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SECOND PART:
WIRELESS NETWORKS
2.C. MOBILE SENSOR 
NETWORKS

§ Wireless sensor networks are large-scale wireless 
multi-hop networks where nodes have limited 
resources such as energy, bandwidth, storage, and 
processing power. 

§ They are dedicated to provide low-level surveillance 
and data gathering services in an area of interest 
(AoI) for various applications. 

§ So, they must fully cover the AoI without internal 
sensing holes. 

§ It is critical to position sensors inside the AoI, due 
to operational factors such as human inaccessibility 
to the AoI and tight deployment budget. 

Sensor mobility 2



There are two different ways to place sensors 
by exploiting mobility:
1. Use robots, that carry static sensors as 

payload and move around in the AoI. 
While traveling, they deploy sensors at 
proper positions (e.g., vertices of certain 
geographic graph): carrier-based method. 

2. Sensors autonomously and intelligently 
change their geographic location, adjusting 
the overall distribution to a desired one: 
self-deployment method. 
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Devices of tiny dimension and low cost able to
produce measurable response to a change in a
physical condition.
They are equipped with:

§ detecting/monitoring Unit (sensing)

§ communication Unit

§ computing Unit

§ small battery

§motion system

4



Mobile sensors collaborate to form an ad-hoc 
network and are especially useful in critical 
environments (e.g., in presence of dispersion 
of pollutants, gas plumes, fires, …)
It is not restrictive to assume each sensor
able to monitor a disk centered at its
position and having radius rs = sensing range
and to communicate with the sensors that
are inside a disk centered at its position and
having radius rc = communication range.
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The sensing and the communication units are
independent components; therefore, the
communication and the sensing ranges are
not directly associated from a hardware
point of view. However, they are integrated
because connectivity and coverage must both
be guaranteed: it can be proved that the
protocols working in the assumption that rc
is at least twice rs only need to guarantee
coverage and will satisfy the connectivity
constraint as well.
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§Coverage is one of the most important issues for 
environmental monitoring in wireless sensor 
networks. 
§In general, coverage is defined as the 
measurement of the quality of surveillance of 
sensing function.  
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§Information from a target field is collected by 
deploying sensor nodes in different locations of 
the field. 
§After deployment, sensor nodes form a network 
through which the collected data are propagated 
to a sink. 

§The quality of the collected information depends 
on how well the AoI is covered by the set of 
sensor nodes. 
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Depending on how an area should be covered, 
coverage problems are broadly categorized in three 
types:

1. point coverage: a set of discrete points is 
continuously monitored
Example: in building monitoring, every access is controlled

2. area coverage: all points within a bounded 
region are continuously monitored
Example: in forest monitoring, every location of the forest 
must be covered by at least one sensor node in order to 
immediately detect any unusual activities like forest fire, 
activities of poachers, etc. 

3. …
9

2. …

3. barrier coverage: a specified path or the 
boundary of a region is continuously monitored 
by sensor nodes. 
Example: in forest monitoring, covering the boundary 
allows controlling and elimination of the poaching 
activities, and illegal entry through the boundary 

A continuous monitoring with static sensors is 
required for the aforementioned types of coverage 
problems.
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§ There are typical applications where only 
periodic patrol inspections are sufficient for a 
certain set of points of interest instead of 
continuous monitoring like in traditional 
coverage: sweep coverage. 
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§ Sweep coverage concept in WSNs is introduced in 
the literature in [Cheng et al.’08]: 

§Def. A point of interest (PoI) is said to be t-
sweep covered if and only if at least one mobile 
sensor visits the point within every t time 
periods, where t is called sweep period of the 
point. 

§Objective of the sweep coverage problem is to 
find minimum number of mobile sensors to 
guarantee sweep coverage for the set of PoIs. 
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§Gorain and Mondal [‘14] show that, instead of 
using only mobile sensors, use of both static and 
mobile sensors can be more effective in terms of 
total number of sensor used. 

