SECOND PART:
WIRELESS NETWORKS
2.C. MOBILE SENSOR
NETWORKS

MOBILE SENSOR NETWORKS (1)

= Wireless sensor networks are large-scale wireless
multi-hop networks where nodes have limited
resources such as energy, bandwidth, storage, and
processing power.

= They are dedicated to provide low-level surveillance
and data gathering services in an area of interest
(AoI) for various applications.

= So, they must fully cover the Aol without internal
sensing holes.

= It is critical to position sensors inside the Aol, due
to operational factors such as human inaccessibility
to the Aol and tight deployment budget.

\ 4

Sensor mobility

MOBILE SENSOR NETWORKS (2)

There are two different ways to place sensors

by exploiting mobility:

1. Use robots, that carry static sensors as
payload and move around in the Aol.
While traveling, they deploy sensors at
proper positions (e.g., vertices of certain
geographic graph): carrier-based method.

2. Sensors autonomously and intelligently
change their geographic location, adjusting
the overall distribution to a desired one:
self-deployment method.

MOBILE SENSORS (1)

Devices of tiny dimension and low cost able to
produce measurable response to a change in a

physical condition.
They are equipped with:

- detecting/monitoring Unit (sensing)

= communication Unit

= computing Unit
= small battery

=motion system

MOBILE SENSORS (2)

Mobile sensors collaborate to form an ad-hoc
network and are especially useful in critical
environments (e.g., in presence of dispersion
of pollutants, gas plumes, fires, ..)

It is not restrictive to assume each sensor able
to monitor a disk centered at its position and
having radius rg = sensing range and to
communicate with the sensors that are inside
a disk centered at its position and having
radius r. = communication range.

MOBILE SENSORS (3)

The sensing and the communication units are
independent components; therefore, the
communication and the sensing ranges are
not directly associated from a hardware
point of view. However, they are integrated
because connectivity and coverage must both
be guaranteed: it can be proved that the
protocols working in the assumption that r.
is at least twice r; only need to guarantee
coverage and will satisfy the connectivity
constraint as well.

©

COVERAGE ISSUES (1)

Coverage is one of the most important issues
for environmental monitoring in wireless
sensor networks.

In general, coverage is defined as the
measurement of the quality of surveillance of
sensing function.

COVERAGE ISSUES (2)

Information from a target field is collected by
deploying sensor nodes in different locations.

After deployment, sensor nodes form a network
through which the collected data are propagated
to a sink.

The quality of the collected information depends
on how well the Aol is covered by the set of
sensor nodes.

COVERAGE ISSUES (3)

Depending on how an area should be covered,

coverage problems are broadly categorized in three
types:

1.

point coverage: a set of discrete points is
continuously monitored

Example: in building monitoring, every access is controlled
area coverage: all points within a bounded
region are continuously monitored

Example: in forest monitoring, every location of the forest

must be covered by at least one sensor node in order to
immediately detect any unusual activities like forest fire,

©

activities of poachers, etc.

COVERAGE ISSUES (4)

barrier coverage: a specified path or the
boundary of a region is continuously monitored

by sensor nodes.

Example: in forest monitoring, covering the boundary
allows controlling and elimination of the poaching
activities, and illegal entry through the boundary

A continuous monitoring with static sensors is

required for all the aforementioned types of

coverage problems.

COVERAGE ISSUES (5)

There are typical applications where only
periodic patrol inspections are sufficient for a
certain set of points of interest instead of
continuous monitoring like in traditional

coverage: sweep coverage.

COVERAGE ISSUES (6)

Sweep coverage concept in WSNs is introduced in
the literature in [Cheng et al.’08]:

Def. A point of interest (Pol) is said to be t-
sweep covered if and only if at least one mobile
sensor visits the point within every t time
periods, where t is called sweep period of the
point.

Objective of the sweep coverage problem is to
find minimum number of mobile sensors to
guarantee sweep coverage for the set of Pols.

