
1

SECOND PART:
WIRELESS NETWORKS
2.C. MOBILE SENSOR
NETWORKS

§ Wireless sensor networks are large-scale wireless
multi-hop networks where nodes have limited
resources such as energy, bandwidth, storage, and
processing power.

§ They are dedicated to provide low-level surveillance
and data gathering services in an area of interest
(AoI) for various applications.

§ So, they must fully cover the AoI without internal
sensing holes.

§ It is critical to position sensors inside the AoI, due
to operational factors such as human inaccessibility
to the AoI and tight deployment budget.

Sensor mobility 2

There are two different ways to place sensors
by exploiting mobility:
1. Use robots, that carry static sensors as

payload and move around in the AoI.
While traveling, they deploy sensors at
proper positions (e.g., vertices of certain
geographic graph): carrier-based method.

2. Sensors autonomously and intelligently
change their geographic location, adjusting
the overall distribution to a desired one:
self-deployment method.

3

Devices of tiny dimension and low cost able to
produce measurable response to a change in a
physical condition.
They are equipped with:

§ detecting/monitoring Unit (sensing)

§ communication Unit

§ computing Unit

§ small battery

§motion system

4

Mobile sensors collaborate to form an ad-hoc
network and are especially useful in critical
environments (e.g., in presence of dispersion
of pollutants, gas plumes, fires, …)
It is not restrictive to assume each sensor able
to monitor a disk centered at its position and
having radius rs = sensing range and to
communicate with the sensors that are inside
a disk centered at its position and having
radius rc = communication range.

5

The sensing and the communication units are
independent components; therefore, the
communication and the sensing ranges are
not directly associated from a hardware
point of view. However, they are integrated
because connectivity and coverage must both
be guaranteed: it can be proved that the
protocols working in the assumption that rc
is at least twice rs only need to guarantee
coverage and will satisfy the connectivity
constraint as well.

6

Coverage is one of the most important issues
for environmental monitoring in wireless
sensor networks.
In general, coverage is defined as the
measurement of the quality of surveillance of
sensing function.

7

Information from a target field is collected by
deploying sensor nodes in different locations.

After deployment, sensor nodes form a network
through which the collected data are propagated
to a sink.

The quality of the collected information depends
on how well the AoI is covered by the set of
sensor nodes.

8

Depending on how an area should be covered,
coverage problems are broadly categorized in three
types:
1. point coverage: a set of discrete points is

continuously monitored
Example: in building monitoring, every access is controlled

2. area coverage: all points within a bounded
region are continuously monitored
Example: in forest monitoring, every location of the forest
must be covered by at least one sensor node in order to
immediately detect any unusual activities like forest fire,
activities of poachers, etc.

3. … 9

2. …
3. barrier coverage: a specified path or the

boundary of a region is continuously monitored
by sensor nodes.
Example: in forest monitoring, covering the boundary
allows controlling and elimination of the poaching
activities, and illegal entry through the boundary

A continuous monitoring with static sensors is
required for all the aforementioned types of
coverage problems.

10

There are typical applications where only
periodic patrol inspections are sufficient for a
certain set of points of interest instead of
continuous monitoring like in traditional
coverage: sweep coverage.

11

Sweep coverage concept in WSNs is introduced in
the literature in [Cheng et al.’08]:
Def. A point of interest (PoI) is said to be t-
sweep covered if and only if at least one mobile
sensor visits the point within every t time
periods, where t is called sweep period of the
point.

Objective of the sweep coverage problem is to
find minimum number of mobile sensors to
guarantee sweep coverage for the set of PoIs.

12

Instead of using only mobile sensors, the use of
both static and mobile sensors can be more
effective in terms of total number of sensor used
[Gorain & Mandal ‘14].
It is possible to introduce an energy efficient
sweep coverage problem whose objective is to
guarantee sweep coverage by a combined set of
mobile and static sensors such that total energy
consumption is minimized [Gorain & Mandal ‘15].

☞ some possible students’ lessons in this context

13

§ The location information of the sensors is
essential as deployment protocols often depend
on the position of sensors.

§ for outdoor applications, GPS is the most popular
solution.

§…

14

§…

§ for indoor centralized applications, a grid-based
approach is often used when global position
information is needed for deployment: grids are
used as landmarks where sensors are placed;
sometimes, the deployed sensors are used
themselves as landmarks.