§ It is possible to introduce [Gorain & Mandal ‘15] an 
energy efficient sweep coverage problem whose 
objective is to guarantee sweep coverage by a 
combined set of mobile and static sensors such 
that total energy consumption is minimized. 

☞ some possible students’ lessons in this context
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§ The location information of the sensors is 
essential as deployment protocols often depend 
on the position of sensors.

§ for outdoor applications, GPS is the most popular 
solution.

§…
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§…

§ for indoor centralized applications, a grid-based 
approach is often used when global position 
information is needed for deployment: grids are 
used as landmarks where sensors are placed; 
sometimes, the deployed sensors are used 
themselves as landmarks.

§ for the indoor distributed approach, techniques 
based on the received signal strength, time 
difference of arrival of two different signals, 
angle arrival, etc. can be also used. 15
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Deployment problem (for area coverage):
1. Given an AoI to cover, the aim is to 

entireley cover the AoI minimizing the 
number of used sensors.

2. Given a set of mobile sensors, the aim is to 
maximize the covered area.

Coverage: either single or multiple, according to 
the specific application requirements

§At the same time, some parameters need to be 
optimized:
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Coordination algorithm

Initial Config. Desired Config.
Can be:
• random
• from a safe location

Can be:
• a regular tassellation
• any configuration, 
provided  that the AoI is 
covered



§ Traversed Distance: it is the dominant cost

§Number of starting/stopping: start/stop moves 
are more expensive than a continuous 
movement

§Communication cost: it depends on the 
number of exchanged messages and on the 
packet dimension at each transmission

§Computation cost: Usually negligible, unless 
processors are extremely sophisticated
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Random deployment is the easiest way to place 
sensors. When the target region is subject to 
severe change in condition or no a priori 
knowledge is available, it achieves a relatively 
satisfactory coverage. It is also practical in 
military application, where WSNs are initially 
established by dropping or throwing.

20



Nevertheless, random deployment may not 
provide a uniform distribution, which is 
desirable for a longer system lifetime of the 
AoI. 

So the random deployment may serve as an 
initial phase of another deployment strategy.
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It is well known that an optimal coverage 
using equally sized circles is the one 
positioning the centers on the vertices of a 
triangular grid opportunely sized.
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This configuration is followed in the carrier-
based method. Moreover:

§ Because physical movement consumes a large 
amount of energy, the algorithm is expected to 
yield a minimal number of robot moves. 

§ To save bandwidth and energy, communication 
is reduced. Thus localized solutions are seeked, 
relying only on some available local knowledge, 
without resorting to global network 
information. 

☞ possible students’ lesson 23

In the self-deployment method:

§ either centralized (or global)

§ or distributed approach (or local)

The global approach relies on global 
information which is usually not scalable. 

Local algorithms are based on iterative nearest 
neighbor exchange. 

We will discuss both the approaches.
24
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If no information on the AoI, incremental 
deployment:

§ It is a one-at-a-time approach: each node 
makes use of information gathered by the 
previously deployed nodes to determine its 
ideal deployment location, which is calculated 
at a powerful base station.

§…

26



incremental deployment (contd)

§…

§ Each deployed node is responsible for 
communicating its local information back to 
the base station for being used in the next 
iteration. Hence each node has to maintain 
bidirectional communication with the sink.

§No localization technique is needed: the 
location of the next node can be found by 
using the nodes themselves as landmarks.
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incremental deployment (contd) 

PROs: 

§ certainty of optimal location in each step

§ since the sensors are fixed once they are 
deployed, little energy is consumed

CONs:

§ the deployment time is very long, which can 
significantly increase the network initialization 
time

§ computationally expensive: a lot of work in the 
computation of a new location 28



If information on the AoI is known:

 The whole coverage is guaranteed assigning to 
each sensor a position on a grid covering the 
AoI

§ The total energy consumption should be 
minimized

§We model this problem with the classical 
minimum weight perfect matching in bipartite 
graphs.
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Formal definition of the problem:

§ Set of n mobile sensors S={S1, S2, …, Sn} 

§ Set of p locations on the AoI L={L1, L2, …, Lp}

§ n ≥ p (in order to guarantee the complete 
coverage)

§ For each Si, determine the location Lj that Si 

will have to reach, so to minimize the total 
consumed energy.