()

COVERAGE ISSUES (7)

Instead of using only mobile sensors, the use of
both static and mobile sensors can be more
effective in terms of total number of sensor used
[Gorain & Mandal ‘'14].

It is possible to introduce an energy efficient
sweep coverage problem whose objective is to
guarantee sweep coverage by a combined set of
mobile and static sensors such that total energy
consumption is minimized [Gorain & Mandal ‘15].

B> some possible students’ lessons in this context

()

LOCALIZATION TECHNIQUES (1)

= The location information of the sensors is
essential as deployment protocols often depend
on the position of sensors.

= for outdoor applications, GPS is the most popular
solution.

LOCALIZATION TECHNIQUES (2)

= for indoor centralized applications, a grid-based

approach is often used when global position
information is needed for deployment: grids are
used as landmarks where sensors are placed;
sometimes, the deployed sensors are used
themselves as landmarks.

= for the indoor distributed approach, techniques

based on the received signal strength, time
difference of arrival of two different signals,
angle arrival, etc. can be also used. (15)

THE CENTRALIZED

DEPLOYMENT
OF MOBILE SENSORS

LE.
THE MINIMUM WEIGHT
PERFECT MATCHING
ON BIPARTITE GRAPHS

Prof. Tiziana Calamoneri
Network Algorithms
A.y. 2025/26

THE DEPLOYMENT PROBLEM (1)

In the context of area coverage:
Deployment problem - two approaches:

1. Given an Aol to cover, the aim 1is to

entireley cover the Aol minimizing the

number of used sensors.

2. Given a set of mobile sensors, the aim is to

maximize the covered area.

Coverage multiplicity: either single or multiple,
according to the specific application
requirements

©

THE DEPLOYMENT PROBLEM (2)

Coordination algorithm

Initial Config. ™= Desired Config.

Can be: Can be:

. random - a regular tassellation

- from a safe location - any configuration,
provided that the Aol is
covered

= At the same time, some parameters need to be
optimized:

©

THE DEPLOYMENT PROBLEM (3)

= Traversed Distance: it is the dominant cost

« Number of starts/stops: they are more expensive

than a continuous movement

= Communication cost: it depends on the number

of exchanged messages and on the packet
dimension at each transmission

=« Computation cost: Usually negligible, unless

processors are extremely sophisticated

THE DEPLOYMENT PROBLEM (4)

Random deployment is the easiest way to place
sensors. When the target region is subject to
severe changes in condition or no a priori
knowledge is available, it achieves a relatively
satisfactory coverage.

It is also practical in military application, where
WSNs are initially established by dropping or
throwing.

THE DEPLOYMENT PROBLEM (5)

Nevertheless, random deployment may not
provide a uniform distribution, which is desirable
for a longer system lifetime of the Aol

So the random deployment may serve as an
initial phase of another deployment strategy.

THE DEPLOYMENT PROBLEM (6)

Self-deployment:
= either centralized (or global)

= or distributed (or local).

The global approach relies on global information
which is usually not scalable.

Local algorithms are based on iterative nearest
neighbor exchange.

We will discuss both the approaches. @

PROBLEM

THE CENTRALIZED DEPLOYMENT
PROBLEM (1)

If no information on the Aol is given,
incremental deployment:

= [t is a one-at-a-time approach: each node makes
use of information gathered by the previously
deployed nodes to determine its ideal
deployment location, which is calculated at a
powerful base station.

THE CENTRALIZED DEPLOYMENT
PROBLEM (2)

incremental deployment (contd)

=Each deployed node is responsible for
communicating its local information back to the
base station for being used in the next iteration.
Hence each node has to maintain bidirectional
communication with the sink.

= No localization technique is needed: the location
of the next node can be found by using the
nodes themselves as landmarks.