§ for the indoor distributed approach, techniques
based on the received signal strength, time
difference of arrival of two different signals,
angle arrival, etc. can be also used. 15

16

Prof. Tiziana Calamoneri
Network Algorithms

A.y. 2025/26

17

In the context of area coverage:
Deployment problem – two approaches:
1. Given an AoI to cover, the aim is to

entireley cover the AoI minimizing the
number of used sensors.

2. Given a set of mobile sensors, the aim is to
maximize the covered area.

Coverage multiplicity: either single or multiple,
according to the specific application
requirements

§At the same time, some parameters need to be
optimized:

18

Coordination algorithm

Initial Config. Desired Config.
Can be:
• random
• from a safe location

Can be:
• a regular tassellation
• any configuration,
provided that the AoI is
covered

§ Traversed Distance: it is the dominant cost

§Number of starts/stops: they are more expensive
than a continuous movement

§Communication cost: it depends on the number
of exchanged messages and on the packet
dimension at each transmission

§Computation cost: Usually negligible, unless
processors are extremely sophisticated

19

Random deployment is the easiest way to place
sensors. When the target region is subject to
severe changes in condition or no a priori
knowledge is available, it achieves a relatively
satisfactory coverage.
It is also practical in military application, where
WSNs are initially established by dropping or
throwing.

20

Nevertheless, random deployment may not
provide a uniform distribution, which is desirable
for a longer system lifetime of the AoI.

So the random deployment may serve as an
initial phase of another deployment strategy.

21

Self-deployment:

§ either centralized (or global)

§ or distributed (or local).

The global approach relies on global information
which is usually not scalable.

Local algorithms are based on iterative nearest
neighbor exchange.

We will discuss both the approaches.
22

23

If no information on the AoI is given,
incremental deployment:

§ It is a one-at-a-time approach: each node makes
use of information gathered by the previously
deployed nodes to determine its ideal
deployment location, which is calculated at a
powerful base station.

§…

24

incremental deployment (contd)

§…

§ Each deployed node is responsible for
communicating its local information back to the
base station for being used in the next iteration.
Hence each node has to maintain bidirectional
communication with the sink.

§No localization technique is needed: the location
of the next node can be found by using the
nodes themselves as landmarks.

25

incremental deployment (contd)

PROs:
§ certainty of optimal location in each step
§ since the sensors are fixed once they are
deployed, little energy is consumed

CONs:
§ the deployment time is very long, which can
significantly increase the network initialization
time

§ computationally expensive: a lot of work for the
computation of a new location 26

If information on the AoI is known:

 The whole coverage is guaranteed assigning to
each sensor a position on a grid covering the AoI

§ The total energy consumption should be
minimized

27

It is well known that an optimal coverage
using equally sized circles is the one
positioning the centers on the vertices of a
triangular grid opportunely sized.

28

§We model this
problem with the
classical minimum
weight perfect
matching in bipartite
graphs.

29

§ Set of n mobile sensors S={S1, S2, …, Sn}

§ Set of p locations on the AoI L={L1, L2, …, Lp}
(e.g., in correspondence of a hexagonal grid)

§ n≥p (to guarantee the complete coverage)

§ For each Si, determine the location Lj that Si

will have to reach, so to minimize the total
consumed energy.

30

Define a weighted complete bipartite graph
G=(S ∪ L, E, w) as follows:
§One node for each sensor Si

§One node for each location Lj

§An edge between Si and Lj for each i=1…n and
j=1…p

§ For each edge eij , w(eij) is proportional to the
energy consumed by Si to reach location Lj

§ The aim is to choose a matching between sensors
and locations so that the total consumed energy
is minimized. 31

32

Given G=(V, E):
§ Def. A matching is a set of edges M Í E such that

every node is adjacent to at most one edge in M.
§ Maximal matching

There exists no e Ï M such that M È {e} is a
matching

§ Maximum matching
Matching M such that |M| is maximum

§ Perfect matching
Assuming n even,|M| = n/2: each node is adjacent
to exactly one edge in M.
If G is bipartite and V=V1 È V2, |M|=min{|V1|, |V2|}. 33

34

Example:

Maximal
matching Maximum

matching

§Nomenclature

35

matching

Free node
35

§Note. The maximum matching is not unique

36

36

Original problem: wedding problem
§ the nodes of a set are men
§ the nodes of the other set are wemen
§An edge connects a man and a woman
who like each other

37

¢ Maximum matching aims at maximizing the
number of couples.