31

Define a weighted complete bipartite graph 
G=(S ∪ L, E, w) as follows:

§One node for each sensor Si

§One node for each location Lj

§An edge between Si and Lj for each i=1…n and 
j=1…p

§ For each edge eij , w(eij) is proportional to the 
energy consumed by Si to reach location Lj

§ The aim is to choose a matching between 
sensors and locations so that the total 
consumed energy is minimized. 32
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Given G=(V, E):
§ Def. A matching is a set of edges M Í E such that
every node is adjacent to at most one edge in M.

§ Maximal matching
There exists no e Ï M such that M È {e} is a
matching

§ Maximum matching
Matching M such that |M| is maximum

§ Perfect matching
Assuming n even,|M| = n/2: each node is adjacent to
exactly one edge in M.
If G is bipartite and V=V1 È V2, |M|=min{|V1|, |V2|}.

34
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Example:

Maximal 
matching Maximum 

matching

§Nomenclature

36

matching

Free node
36



§ Note. The maximum matching is not unique

37

37

Original problem: wedding problem
§ the nodes of a set are men
§ the nodes of the other set are wemen
§An edge connects a man and a woman
who like each other

38

¢ Maximum matching aims at maximizing the
number of couples.

38



§Given a graph G, to find a:
§Maximal matching is easy (greedy)

§Maximum matching is

§ polynomial; not trivial.

§ easier in the important case of bipartite 
graphs

§ Perfect matching

§ it is a special case of the maximum 
matching

§ for it, some theorems can help 39

TH. (P. Hall’s marriage theorem) Given a bipartite 
graph G with |V1|£|V2|, G has a perfect matching 
iff for each set S of k nodes in V1 there are at 
least k nodes in V2 adjacent to some node in S.
In symbols, " SÍV1, |S| £ |adj(S)|.
PROOF. 
§ Necessary condition: If G has a perfect 

matching M and S is any subset of V1, each 
node in S is matched through M with a 
different node in adj(S). 

    Hence |S| £ |adj(S)|.
40



(proof of the Hall theorem - contd) G bipartite with |V1|£|V2|, G has a 
perfect matching iff " SÍV1, |S| £ |adj(S)|. 

§ sufficient condition: We have to prove that if 
the Hall condition is true then there is a 
perfect matching. By contradiction, assume that 
M is a maximum matching but |M|<|V1|.

   By hypothesis,|M|<|V1|Þ$ u0ÎV1 s.t. u0ÏM. 
   Let S={u0}; it holds 1=|S|£|adj(S)| from the Hall 
condition, so there exists a v1ÎV2 adjacent to u0. 

41

a. v1ÏM 
b. v1ÎM

V1 V2 

u0 v1 

v1 

42

(proof of the Hall theorem - contd) G bipartite with |V1|£|V2|, G has a 
perfect matching iff " SÍV1, |S| £ |adj(S)|. 

a. If v1ÏM OK
b. Consider the node matched with v1 through M, 

call it u1.

V1 V2 

u0 

v1 u1S={u0,u1} and 2= |S|£|adj(S)|.
There exists another node v2, 
Different from v1, and adjacent 
either to u0 or to u1.
a. v2ÏM 
b. v2ÎM

v2 

v2 
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(proof of the Hall theorem - contd) G bipartite with |V1|£|V2|, G has a 
perfect matching iff " SÍV1, |S| £ |adj(S)|. 

Continue in this way. As G is finite, we will 
eventually reach a node vr that is free w.r.t. M. 
Each vi is adjacent to at least one among 
u0,u1,…,ui-1. 

Analogously to the case r=2: 

u0 v1 u1 v2 u2 ur-1vr

u0 v1 u1 v2 u2 ur-1vr

n

§ The P. Hall Theorem does not provide an 
algorithmic method to construct a perfect 
matching (unless all subsets in V1 are 
enumerated – exponential time issue).