()

THE CENTRALIZED DEPLOYMENT
PROBLEM (3)

incremental deployment (contd)

PROs:
= certainty of optimal location in each step

=since the sensors are fixed once they are
deployed, little energy is consumed

CON:s:

«the deployment time is very long, which can
significantly increase the network initialization
time

= computationally expensive: a lot of work for the
computation of a new location @

THE CENTRALIZED DEPLOYMENT
PROBLEM (4)

If information on the Aol is known:

The whole coverage is guaranteed assigning to
each sensor a position on a grid covering the Aol

= The total energy consumption should be
minimized

©

THE CENTRALIZED DEPLOYMENT
PROBLEM (5)

It is well known that an optimal coverage
using equally sized circles is the one
positioning the centers on the vertices of a
triangular grid opportunely sized.

= \We model this
problem with the

classical minimum
weight perfect

matching in bipartite

graphs. @

oy e THE GRAPH
MODEL

THE GRAPH MODEL (1)

= Set of n mobile sensors S={S;, S,, ..., S,}

-Set of p locations on the Aol L={L;, L, .. Lp}
(e.g., in correspondence of a hexagonal grid)

=n>p (to guarantee the complete coverage)

=For each S;, determine the location L; that S;

will have to reach, so to minimize the total
consumed energy.

THE GRAPH MODEL (2)

Define a weighted complete bipartite graph

G=(S U L, E, w) as follows:

= One node for each sensor S;

= One node for each location L

*An edge between S; and L; for each i=l..n and
i=1..p

= For each edge e, w(e;) is proportional to the
energy consumed by S; to reach location L;

= The aim is to choose a matching between sensors
and locations so that the total consumed energy

is minimized. @

THE PERFECT
MATCHING ON
BIPARTITE GRAPHS

MATCHING (1)

Given G=(V, E):

= Def. A matching is a set of edges M < E such that
every node is adjacent to at most one edge in M.

= Maximal matching
There exists no e ¢ M such that M U {e} is a
matching

= Maximum matching
Matching M such that |M| is maximum

= Perfect matching
Assuming n even|M| = n/2: each node is adjacent

to exactly one edge in M.
If G is bipartite and V=V; U V,, [M|l=minf{|V4], [V,l}. @

MATCHING (2)

Example:
Maximal A
matching Maximum

matching

©

MATCHING (3)

* Nomenclature

o /0
C\ X\'\ matching
@

©

Free node

MATCHING (4)

= Note. The maximum matching is not unique

N
MK

MATCHING (5)

Original problem: wedding problem
= the nodes of a set are men

= the nodes of the other set are wemen

= An edge connects a man and a woman

who like each other

o Maximum matching aims at maximizing the
number of couples.

MATCHING PROBLEMS

= Given a graph G, to find a:
= Maximal matching is easy (greedy)
= Maximum matching is
= polynomial; not trivial.
= easier in the case of bipartite graphs
= Perfect matching

=it is a special case of the maximum
matching

= for it, some theorems can help

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (1)

TH. (P. Hall's marriage theorem) Given a bipartite
graph G with |V4[<|V,|, G has a perfect matching iff
for each set S of k nodes in V; there are at least k
nodes in V, adjacent to some node in S.

In symbols, vV ScVy, |S| < [adj(S)l.

PROOF.

Necessary condition: If G has a perfect matching
M and S is any subset of V;, each node in S is
matched through M with a different node in

adj(S). Hence [S| < [adj(S)|.
©

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (2

(proof of the Hall theorem - contd) G bipartite with |Vq<|V,|, G has a perfect
matching iff v ScVy, IS| < [adj(S)I.

: We have to prove that if the
Hall condition is true then there is a perfect
matching. By contradiction, assume that M is a
maximum matching but [M|<|V4].
By hypothesis,|M|<|V|=3 uyeV; s.t. useM.

Let S={up}; it holds 1=|S|<[adj(S)] from the Hall
condition, so there exists a vieV, adjacent to ug.