37

§Given a graph G, to find a:
§Maximal matching is easy (greedy)
§Maximum matching is

§ polynomial; not trivial.
§ easier in the case of bipartite graphs

§ Perfect matching
§ it is a special case of the maximum
matching

§ for it, some theorems can help
38

TH. (P. Hall’s marriage theorem) Given a bipartite
graph G with |V1|£|V2|, G has a perfect matching iff
for each set S of k nodes in V1 there are at least k
nodes in V2 adjacent to some node in S.
In symbols, " SÍV1, |S| £ |adj(S)|.
PROOF.
Necessary condition: If G has a perfect matching
M and S is any subset of V1, each node in S is
matched through M with a different node in
adj(S). Hence |S| £ |adj(S)|.

39

(proof of the Hall theorem - contd) G bipartite with |V1|£|V2|, G has a perfect
matching iff " SÍV1, |S| £ |adj(S)|.

sufficient condition: We have to prove that if the
Hall condition is true then there is a perfect
matching. By contradiction, assume that M is a
maximum matching but |M|<|V1|.
By hypothesis,|M|<|V1|Þ$ u0ÎV1 s.t. u0ÏM.
Let S={u0}; it holds 1=|S|£|adj(S)| from the Hall
condition, so there exists a v1ÎV2 adjacent to u0.

40

a. v1ÏM
b. v1ÎM

V1 V2

u0 v1

v1

41

(proof of the Hall theorem - contd) G bipartite with |V1|£|V2|, G has a
perfect matching iff " SÍV1, |S| £ |adj(S)|.

a. If v1ÏM OK
b. Consider the node matched with v1 through M,

call it u1.

V1 V2

u0

v1 u1S={u0,u1} and 2= |S|£|adj(S)|.
There exists another node v2,
Different from v1, and adjacent
either to u0 or to u1.
a. v2ÏM
b. v2ÎM

v2

v2

42

(proof of the Hall theorem - contd) G bipartite with |V1|£|V2|, G has a
perfect matching iff " SÍV1, |S| £ |adj(S)|.

Continue in this way. As G is finite, we will
eventually reach a node vr that is free w.r.t. M.
Each vi is adjacent to at least one among
u0,u1,…,ui-1.

Analogously to the case r=2:

u0 v1 u1 v2 u2 ur-1vr

u0 v1 u1 v2 u2 ur-1vr

n

§ The P. Hall Theorem does not provide an
algorithmic method to construct a perfect
matching (unless all subsets in V1 are enumerated
– exponential time issue).

§ The perfect matching problem in a bipartite
graph is equivalent to the maximum flow problem
in a network:
Given G=(V=V1È V2, E), construct the associated
flow network G’=(V’, E’) as follows:
… 43

V’: V U {s} È {t}
E’: From the source s to all nodes in V1 :
 {(s,u)| u ∈ V1} È
 All edges in E:
 {(u,v)| u ∈ V1, v ∈ V2, e (u,v)∈ E} È
 From all nodes in V2 to the tale t:
 {(v,t)| v ∈ V2}

Capacity: c(u,v) = 1, for all (u,v) ∈ E' 44

Fact: Let M be a matching in a bipartite graph G. There
exists a flow f in the network G’ s.t. |M|=|f|.

Vice-versa, if f is a flow of G’, there exists a matching
M in G s.t. |M|=|f|.

45

§ Th.: (integrality) If the capacity c assumes
only integer values, the max flow f is such
that |f| is integer. Moreover, for all nodes u
and v, f(u,v) is integer.

§Corol.: The cardinality of a max matching M
in a bipartite graph G is equal to the value of
the max flow f in the associated network G’.

46

§ The algorithm by Ford-Fulkerson for the max
flow in a network runs in O(m|f|) time.

§ In our special setting, the max flow of G’ has
cardinality upper bounded by min{|V1|, |V2|}.

§Hence, the complexity of an algorithm for the
max matching exploiting the max flow runs in
O(n m) time.

47

§Def. Given a matching M in a graph G, an
alternating path w.r.t. M is the path alternating
edges of M and edges in E\M.

48

§Def. Given a matching M in a graph G, an
augmenting path w.r.t. M is an alternating path
starting and finishing in two free nodes w.r.t. M.

