WIRELESS SENSOR NETWORKS (1)

SECOND PART: Wiriliss Networis 2.B. SENSOR NETTWORRS

- Wireless sensor networks are large-scale wireless multihop networks where nodes have limited resources such as energy, bandwidth, storage, and processing power.
- They are dedicated to provide low-level surveillance and data gathering services in an area of interest (Aol) for various applications.
- So, they must fully cover the Aol without internal sensing holes.
- It is critical to position sensors inside the Aol, due to operational factors such as human inaccessibility to the Aol and tight deployment budget.

Sensor mobility

MOBILE SENSORS (1)

Devices of tiny dimension and low cost able to produce measurable response to a change in a physical condition

They are equipped with:

- detecting/monitoring Unit (sensing)
- communication Unit
- computing Unit
- small battery

- motion system

Mobile sensors collaborate to form an ad-hoc network and are especially useful in critical environments (e.g., in presence of dispersion of pollutants, gas plumes, fires, ...)

MOBILE SENSORS (2)

It is not restrictive to assume each sensor able to monitor a disk centered at its position and having radius $r_{s}=$ sensing range and to communicate with the sensors that are inside a disk centered at its position and having radius $r_{c}=$ communication range.
The sensing and the communication units are independent components; therefore, the communication and the sensing ranges are not directly associated from a hardware point of view. However, they are integrated because connectivity and coverage must both be guaranteed: it can be proved that the protocols working in the assumption that r_{c} is at least twice r_{s} only need to guarantee coverage and will satisfy the connectivity constraint as well.

COVERHGE ISSUES (2)

Depending on how an area should be covered, coverage problems are broadly categorized in three types:

1. point coverage: a set of discrete points is continuously monitored Example: in building monitoring, every access is controlled
2. area coverage: all points within a bounded region are continuously monitored
Example: in forest monitoring, every location of the forest must be covered by at least one sensor node in order to immediately detect any unusual activities like forest fire, activities of poachers, etc.
3. barrier coverage: a specified path or the boundary of a region is continuously monitored by sensor nodes.
Example: in forest monitoring, covering the boundary allows controlling and elimination of the poaching activities, and illegal entry through the boundary

A continuous monitoring with static sensors is required for the aforementioned types of coverage problems.

COVERAGE ISSUES (1)

- Coverage is one of the most important issues for environmental monitoring in wireless sensor networks.
- In general, coverage is defined as the measurement of the quality of surveillance of sensing function.
- Information from a target field is collected by deploying sensor nodes in different locations of the field.
- After deployment, sensor nodes form a network through which the collected data are propagated to a sink.
- The quality of the collected information depends on how well the Aol is covered by the set of sensor nodes.

COVERAGE ISSUES (3)

- There are typical applications where only periodic patrol inspections are sufficient for a certain set of points of interest instead of continuous monitoring like in traditional coverage: sweep coverage.
- Sweep coverage concept in WSNs is introduced in the literature in [Cheng et al.'08], where periodic patrol inspections are required for a given set of points of interest (Pols) by a set of mobile sensors.
- Def. A point of interest is said to be t-sweep covered if and only if at least one mobile sensor visits the point within every t time periods, where t is called sweep period of the point. Objective of the sweep coverage problem is to find minimum number of mobile sensors to guarantee sweep coverage for the set of Pols.

COVERHGE ISSUES (4)

- Gorain and Mondal [${ }^{14]}$ show that, instead of using only mobile sensors, use of both static and mobile sensors can be more effective in terms of total number of sensor used.
- It is possible to introduce [Gorain \& Mandal ' 15] an energy efficient sweep coverage problem whose objective is to guarantee sweep coverage by a combined set of mobile and static sensors such that total energy consumption is minimized.
some possible students' lessons in this context
some master theses are available on sweep coverage

LOCALIZATION TECHNIOUES

- The location information of the sensors is essential as deployment protocols often depend on the position of sensors.
- for outdoor applications, GPS is the most popular solution.
- for indoor centralized applications, a grid-based approach is often used when global position information is needed for deployment: grids are used as landmarks where sensors are placed; sometimes, the deployed sensors are used themselves as landmarks.
- for the distributed approach, techniques based on the received signal strength, time difference of arrival of two different signals, angle arrival, etc. can be also used.