§ The perfect matching problem in a bipartite 
graph is equivalent to the maximum flow 
problem in a network:
Given G=(V=V1È V2, E), construct flow network 
G’=(V’, E’) as follows:
…

44



V’: V U {s} È {t}
E’: From the source s to all nodes in V1 :
                {(s,u)| u ∈ V1} È
   All edges in E: 
                {(u,v)| u ∈ V1, v ∈ V2, e (u,v)∈ E} È
   From all nodes in V2 to the tale t: 
                {(v,t)| v ∈ V2}

Capacity: c(u,v) = 1, for all (u,v) ∈ E' 45

Fact: Let M be a matching in a bipartite graph G. 
There exists a flow f in the network G’ s.t. |M|=|f|. 

Vice-versa, if f is a flow of G’, there exists a 
matching M in G s.t. |M|=|f|.

46



§ Th.: (integrality) If the capacity c assumes 
only integer values, the max flow f is such 
that |f| is integer. Moreover, for all nodes u 
and v, f(u,v) is integer.

§Corol.: The cardinality of a max matching M 
in a bipartite graph G is equal to the value 
of the max flow f in the associated network 
G’.

47

§ The algorithm by Ford-Fulkerson for the max 
flow in a network runs in O(m|f|) time.

§ In our special setting, the max flow of G’ has 
cardinality upper bounded by min{|V1|, |V2|}. 

§Hence, the complexity of an algorithm for the 
max matching exploiting the max flow runs 
in O(n m) time.

48



§Def. Given a matching M in a graph G, an 
alternating path w.r.t. M is the path 
alternating edges of M and edges in E\M.

49

§Def. Given a matching M in a graph G, an 
augmenting path w.r.t. M is an alternating path 
starting and finishing in two free nodes w.r.t. M.

50

Swapping the role 
of the edges in M  
and in E\M,M has 
larger cardinality.



§ Th. (Augmenting path) [Berge 1975] M is a max matching 
iff there are no augmenting paths w.r.t. M.

§ Proof.

§ (è) If M max, then there are no augmenting paths.

Negating, if there are some augmenting paths, then
M is not max. This is obvious because we can swap
the role of the edges in the augmenting path and
increase the cardinality of M.

§ …
51

(Proof of Th. M is a max matching iff there are no augmenting 
paths w.r.t. M – contd)

§ (ç) If there are no augmenting paths, then M 
is max.

 By contradiction, M is not max. Let M’ s.t.
|M’|>|M|.

Consider graph H induced by M and M’. Edges
that are both in M and in M’ are put twice. So,
H is a multigraph.

§… 52



(Proof of Th. M is a max matching iff there are no augmenting paths 
w.r.t. M – contd)

§ H has the following property:
§ For each v in H, deg(v)≤2. (indeed, each node has
at most one edge from M and one edge from M’)

§ So, each connected component of H is either a
cycle or a path.
§ Cycles necessarily have even length; otherwise, a
node would be incident to two edges of the same
matching (M or M’); this is absurd by the
definition of matching.

53

(Proof of Th. M is a max matching iff there are no augmenting paths 
w.r.t. M – contd)

§More in detail, the connected components of 
H can be classified into 6 kinds:

1. An isolated node

2. a 2-cycle

3. a 2k-cycle, k>1

…
54



(Proof of Th. M is a max matching iff there are no augmenting paths 
w.r.t. M – contd)

…
4. a 2k-path

5. a (2k+1)-path whose extremes are incident 
to M

6. a (2k+1)-path whose extremes are incident 
to M’

55

(Proof of Th. M is a max matching iff there are no augmenting paths 
w.r.t. M – contd)

§ Reminder: |M|<|M’| by hp.

§ Among all the components just defined, only 
5 and 6 have a different number of edges 
from M and from M’; only 6 has more edges 
from M’ than from M.