49

Swapping the role
of the edges in M
and in E\M,M has
larger cardinality.

§ Th. (Augmenting path) [Berge 1975] M is a max matching
iff there are no augmenting paths w.r.t. M.

§ Proof.

§ (è) If M max, then there are no augmenting paths.

Negating, if there are some augmenting paths, then
M is not max. This is obvious because we can swap
the role of the edges in the augmenting path and
increase the cardinality of M.

§… 50

(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M – contd)

§ (ç) If there are no augmenting paths, then M is
max.

 By contradiction, M is not max. Let M’ s.t.
|M’|>|M|.

Consider graph H induced by M and M’. Edges
that are both in M and in M’ are put twice. So,
H is a multigraph.

§… 51

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t.
M – contd)

§ H has the following property:
§ For each v in H, deg(v)≤2. (indeed, each node has at
most one edge from M and one edge from M’)

§ So, each connected component of H is either a cycle
or a path.
§ Cycles necessarily have even length; otherwise, a
node would be incident to two edges of the same
matching (M or M’); this is absurd by the
definition of matching.

52

(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M – contd)

§More in detail, the connected components of H
can be classified into 6 kinds:

1. An isolated node

2. a 2-cycle

3. a 2k-cycle, k>1

…
53

(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M – contd)

…
4. a 2k-path

5. a (2k+1)-path whose extremes are incident
to M

6. a (2k+1)-path whose extremes are incident
to M’

54

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t.
M – contd)

§ Reminder: |M|<|M’| by hp.

§ Among all the components just defined, only 5
and 6 have a different number of edges from
M and from M’; only 6 has more edges from M’
than from M.

§ So, there is at least one component of kind 6

§ This comp. is an augmenting path w.r.t. M:
contradiction. n

55

§We exploit the Augmenting Path Th. to
design an iterative algorithm.

§During each iteration, we look for a new
augmenting path using a modified Breadth
First Search starting from the free nodes.

§ In this way, nodes are structured in layers.

56

Idea of the algorithm:

§ Let M be an arbitrary matching (possibly empty)
§ Find an augmenting path P

§While there is an augmenting path:
§ Swap in P the role of the edges in and out of
the matching

§ Find an augmenting path P

Complexity: it dipends on the complexity of
finding an augmenting path.

57

Question: how to decide the existence of an
augmenting path and how to find one, if one
exists?

G=(V1,V2,E); direct edges in G according to M as
follows:

§An edge goes from V1 to V2 if it does not belong
to the matching M

§ an edge goes from V2 to V1 if it does.

Call this directed graph D.
58

Claim. There exists an augmenting path in G w.r.t.
M iff there exists a directed path in D between a
free node in V1 and a free node in V2.

59

§ Idea:
§ For each free node in V1
§ Run a DFS on D:

§As soon as a free node in V2 has been
encountered, a new augmenting path has
been found.

Complexity: O(n+m)

Complexity of the algorithm finding the max
matching: n/2[O(n+m)+O(n)]=O(nm)

60

§ For each free node
§ Run a modified DFS:

§ Keep trace of the current layer
§ If the layer is even, use an edge in M
§ If the layer is odd, use an edge in
E\M

§ As soon as a free node has been
encountered, a new augmenting path
has been found

61

(a parenthesis)
What if G is
not bipartite?

1

2
3

6 5

4

1

2
3

6 5

4

But also:

If the search goes through the cycle along the
“wrong” direction, the augmenting path is not
detected.

It is necessary to have graphs without odd cycles =
bipartite graphs.

We will handle the general case later… 62

1

2
3

6 5

4

Problem: the presence of odd cycles:

In an odd cycle, there is always a free
node adjacent to two consecutive
edges not in M belonging to the cycle

§ The Hopcroft–Karp algorithm (1973) finds a max
matching in a bipartite graph in O(m√n) time
(better than the previous O(mn)).

§ The idea is similar to the previous one, and
consists in augmenting the cardinality of the
current matching exploiting augmenting paths.

§During each iteration, this algorithm searches not
one but a maximal set of augmenting paths.

§ In this way, only O(√n) iterations are enough.
63

Hopcroft–Karp Algorithm

During the k-th step:

§ Run a modified breadth first search starting from ALL
the free nodes in V1. The BFS ends when some free
nodes in V2 are reached at layer 2k-1.

