rtx/2-ri wherertx=mini ri

tx) if the coverage of Vi is

increased

• If si is outside Vi, move toward the minimax (by at most

di
max=rtx/2-ri )

• if Vi is empty, do nothing.
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Big Circles
Some of them move to

better cover their
polygons

Small circles
Many of them move
because they are

external w.r.t.
their polygon

Initial Configuration

Initial Configuration Round 6 Round 9 Round 12:
The Stale is solved!

84

(video HetVorLag) 
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Obs.:

w “local” polygon¹“global” polygon and the set of local

polygons do not constitute a partition!
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• We define a curve polygon V’i generated intersecting the

“local” polygon with the circle of radius di
max+ri=rtx/2.

87

• Lemma. V’i Ç V’j =∅ " i ¹ j
• Lemma. " i ¹ j, V’ i Ç Cj Í Ci.

In other words, each curve polygon can be covered

by the sensor generating it better than by any other

sensor.
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Th. The algorithm converges.

Proof. Let V’ i
(k) be the curve polygon of si at round k.

• Let Ai
(k) and Ai

(k)(si) be the areas covered inside V’i(k) by all

the sensors and by the sole sensor si at round k,
respectively. Let Ai’(k) be the covered area considering the

positions of the sensors at round k+1.

• Obs. Ai’(k) ≠ Ai
(k+1)

• Let A(k)
total be the area covered by the AoI by all the

sensors.

• We have to prove that A(k)
total < A(k+1)

total
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Proof. (cntd.)

• P (k)={V’1(k), V’2(k), …, AoI\Èi V’i(k)} is a partition of the AoI.
• AoI\Èi V’i (k) is constituted by points that are uncovered and

cannot be covered in a single round; it does not contribute to
A(k)total .

• A(k)total =Si Ai(k)
• Ai(k) = Ai(k)(si) (by the previous lemma)
• Ai(k)(si)< Ai’(k)(si) (by the algorithm)
• Ai’(k)(si) £ Ai’(k)
• Hence: A(k)total =Si Ai(k) < Si Ai’(k)
• Since the coverage at round k+1 does not depends on the 

partition: Si Ai’(k)= A(k+1)total n
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• Convergence does not imply termination.

• In order to guarantee termination, we introduce a

minimum movement threshold e, so that sensors do not

move if they are suppose to do by less than e.

• Corollary. The algorithm, with the addition of the minimum

movement threshold, terminates.
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• Obstacles and terrain asperities

w Anisotropy
w Movement obstacles

• AOI with complex shape

w concave regions and corridors

• …