Vi \E
1

a. vigM
b. V1€M

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (3)

(proof of the Hall theorem - contd) G bipartite ‘with |[Vi<|V,|, G has a
perfect matching iff v ScVy, S| < [adj(S)I.

a. If vieM OK

b. Consider the node matched with v; through M,
call it uj.

S={ug,us} and 2= [S|<|adj(S)|.
There exists another node v,
Different from v;, and adjacent
either to ug or to uj.

a. vogM

b. V2€M

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (4) VL G e o

(proof of the Hall theorem - contd) G blpar
perfect matching iff v ScVy, [S] < [adj(S)|

Continue in this way. As G is finite, we will
eventually reach a node v, that is free w.r.t. M.
Each v; is adjacent to at least one among
Uog,Uq,ee,Uj_1-

Analogously to the case r=2:

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (5)

= The P. Hall Theorem does not provide an

algorithmic method to construct a perfect
matching (unless all subsets in V; are enumerated
- exponential time issue).

= The perfect matching problem in a bipartite
graph is equivalent to the maximum flow problem
in a network:

Given G=(V=V;u V, E), construct the associated
flow network G'=(V’, E') as follows:

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (6)

V'V U {s} u {t}
E': From the source s to all nodes in V;:
{(s,u)l u € Vi1 U
All edges in E:
{(uv)lu e Vy, vev, e (uv)e E} U
From all nodes in V, to the tale t:

o (vl v eV

Capacity: c(u,v) = 1, for all (u,v) € E'

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (7)

Fact: Let M be a matching in a bipartite graph G. There
exists a flow f in the network G’ s.t. |[M|=[f].

Vice-versa, if f is a flow of G, there exists a matching
M in G s.t. |M|=[f].

o ® ®
‘/0 ®
.\‘ e
® ®

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (8)

= Th.: (integrality) If the capacity ¢ assumes
only integer values, the max flow f is such
that |[f| is integer. Moreover, for all nodes u
and v, f(u,v) is integer.

= Corol.: The cardinality of a max matching M
in a bipartite graph G is equal to the value of
the max flow f in the associated network G'.

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (9)

« The algorithm by Ford-Fulkerson for the max
flow in a network runs in O(ml|f]) time.

=« In our special setting, the max flow of G' has
cardinality upper bounded by min{|V,|, |V,l}.

= Hence, the complexity of an algorithm for the
max matching exploiting the max flow runs in
O(n m) time.

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (10)

=Def. Given a matching M in a graph G, an
alternating path w.r.t. M is the path alternating
edges of M and edges in E\M.

| N
=7
Ze
‘\

® ©

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (11)

=« Def. Given a matching M in a graph G, an
augmenting path w.r.t. M is an alternating path
starting and finishing in two free nodes w.r.t. M.

o Swapping the role
of the edges in M
and in E\M,M has

larger cardinality.

VAN

©

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (12)

« Th. (Augmenting path) [Berge 1975] M is a max matching
iff there are no augmenting paths w.r.t. M.

= Proof.

« (=) If M max, then there are no augmenting paths.

Negating, if there are some augmenting paths, then
M is not max. This is obvious because we can swap
the role of the edges in the augmenting path and
increase the cardinality of M.

.. @

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (13)

(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M - contd)

- (€) If there are no augmenting paths, then M is
max.

By contradiction, M is not max. Let M’ s.t.
IM[>[M].

Consider graph H induced by M and M'. Edges
that are both in M and in M’ are put twice. So,
H is a multigraph.

., @

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (14)

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t.
M - contd)

= H has the following property:

= For each v in H, deg(v)<2. (indeed, each node has at
most one edge from M and one edge from M’)

= So, each connected component of H is either a cycle
or a path.
= Cycles necessarily have even length; otherwise, a
node would be incident to two edges of the same
matching (M or M’); this is absurd by the
definition of matching.
@

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (15)

(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M - contd)

= More in detail, the connected components of H
can be classified into 6 kinds:

1. An isolated node

2. a 2-cycle

O
«—»
3. a 2k-cycle, k>1 I:I

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (16)

(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M - contd)

4. a 2k-path " —o—0 090

5. a (2k+1)-path whose extremes are incident
to M o —0 00 00

6. a (2k+1)-path whose extremes are incident
to M O—0—0—0—0—20

)

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (17)

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t.
M - contd)

Reminder: |M|<|M’| by hp.