§ All the detected free nodes in V2 at layer 2k-1 are put
in a set F. Obs. v is put in F iff it is the endpoint of an aug. path

§ Find a maximal set of length 2k-1 aug. paths node
disjoint using a depth first search from the nodes in F
back to the starting nodes in V1 (climbing on the BFS tree).

§ Each aug. path is used to augment the cardinality of M.

§ The algorithm ends when there are no more aug. paths. 64

Example: Hopcroft–Karp algorithm

65

1 2 3 4 5

a b c d e

k=1 2

a e

4

b c e

1 2 3 4 5

a b c d e

k=2

1 2 3 4 5

a b c d e

2

a e
1

b d

5

Analysis of the Hopcroft–Karp algorithm (sketch)

Each step consists in a BFS and a DFS. Hence it runs
in Θ(n+m)= Θ(m) time.

How many steps?

§ The first √n steps take Θ(m √n) time.

§ Note. At each step, the length of the found aug.
paths is larger and larger; indeed, during step k, ALL
paths of length 2k-1 are found and, after that, only
longer aug. paths can be in the graph.

§ So, after the first √n steps, the shortest aug. path is
at least 2√n+1 long.

§ … 66

Analysis of the Hopcroft–Karp algorithm (sketch) – contd

§ The symmetric difference between a maximum
matching and the partial matching M found after
the first √n steps is a set of vertex-disjoint
alternating cycles, alternating paths and
augmenting paths.

§Consider the augmenting paths. Each of them must
be at least √n long, so there are at most √n such
paths. Moreover, the maximum matching is larger
than M by at most √n edges.

§…
67

Analysis of the Hopcroft–Karp algorithm (sketch) – contd

§…

§ Each step of the algorithm augments the
dimension of M by one, so at most √n furhter
steps are enough.

§ The whole algorithm executes at most 2√n steps,
each running in Θ(m) time, hence the time
complexity is Θ(m √n) in the worst case.

68

§ In many cases, this complexity can be improved.

§ For example, in the case of random sparse
bipartite graphs, it has been proved [Bast et al.’06]
that the augmenting paths have an average
logarithmic length.

§As a consequence, the Hopcroft–Karp algorithm
runs only O(log n) steps so it can be executed in
O(m log n) time.

69

70

§ Each edge has a cost

§ The definition of weighted matching is the same
as the simple matching (weight does not affect
the definition)

§We look for a minimum weight perfect matching

§Note. This is equivalent to looking for a maximum
weight perfect matching, where the weights are
all negative.

71

72

46 6

3 Weight of this
matching:
6+3+1=10

46 6

3
Max weight matching:
6+4+1+1+1=13

(the unweighted edges have weight=1)

73

Def. An augmenting path (different w.r.t. the
previous one!) is any alternating path such that the
weight of the edges out of the matching is greater
than the weight of the edges in the matching.
Weight of the augmenting path= weight of the
edges out of M – weight of the edges in M

46 6

3

Note. In this case, augmenting paths do not need
to start and end with edges outside M.

Algorithm:

§ Start with an empty matching

§ Repeat
§ Find an aug. path P with max weight
§ If this weight is positive, swap the role of
the edges

§ Else return the found matching (that is of
max weight).

§ Time complexity: at least O(n m). 74

It is possible to model the minimum weight perfect
matching problem as an ILP problem (Hungarian
method – in honour of Konig and Egevary):

Given a matching M, let x be its incidence
matrix, where xij = 1 if (i, j) is in M
 and xij = 0 otherwise.

The problem can be written as follows:
 minimize subject to:

Complexity: O(n3).

75€

cij xij
i, j
∑

NOTE:
With this

definition, the
bipartite graph

problem is
converted into

a matrix
problem: the

rows represent
the nodes in
V1, and the

columns
represent the
nodes in V2

!
!
""! = 1, & ∈ (#

!
"
""! = 1,) ∈ ($	

""! ≥ 0, & ∈ (#,)	 ∈ 	($
∀	& ∈ (#, ∀)	 ∈ 	($, ""!	integer

76

§We have already noted that the critical
point of general graphs are odd cycles
containing a maximal number of edges in
the matching

77

¢ Such cycles are called blossoms.

Lemma (cycle contraction). Let M be a matching
of G, and let B be a blossom. Let B be node
disjoint from the rest of M. Let G’ be the graph
obtained by G contracting B in a single node.
Then M’ of G’ induced by M is maximum in G’
iff M is maximum in G.