§ So, there is at least one component of kind 6

§ This comp. is an augmenting path w.r.t. M: 
contradiction.          n

56



§We exploit the Augmenting Path Th. to 
design an iterative algorithm.

§During each iteration, we look for a new 
augmenting path using a modified Breadth 
First Search starting from the free nodes.

§ In this way, nodes are structured in layers.

57

Idea of the algorithm: 

§ Let M be an arbitrary matching (possibly empty)
§ Find an augmenting path P

§While there is an augmenting path:
§ Swap in P the role of the edges in and out of 
the matching

§ Find an augmenting path P

Complexity: it dipends on the complexity of 
finding an augmenting path.

58



Question: how to decide the existence of an 
augmenting path and how to find one, if one 
exists?
If G=(V1,V2,E), direct edges in G according to M as 
follows: 
§An edge goes from V1 to V2 if it does not 
belong to the matching M 

§ an edge goes from V2 to V1 if it does. 
Call this directed graph D. 
Claim. There exists an augmenting path in G w.r.t. 
M iff there exists a directed path in D between a 
free node in V1 and a free node in V2.

59

§ Idea: 
§ For each free node in V1 
§ Run a DFS on D:

§As soon as a free node in V2 has been 
encountered, a new augmenting path has 
been found.

Complexity: O(n+m)

Complexity of the algorithm finding the max 
matching: n/2[O(n+m)+O(n)]=O(nm)

60



§ For each free node
§ Run a modified DFS:

§ Keep trace of the current layer
§ If the layer is even, use an edge in M
§ If the layer is odd, use an edge in  
E\M

§ As soon as a free node has been 
encountered, a new augmenting path 
has been found

61

(a parenthesis)
What if G is 
not bipartite?

1

2
3

6 5

4

1

2
3

6 5

4

But also:

§ If the search goes through the cycle along the 
“wrong” direction, the augmenting path is not 
detected.

It is necessary to have graphs without odd cycles 
= bipartite graphs. 

We will handle the general case later… 62

1

2
3

6 5

4

Problem: the presence of odd cycles:

§ In an odd cycle, there is always a free 
node adjacent to two consecutive 
edges not in M belonging to the cycle



§ The Hopcroft–Karp algorithm (1973) finds a max 
matching in a bipartite graph in O(m√n) time 
(better than the previous O(mn) ).

§ The idea is similar to the previous one, and 
consists in augmenting the cardinality of the 
current matching exploiting augmenting paths.

§ During each iteration, this algorithm searches not 
one but a maximal set of augmenting paths.

§ In this way, only O(√n) iterations are enough.

63

Hopcroft–Karp Algorithm

During the k-th step:

§ Run a modified breadth first search starting from ALL the 
free nodes in V1. The BFS ends when some free nodes in V2 
are reached at layer 2k-1.

§ All the detected free nodes in V2 at layer 2k-1 are put in a 
set F.       Obs. v is put in F iff it is the endpoint of an aug. path

§ Find a maximal set of length 2k-1 aug. paths node disjoint 
using a depth first search from the nodes in F back to the 
starting nodes in V1 (climbing on the BFS tree).

§ Each aug. path is used to augment the cardinality of M.

§ The algorithm ends when there are no more aug. paths.
64



Example: Hopcroft–Karp algorithm

65

1    2    3    4    5

a    b c d e

k=1 2

a     e

4

b c e

1    2    3    4    5

a    b c d e

k=2

1    2    3    4    5

a    b c d e

2

a   e
1

b d

5

Analysis of the Hopcroft–Karp algorithm (sketch)

Each step consists in a BFS and a DFS. Hence it runs 
in Θ(n+m)= Θ(m) time.

How many steps?

§ The first √n steps take Θ(m √n) time.

§ Note. At each step, the length of the found aug. 
paths is larger and larger; indeed, during step k, 
ALL paths of length 2k-1 are found and, after that, 
only longer aug. paths can be in the graph.

§ So, after the first √n steps, the shortest aug. path 
is at least 2√n+1 long.