= Among all the components just defined, only 5
and 6 have a different number of edges from
M and from M’; only 6 has more edges from M’
than from M.

= So, there is at least one component of kind 6
*—0—0 000

= This comp. is an augmenting path w.r.t. M:
contradiction. | @

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (18)

= We exploit the Augmenting Path Th. to
design an iterative algorithm.

= During each iteration, we look for a new
augmenting path using a modified Breadth
First Search starting from the free nodes.

= In this way, nodes are structured in layers.

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (19)

Idea of the algorithm:

«Let M be an arbitrary matching (possibly empty)
«Find an augmenting path P

« While there is an augmenting path:

= Swap in P the role of the edges in and out of
the matching

«Find an augmenting path P

Complexity: it dipends on the complexity of
finding an augmenting path.

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (20)

Question: how to decide the existence of an
augmenting path and how to find one, if one
exists?

G=(V1,V,,E); direct edges in G according to M as
follows:

= An edge goes from V; to V, if it does not belong
to the matching M

=an edge goes from V, to V; if it does.

Call this directed graph D.

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (21)

Claim. There exists an augmenting path in G w.r.t.
M iff there exists a directed path in D between a
free node in V; and a free node in V..

(=)

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (22)

= [dea:
= For each free node in V,
=Run a DFS on D:

=As soon as a free node in V, has been
encountered, a new augmenting path has
been found.

Complexity: O(n+m)

Complexity of the algorithm finding the max
matching: n/2[O(n+m)+O(n)]=0O(nm)

(o)

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (23)

= For each free node
= Run a modified DFS:

(a parenthesis) = Keep trace of the current layer

What if G is

not b'pa tite? = If the layer is even, use an edge in M
1partite:

= If the layer is odd, use an edge in
E\M

= As soon as a free node has been
encountered, a new augmenting path
has been found

\ AN
\ 'y
7 But also: 7 B)

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (25!-)

Problem: the presence of odd cyclesN __—0
() AN
4

In an odd cycle, there is always a free \

node adjacent to two consecutive 6 /
. . —@

edges not in M belonging to the cycle

If the search goes through the cycle along the
"wrong"” direction, the augmenting path is not
detected.

It is necessary to have graphs without odd cycles =
bipartite graphs.

We will handle the general case later.. @

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (25)

» The Hopcroft-Karp algorithm (1973) finds a max
matching in a bipartite graph in O(mVn) time
(better than the previous O(mn)).

= The idea is similar to the previous one, and
consists in augmenting the cardinality of the
current matching exploiting augmenting paths.

= During each iteration, this algorithm searches not

one but a maximal set of augmenting paths.

- In this way, only O(Vn) iterations are enough. ©

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (26)

Hopcroft-Karp Algorithm
During the k-th step:

= Run a modified breadth first search starting from ALL
the free nodes in V;. The BFS ends when some free
nodes in V, are reached at layer 2k-1.

= All the detected free nodes in V, at layer 2k-1 are put
in a set F. Obs. v is put in F iff it is the endpoint of an aug. path

= Find a maximal set of length 2k-1 aug. paths node
disjoint using a depth first search from the nodes in F
back to the starting nodes in V; (climbing on the BFS tree).

= Each aug. path is used to augment the cardinality of M.
= The algorithm ends when there are no more aug. paths.@

MAXIMUM MATCHING IN
BIPARTITE GRAPHS §1r2n7)

Example: Hopcroft-Karp algorit

3

1 2 4 5 . 4
b A A

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (28)

Analysis of the Hopcroft-Karp algorithm (sketch)

Each step consists in a BFS and a DFS. Hence it runs
in O(n+m)= O(m) time.