Proof. M max in G ⟹ M’ max in G’:

By contradiction. Assume M’ not max. Hence,
there exists an aug. path P in G’ w.r.t. M’.

Let b be the node representing B.
…

78

Proof of the Cycle contraction lemma – contd.

Two cases can hold:

1. P does not cross b ⟹ P augmenting for M,
too. Contradiction.

Observe that b is free as it represents the node
v in B adjacent to two edges out of M. In other
words, v is free if we restrict to B.

2. P crosses b ⟹ b must be an end-point of P.

 Define P’=P ∪ P” where P” is inside B.

 P’ is augmenting for G. Contradiction.
…

79

Proof of the Cycle contraction lemma – contd.

M’ max in G’ ⟹ M max in G:
 By contradiction, M is not max. Let P be an

aug. path for M.
 Two cases hold:
1. P does not cross b ⟹ P is aug. for G’. A

contradiction.
2. P crosses b. Since B contains only one free

node, at least an end-point of P lies outside
B. Let it be w.

 Let P’ be the sub-path of P joining w with b.
 P’ is an aug. path for G’. A contradiction. n 80

In order to find an aug. path in general graphs, it
is “enough” to modify the algorithm on bipartite
graphs in order to include blossom search:

§ For each found blossom B:
 B is shrunk in a node, and a new (reduced)
 graph is generated.

§ Each aug. path found in this new graph can be
easily “translated” back into an aug. path in G.

Thanks to the previous lemma, if M is max in the
new graph, it is max even in G.

81

This is the Edmonds algorithm [‘65].

The time complexity depends on how blossoms
are handled. Varying with the used data
structures, it can be either O(n3) or O(m n2).

The best-known time complexity is O(m√n)

 [Micali & Vazirani ‘80]

82

Example:

83

Example – contd

84

85

Edmonds Algorithm [‘65]
¢ M matching for G
¢ L subset of the free nodes (if L empty => M

max)

¢ F forest s.t. each node of L is the root of a
tree in F

¢ Expand F by adding
¢ Nodes that are at odd distance from a node of

L have degree 2 (1 in M and 1 in E\M): we call
them internal nodes

¢ The other nodes: external nodes

¢ …

86

Edmonds algorithm – contd

Consider the neighbors of the external nodes.
4 possibilities hold:
1. There esists x external and incident to a node

y not in F:
add to F edges (x,y) and (y,z), and (y,z) is in M.

…
x

87

Edmonds algorithm – contd

2. Two external nodes lying in two different
components of F are adjacent:
 → augmenting path

… …

88

Edmonds algorithm – contd

3. Two external nodes x, y in the same
component in F are adjacent:
let C be the found cycle. It is possible to
move the edges in M around C so that the
cycle contraction lemma can be used
 → reduced graph G’

… x

y

89

Edmonds algorithm – contd

4. All the external nodes are adjacent to
internal nodes:
 → M is maximum.

…

…

90

Lemma. At each step of the Edmonds algorithm, either
the dimension of F increases, or the dimension of G
decreases, or an aug. path is found, or M is maximum.

Complexity. Number of iterations ≤
 num. of times F is increased (at most n)+

 num. of times a blossom is shrinked (at most n)+
 num. of found aug. paths (at most n/2).
 The time complexity depends on how blossoms are

handled. Varying with the used data structures, it can
be either O(n3) or O(mn2).

Best known time complexity: O(m√n) [Micali & Vazirani ‘80]

ANOTHER
APPLICATION

91

Reminder:

§ Interconnection topologies are constituted
by layers of basic modules that are 2x2
cross-bar switches

§Any output can be reached by any input by
properly setting some switches

§A single routing can be easily performed if
the network is self-routing (e.g., Butterfly,
Baseline, etc.)