§ …  66



Analysis of the Hopcroft–Karp algorithm (sketch) – contd

§ The symmetric difference between a maximum 
matching and the partial matching M found 
after the first √n steps is a set of vertex-
disjoint alternating cycles, alternating paths and 
augmenting paths. 

§Consider the augmenting paths. Each of them 
must be at least √n long, so there are at most 
√n such paths. Moreover, the maximum matching 
is larger than M by at most √n edges. 

§…
67

Analysis of the Hopcroft–Karp algorithm (sketch) – contd

§…

§ Each step of the algorithm augments the 
dimension of M by one, so at most √n furhter 
steps are enough.

§ The whole algorithm executes at most 2√n steps, 
each running in Θ (m) time, hence the time 
complexity is Θ(m √n) in the worst case.  

68



§ In many cases, this complexity can be 
improved.

§ For example, in the case of random sparse 
bipartite graphs, it has been proved [Bast et 
al.’06] that the augmenting paths have an 
average logarithmic length.

§As a consequence, the Hopcroft–Karp 
algorithm runs only O(log n) steps so it can 
be executed in O(m log n) time.  

69
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§ Each edge has a cost

§ The definition of weighted matching is the
same as the simple matching (weight does
not affect the definition)

§We look for a minimum weight perfect
matching

§Note. This is equivalent to looking for a
maximum weight perfect matching, where
the weights are all negative.

71
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46 6
3 Weight of this 

matching:
6+3+1=10

46 6
3

Max weight matching:
6+4+1+1+1=13

(the unweighted edges have weight=1)
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Def. An augmenting path (different w.r.t. the
previous one!) is any alternating path such that the
weight of the edges out of the matching is greater
than the weight of the edges in the matching.
Weight of the augmenting path= weight of the
edges out of M – weight of the edges in M

46 6
3

Note. In this case, augmenting paths do not need 
to end at a free node.

Algorithm:

§ Start with an empty matching

§ Repeat
§ Find an aug. path P with max weight

§ If this weight is positive, swap the role of 
the edges

§ Else return the found matching (that is, 
the one of max weight).

§Complexity: at least O(n m). 74



§ It is possible to model the minimum weight perfect 
matching problem as an ILP problem (Hungarian method –
in honour of Konig and Egevary): 
§ Given a matching M, let x be its incidence 
matrix, where xij = 1 if (i, j) is in M 
  and xij = 0 otherwise.

§ The problem can be written as follows:

 minimize          subject to:    

§ Complexity: O(n3).

75

€ 

cij xij
i, j
∑

NOTE: With this 
definition, the 
bipartite graph 

problem is 
converted into 

a matrix 
problem: the 

rows represent 
the nodes in V1, 
and the columns 

represent the 
nodes in V2 

!
!
""! = 1, & ∈ (#

!
"
""! = 1, ) ∈ ($	

""! ≥ 0, & ∈ (#, )	 ∈ 	($
∀	& ∈ (#, ∀	)	 ∈ 	($, ""!	integer
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§We have already noted that the critical 
point of general graphs are odd cycles 
containing a maximal number of edges in 
the matching

77

¢ Such cycles are called blossoms

Lemma (cycle contraction). Let M be a 
matching of G, and let B be a blossom. Let B be 
node disjoint from the rest of M. Let G’ be the 
graph obtained by G contracting B in a single 
node. Then M’ of G’ induced by M is maximum 
in G’ iff M is maximum in G.

Proof. M max in G ⟹ M’ max in G’:

By contradiction. Assume M’ not max. Hence, 
there exists an aug. path P in G’ w.r.t. M’. 

Let b be the node representing B.
…

78



Proof of the Cycle contraction lemma – contd.

Two cases can hold:

1. P does not cross b ⟹ P augmenting for M, 
too. Contradiction.

Observe that b is free as it represents the 
node v in B adjacent to two edges out of M. 
In other words, v is free if we restrict to B.

2. P crosses b ⟹ b must be an end-point of P.

    Define P’=P ∪ P” where P” is inside B.