How many steps?
= The first Vn steps take ©(m vn) time.

= Note. At each step, the length of the found aug.
paths is larger and larger; indeed, during step k, ALL
paths of length 2k-1 are found and, after that, only
longer aug. paths can be in the graph.

= So, after the first Vn steps, the shortest aug. path is
at least 2vn+1 long.

MAXIMUM MATCHING IN

BIPARTITE GRAPHS (29) O

Analysis of the Hopcroft-Karp algorithm (sketch) - contd

= The symmetric difference bdtween a maximum

matching and the partial matching M found after
the first Vn steps is a set of vertex-disjoint
alternating cycles, alternating paths and
augmenting paths.

= Consider the augmenting paths. Each of them must
be at least Vn long, so there are at most Vn such
paths. Moreover, the maximum matching is larger
than M by at most Vn edges.

‘. ©

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (30)

Analysis of the Hopcroft-Karp algorithm (sketch) - contd

= Each step of the algorithm augments the
dimension of M by one, so at most Vn furhter
steps are enough.

 The whole algorithm executes at most 2Vn steps,
each running in O(m) time, hence the time
complexity is ®mVn) in the worst case.

MAXIMUM MATCHING IN
BIPARTITE GRAPHS (31)

= In many cases, this complexity can be improved.

= For example, in the case of random sparse
bipartite graphs, it has been proved [Bast et al.'06]
that the augmenting paths have an average
logarithmic length.

= As a consequence, the Hopcroft-Karp algorithm
runs only O(log n) steps so it can be executed in

O(m log n) time.

©

MINIMUM WEIGHT
PERFECT
MATCHING IN
BIPARTITE GRAPHS

WEIGHTED MATCHING (1)

= Each edge has a cost

= The definition of weighted matching is the same
as the simple matching (weight does not affect
the definition)

= We look for a minimum weight perfect matching

= Note. This is equivalent to looking for a maximum
weight perfect matching, where the weights are
all negative.

@

WEIGHTED MATCHING (2)

(the unweighted edges have weight=1)

Weight of this
4 matching:
6+3+1=10

Max weight matching: 4
6+4+1+1+1=13

WEIGHTED MATCHING (3)

Def. An augmenting path (different w.r.t. the
previous one!) is any alternating path such that the
weight of the edges out of the matching is greater
than the weight of the edges in the matching.
Weight of the augmenting path= weight of the
edges out of M - weight of the edges in M

Note. In this case, augmenting paths do not need
to start and end with edges outside M. ©

WEIGHTED MATCHING (4)

Algorithm:
= Start with an empty matching
= Repeat
=Find an aug. path P with max weight

« If this weight is positive, swap the role of
the edges

« Else return the found matching (that is of
max weight).

= Time complexity: at least O(n m). @

WEIGHTED MATCHING (5)

It is possible to model the minimum weight perfect

matching problem as an ILP problem (Hungari

n

method - in honour of Konig and Egevary):

Given a matching M, let x be its incidence

=1 if (i,
= O otherwise.

matrix, where x;; = j) is in M

and x;;

The problem can be written as follows:

subject to:
xij = 1,l € V1

J

minimize Ecijxij
i.j

Complexity: O(n3).

inj = 1,jEV2
i

NOTE:

With this
definition, the
bipartite graph
problem is
converted into
a matrix
problem: the
rows represent
the nodes in
Vi, and the
columns
represent the

xl‘j = O,l € Vl'j € VZ
VieV,Vj € I, x;;integer

nodes in éz

GENERAL
GRAPHS

BLOSSOMS (1)

= We have already noted that the critical
point of general graphs are odd cycles
containing a maximal number of edges in
the matching

. o

o Such cycles are called blossoms.