92

§ The log N-stage networks are not
rearrangeable, i.e. not all routes can be
done simultaneously

§ Two packets may want to use the same link
at the same time

§ Solution: buffering (though buffers increase
delay)

93

The multistage topologies are good to use, because are:

§ modular

§ scalar

Nevertheless, the buffers at each node provoke:

§ delays for going through the stages

§ decreased throughput due to internal blocking

Solution: (input) buffers that are external to the
topology

94

Eytan Modiano
Slide 19

Input buffer architecture

• Packets buffered at input rather than output
– Switch fabric does not need to be as fast

• During each slot, the scheduler established the crossbar
connections to transfer packets from the input to the outputs

– Maximum of one packet from each input
– Maximum of one packet to each output

• Head of line (HOL) blocking – when the packet at the head of two
or more input queues is destined to the same output, only one can
be transferred and the other is blocked

Crossbar switch

X = connect

Scheduler
X

X

X

X

1

2

3

4

1 2 3 4

§Head of line (HOL) buffer: only the first
packet can leave the buffer.

§ Buffers are connected through a crossbar
network to the inputs of the topology

§During each slot, the scheduler establishes the
crossbar connections
to transfer packets
from the buffers to
the inputs

95

§When the packets at the head of two or
more input queues are destined to the same
input node, only one can be transferred,
and the other is blocked

§ This behavior limits throughput because
some inputs (and consequently outputs) are
kept idle during a slot even when they have
other packets to send

§…

96

§ If the inputs are allowed to transfer packets
that are not at the head of their buffers,
throughput can be improved

§ Example:

§How does the scheduler decide which input to
transfer to the network?

97

Eytan Modiano
Slide 24

Overcoming HOL blocking

• If inputs are allowed to transfer packets that are not at the head of
their queues, throughput can be substantially improved (not
FCFS)

Example:

• How does the scheduler decide which input to transfer to which
output?

21

23

34

24

input 1

input 2

input 3

input 4

Eytan Modiano
Slide 25

Backlog matrix

• Each entery in the backlog matrix represent the number of
packets in input i’s queue that are destined to output j

• During each slot the scheduler can transfer at most one packet
from each input to each output
– The scheduler must choose one packet (at most) from each row, and

column of the backlog matrix
– This can be done by solving a bi-partite graph matching algorithm
– The bi-partite graph consists of N nodes representing the inputs and

N nodes representing the outputs

1

2

3

input

output

1 2 3

3 3

2 0

2

0

0

0 0

Backlog matrix:

§ rows: input buffers

§ columns: outputs

§ each entry (i,j) represents
the number of packets in
buffer i destined to
output j

98

§During each slot, the scheduler can transfer
at most one packet from each buffer to
each output

§ The scheduler must choose at most one
packet from each row and from each
column of the backlog matrix

§ This can be done by solving a bipartite
matching algorithm…

99

Eytan Modiano
Slide 26

Bi-partite graph representation

• There is an edge in the graph from an input to an output if there is a
packet in the backlog matrix to be transferred from that input to that
output
– For previous backlog matrix, the bi-partite graph is:

• Definition: A matching is a set of edges, such that no two edges share
a node
– Finding a matching in the bi-partite graph is equivalent to finding a set of

packets such that no two packets share a row or column in the backlog
matrix

• Definition: A maximum matching is a matching with the maximum
possible number of edges
– Finding a maximum matching is equivalent to finding the largest set of

packets that can be transferred simultaneously

1

2

3

1

2

3

Eytan Modiano
Slide 25

Backlog matrix

• Each entery in the backlog matrix represent the number of
packets in input i’s queue that are destined to output j

• During each slot the scheduler can transfer at most one packet
from each input to each output
– The scheduler must choose one packet (at most) from each row, and

column of the backlog matrix
– This can be done by solving a bi-partite graph matching algorithm
– The bi-partite graph consists of N nodes representing the inputs and

N nodes representing the outputs

1

2

3

input

output

1 2 3

3 3

2 0

2

0

0

0 0

§ The bipartite graph G=(V ∪ W, E) is built as follows:
§ V: N nodes representing the buffers
§ W: N nodes representing the outputs
§ E: there is an edge from a buffer i to an output j iff
there is a packet in the backlog matrix to be transferred
from i to j.

§ Example:

§ Finding a maximum matching is equivalent to finding
the largest set of packets that can be transferred
simultaneously 100

§ Finding a maximum matching during each time
slot does not eliminate the effects of HOL
blocking

§ It is, indeed, necessary to look beyond a single
slot when making scheduling decisions

§ Solution: edge (i,j) is assigned a weight equal to
the value of element (i,j) of the backlog matrix

§ Theorem: A scheduler that chooses, during each
time slot, the maximum weighted matching
achieves full utilization.

§ Proof and other details: see [McKeon et al. 1999]
101