   P’ is augmenting for G. Contradiction.
…

79

Proof of the Cycle contraction lemma – contd.

M’ max in G’ ⟹ M max in G:
 By contradiction, M is not max. Let P be an 

aug. path for M.
 Two cases hold:
1. P does not cross b ⟹ P is aug. for G’. A 

contradiction.
2. P crosses b. Since B contains only one free 

node, at least an end-point of P lies outside 
B. Let it be w.

 Let P’ be the sub-path of P joining w with b. 
 P’ is an aug. path for G’. A contradiction. n 80



In order to find an aug. path in general 
graphs, it is “enough” to modify the algorithm 
on bipartite graphs in order to include blossom 
search:

§ For each found blossom B: 
 B is shrunk in a node, and a new (reduced)
     graph is generated.

§ Each aug. path found in this new graph can 
be easily “translated” back into an aug. path 
in G.

Thanks to the previous lemma, if M is max in 
the new graph, it is max even in G. 81

This is the Edmonds algorithm [‘65].

The time complexity depends on how blossoms 
are handled. Varying with the used data 
structures, it can be either O(n3) or O(m n2). 

The best-known time complexity is O(m√n) 

        [Micali & Vazirani ‘80] 
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Example:

83

Example – contd

84
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Edmonds Algorithm [‘65]
¢ M matching for G
¢ L subset of the free nodes (if L empty => M 

max)

¢ F forest s.t. each node of L is the root of a 
tree in F

¢ Expand F by adding
¢ Nodes that are at odd distance from a node of 

L have degree 2 (1 in M and 1 in E\M): we call 
them internal nodes

¢ The other nodes: external nodes

¢ …

86

Edmonds algorithm – contd

¢ Consider the neighbors of the external 
nodes.

¢ 4 possibilities hold:
1. There esists x external and incident to a 

node y not in F:
 add to F edges (x,y) and (y,z), and (y,z) is 

in M.

…
x
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Edmonds algorithm – contd

2. Two external nodes lying in two 
different components of F are adjacent:

 augmenting path

… …

88

Edmonds algorithm – contd

3. Two external nodes x, y in the same 
component in F are adjacent:

 let C be the found cycle. It is possible 
to move the edges in M around C so 
that the cycle contraction lemma can be 
used => reduced graph G’

… x

y
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Edmonds algorithm – contd

4. All the external nodes are adjacent to 
internal nodes:

 M is maximum. 

…

…
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Lemma. At each step of the Edmonds algorithm, either 
the dimension of F increases, or the dimension of G 
decreases, or an aug. path is found, or M is maximum.

Complexity. Number of iterations ≤
 num. of times F is increased  (at most n)+

 num. of times a blossom is shrinked (at most n)+
 num. of found aug. paths (at most n/2).
 The time complexity depends on how blossoms are 

handled. Varying with the used data structures, it can 
be either O(n3) or O(mn2).

Best known time complexity: O(m√n) [Micali & Vazirani ‘80] 



ANOTHER 
APPLICATION
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Reminder: 

§ Interconnection topologies are 
constituted by layers of basic modules 
that are 2x2 cross-bar switches

§Any output can be reached by any input by 
properly setting some switches

§A single routing can be easily performed 
if the network is self-routing (e.g., 
Butterfly, Baseline, etc.)

92



§ The log N-stage networks are not 
rearrangeable, i.e. not all routes can be 
done simultaneously

§ Two packets may want to use the same 
link at the same time

§ Solution: buffering (though buffers 
increase delay)
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The multistage topologies are good to use, because 
they are:

§ modular

§ scalar

Nevertheless, the buffers at each node provoke:

§ delays for going through the stages

§ decreased throughput due to internal blocking

Solution: (input) buffers that are external to the 
topology

94



Eytan Modiano
Slide 19

Input buffer architecture

• Packets buffered at input rather than output
– Switch fabric does not need to be as fast

• During each slot, the scheduler established the crossbar
connections to transfer packets from the input to the outputs

– Maximum of one packet from each input
– Maximum of one packet to each output

• Head of line (HOL) blocking – when the packet at the head of two
or more input queues is destined to the same output, only one can
be transferred and the other is blocked

Crossbar switch

X = connect

Scheduler
X

X

X

X

1

2

3

4

1 2 3 4

§Head of line (HOL) buffer: only the first 
packet can leave the buffer.