BLOSSOMS (2)

Lemma (cycle contraction). Let M be a matching
of G, and let B be a blossom. Let B be node
disjoint from the rest of M. Let G’ be the graph
obtained by G contracting B in a single node.
Then M'" of G’ induced by M is maximum in G’
iff M is maximum in G.

Proof. M max in G = M’ max in G":

By contradiction. Assume M’ not max. Hence,
there exists an aug. path P in G" w.r.t. M',

Let b be the node representing B.

BLOSSOMS (3)

Proof of the Cycle contraction lemma - contd.

Two cases can hold:

1. P does not cross b = P augmenting for M,
too. Contradiction.

Observe that b is free as it represents the node
v in B adjacent to two edges out of M. In other
words, v is free if we restrict to B.

2. P crosses b = b must be an end-point of P.

Define P'=P u P" where P" is inside B.

P’ is augmenting for G. Contradiction.

@

BLOSSOMS (4)

Proof of the Cycle contraction lemma - contd.

M' max in G' = M max in G:

By contradiction, M is not max. Let P be an
aug. path for M.

Two cases hold:

1. P does not cross b = P is aug. for G'. A
contradiction.

2. P crosses b. Since B contains only one free
node, at least an end-point of P lies outside
B. Let it be w.

Let P’ be the sub-path of P joining w with b.
P’ is an aug. path for G'. A contradiction. ® @

MAX MATCHING IN GENERAL
GRAPHS (1)

In order to find an aug. path in general graphs, it
is "enough” to modify the algorithm on bipartite
graphs in order to include blossom search:

= For each found blossom B:

B is shrunk in a node, and a new (reduced)
graph is generated.

= Each aug. path found in this new graph can be
easily "translated” back into an aug. path in G.

Thanks to the previous lemma, if M is max in the
new graph, it is max even in G.

©

MAX MATCHING IN GENERAL
GRAPHS (2)

This is the Edmonds algorithm ['65].

The time complexity depends on how blossoms
are handled. Varying with the used data
structures, it can be either O(n3) or O(m n2).

The best-known time complexity is O(m+vn)

[Micali & Vazirani '80]

MAX MATCHING IN GENERAL
GRAPHS (3)

Example:

MAX MATCHING IN GENERAL
GRAPHS (4)

Example - contd

“_T
o—©0 7

N

MAX MATCHING IN GENERAL
GRAPHS (5)

Edmonds Algorithm ['65]

o

o

M matching for G

L subset of the free nodes (if L empty => M
max)

F forest s.t. each node of L is the root of a
tree in F

Expand F by adding @—@ ®

Nodes that are at odd distance from a node of

L have degree 2 (1 in M and 1 in E\M): we call
them internal nodes

The other nodes: external nodes

MAX MATCHING IN GENERAL
GRAPHS (6)

Edmonds algorithm - contd

Consider the neighbors of the external nodes.
4 possibilities hold:

1.

There esists x external and incident to a node
y not in F:

add to F edges (x,y) and (y,z), and (y,z) is in M.

_Q
__eo—e—e

[

MAX MATCHING IN GENERAL
GRAPHS (7)

Edmonds algorithm -"contd

2. Two external nodes lying in two different
components of F are adjacent:

— augmenting path

—o o
—® °

MAX MATCHING IN GENERAL
GRAPHS (h8)

Edmonds algorithm - contd

3. Two external nodes x, y in the same
component in F are adjacent:
let C be the found cycle. It is possible to
move the edges in M around C so that the
cycle contraction lemma can be used
— reduced graph G’

—o

=
3

MAX MATCHING IN GENERAL
GRAPHS (9)

Edmonds algorithm - contd

4. All the external nodes are adjacent to
internal nodes:

— M 1is maximum.

MAX MATCHING IN GENERAL
GRAPHS (10)

Lemma. At each step of the Edmonds algorithm, either
the dimension of F increases, or the dimension of G
decreases, or an aug. path is found, or M is maximum.

Complexity. Number of iterations <
num. of times F is increased (at most n)+
num. of times a blossom is shrinked (at most n)+
num. of found aug. paths (at most n/2).

The time complexity depends on how blossoms are
handled. Varying with the used data structures, it can
be either O(n3) or O(mn?2).

Best known time complexity: O(mVn) [Micali & Vazirani '80]

©

ANOTHER
APPLICATION

SWITCH BUFFER (1)

Reminder:

= Interconnection topologies are constituted
by layers of basic modules that are 2x2
cross-bar switches

= Any output can be reached by any input by
properly setting some switches

= A single routing can be easily performed if
the network is self-routing (e.g., Butterfly,

Baseline, etc.)
©

SWITCH BUFFER (2)

« The log N-stage networks are not
rearrangeable, i.e. not all routes can be
done simultaneously

= Two packets may want to use the same link
at the same time

= Solution: buffering (though buffers increase
delay)

©

MULTISTAGE TOPOLOGIES WITH
BUFFERS (1)

The multistage topologies are good to use, because are:
= modular

= scalar

Nevertheless, the buffers at each node provoke:

= delays for going through the stages

= decreased throughput due to internal blocking

Solution: (input) buffers that are external to the
topology

MULTISTAGE TOPOLOGIES WITH
BUFFERS

2
Head of lmegH L) buffer: only the first
packet can leave the buffer.

= Buffers are connected through a crossbar
network to the inputs of the topology

= During each slot, the scheduler establishes the

crossbar connections Crossbar switch
to transfer packets i
fIOI’T? the buffers to > __IlIl—b B oo
the inputs s __1] n
s 1]
X = connect
vy ¢ v
1 2 3 4

MULTISTAGE TOPOLOGIES WITH
BUFFERS (3)

= When the packets at the head of two or
more input queues are destined to the same
input node, only one can be transferred,
and the other is blocked

= This behavior limits throughput because
some inputs (and consequently outputs) are
kept idle during a slot even when they have
other packets to send

MULTISTAGE TOPOLOGIES WITH
BUFFERS (4)

= If the inputs are allowed to transfer packets
that are not at the head of their buffers,
throughput can be improved

« Example: input 1 Gx=
input 2 EQ D
input 3 '
input 4) [

= How does the scheduler decide which input to
transfer to the network?

©

MULTISTAGE TOPOLOGIES WITH
BUFFERS (5)

Backlog matrix: output
= rows: input buffers ! 2 3
= columns: outputs 1 3 3 | o
= each entry (i,j) represents | input 2 2 | o | o
the number of packets in

buffer i destined to 8 0 o [2

output j

MULTISTAGE TOPOLOGIES WITH
BUFFERS (6)

= During each slot, the scheduler can transfer
at most one packet from each buffer to
each output

= The scheduler must choose at most one
packet from each row and from each
column of the backlog matrix

= This can be done by solving a bipartite
matching algorithm...

()

MULTISTAGE TOPOLOGIES WITH
BUFFERS (7)

= The bipartite graph G=(V u W, E) is built as follows:
= V: N nodes representing the buffers
= W: N nodes representing the outputs

= E: there is an edge from a buffer i to an output j iff

there is a packet in the backlog matrix to be transferred
fromi toj.

1 2 3

T I R ~_—
2200 e

= Finding a maximum matching is equivalent to finding
the largest set of packets that can be transferred

simultaneously @

= Example:

MULTISTAGE TOPOLOGIES WITH
BUFFERS (8)

= Finding a maximum matching during each time
slot does not eliminate the effects of HOL
blocking

= [t is, indeed, necessary to look beyond a single
slot when making scheduling decisions

= Solution: edge (i,j) is assigned a weight equal to
the value of element (i,j) of the backlog matrix

= [heorem: A scheduler that chooses, during each
time slot, the maximum weighted matching
achieves full utilization.

= Proof and other details: see [McKeon et al. 1999]

®