§ Buffers are connected through a crossbar 
network to the inputs of the topology

§During each slot, the scheduler establishes the 
crossbar connections to transfer packets from 
the buffers to the inputs
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§When the packets at the head of two or 
more input queues are destined to the 
same input node, only one can be 
transferred, and the other is blocked

§ This behavior limits throughput because 
some inputs (and consequently outputs) 
are kept idle during a slot even when they 
have other packets to send

§…
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§ If the inputs are allowed to transfer packets 
that are not at the head of their buffers, 
throughput can be improved

§ Example:

§How does the scheduler decide which input to 
transfer to the network?
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Overcoming HOL blocking

• If inputs are allowed to transfer packets that are not at the head of
their queues, throughput can be substantially improved (not
FCFS)

Example:

• How does the scheduler decide which input to transfer to which
output?

21

23

34
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input 1

input 2

input 3

input 4
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Backlog matrix

• Each entery in the backlog matrix represent the number of
packets in input i’s queue that are destined to output j

• During each slot the scheduler can transfer at most one packet
from each input to each output
– The scheduler must choose one packet (at most) from each row, and

column of the backlog matrix
– This can be done by solving a bi-partite graph matching algorithm
– The bi-partite graph consists of N nodes representing the inputs and

N nodes representing the outputs

1

2

3

input

output

1 2 3

3 3

2 0

2

0

0

0 0

Backlog matrix:

§ rows: input buffers

§ columns: outputs

§ each entry (i,j) represents the number of 
packets in buffer i destined to output j
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§During each slot, the scheduler can 
transfer at most one packet from each 
buffer to each output

§ The scheduler must choose at most one 
packet from each row and from each 
column of the backlog matrix

§ This can be done by solving a bipartite 
matching algorithm…
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Bi-partite graph representation

• There is an edge in the graph from an input to an output if there is a
packet in the backlog matrix to be transferred from that input to that
output
– For previous backlog matrix, the bi-partite graph is:

• Definition:  A matching is a set of edges, such that no two edges share
a node
– Finding a matching in the bi-partite graph  is equivalent to finding a set of

packets such that no two packets share a row or column in the backlog
matrix

• Definition:  A maximum matching is a matching with the maximum
possible number of edges
– Finding a maximum matching is equivalent to finding the largest set of

packets that can be transferred simultaneously

1

2

3

1

2

3
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Backlog matrix

• Each entery in the backlog matrix represent the number of
packets in input i’s queue that are destined to output j

• During each slot the scheduler can transfer at most one packet
from each input to each output
– The scheduler must choose one packet (at most) from each row, and

column of the backlog matrix
– This can be done by solving a bi-partite graph matching algorithm
– The bi-partite graph consists of N nodes representing the inputs and

N nodes representing the outputs

1

2

3

input

output

1 2 3

3 3

2 0

2

0

0

0 0

§ The bipartite graph G=(V ∪ W, E) is built as follows:
§ V: N nodes representing the buffers
§ W: N nodes representing the outputs
§ E: there is an edge from a buffer i to an output j iff
there is a packet in the backlog matrix to be 
transferred from i to j.

§ Example:

§ Finding a maximum matching is equivalent to finding 
the largest set of packets that can be transferred 
simultaneously 100



§ Finding a maximum matching during each time 
slot does not eliminate the effects of HOL 
blocking

§ It is, indeed, necessary to look beyond a single 
slot when making scheduling decisions

§ Solution: edge (i,j) is assigned a weight equal to 
the value of element (i,j) of the backlog matrix

§ Theorem: A scheduler that chooses, during each 
time slot, the maximum weighted matching 
achieves full utilization.

§ Proof and other details: see [McKeon et al. 1999]
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