THE DEPLOYMENT PROBLEM (1)

Deployment problem:

1. Given an Aol to cover, the aim is to entireley cover the Aol minimizing the number of used sensors.
2. Given a set of mobile sensors, the aim is to maximize the covered area.

Coverage: either single or multiple, according to the specific application requirements

THE DEPLOYMENT PROBLEM (2)

Coordination algorithm

```
Initial Config.
Can be:
- random
- from a safe location
Desired Config.
Can be:
- a regular tassellation
- any configuration, provided
that the Aol is covered
```

- At the same time, some parameters need to be optimized:

THE DEPLOYMENT PROBLEM (3)

- Traversed Distance: it is the dominant cost
- Number of starting/stopping: start/stop moves are more expensive than a continuous movement
- Communication cost: it depends on the number of exchanged messages and on the packet dimension at each transmission
- Computation cost: Usually negligible, unless processors are extremely sophisticated

THE DEPLOYNENT PROBLEM (4)

Random deployment is the easiest way to place sensors. When the target region is subject to severe change in condition or no a priori knowledge is available, it achieves a relatively satisfactory coverage. It is also practical in military application, where WSNs are initially established by dropping or throwing.

Nevertheless, random deployment may not provide a uniform distribution, which is desirable for a longer system lifetime of the Aol

So the random deployment may serve as an initial phase of another deployment strategy.

THE DEPLOYMENT PROBLEM (5)

It is well known that an optimal coverage using equally sized circles is the one positioning the centers on the vertices of a triangular grid opportunely sized.

THE DEPLOYMENT PROBLEM (6)

This configuration followed in the carrier-based method Moreover:

- Because physical movement consumes a large amount of energy, the algorithm is expected to yield a minimal number of robot moves.
- To save bandwidth and energy, communication is reduced. Thus localized solutions are seeked, relying only on some available local knowledge, without resorting to global network information.
- The algorithm should guarantee full coverage, terminate, and remain efficient in robot movement
possible students' lesson

THE CENTRALIZED DEPLOYMENT OF MOBILE SENSORS

I.E.

THE MINIMUM WEIGHT PERFECT MATCHING ON BIPARTITE GRAPHS
Prof. Tiziana Calamoneri

THE DEPLOYYENT PROBLEM (7)

In the self-deployment method:

- either centralized (or global)
- or distributed approach (or local)

The global approach relies on global information which is usually not scalable.

Local algorithms are based on iterative nearest neighbor exchange.
We will discuss both the approaches.

THE CENTRALIZED DEPLOYMENT PROBLEM (1)

If no information on the Aol is given, incremental deployment:

- it is a one-at-a-time aproach: each node makes use of information gathered by the previously deployed nodes to determine its ideal deployment location, which is calculated at a powerful base station.
- Each deployed node is responsible for communicating its local information back to the base station for being used in the next iteration. Hence each node has to maintain bidirectional communication with the sink.
- No localization technique is needed: the location of the next node can be found by using the nodes themselves as landmarks.

THE CENTRALIZED DEPLOYMENT PROBLEM (2)

Merits and demerits of incremental deployment:

PROs:

- certainty of optimal location in each step
- since the sensors are fixed once they are deployed, little energy is consumed

CONs:

- the deployment time is very long, which can significantly increase the network initialization time
- a lot of work in the computation of a new location: computationally expensive

THE CENTRALIZED DEPLOYMENT PROBLEM (3)

If information on the Aol is known:
The whole coverage is guaranteed assigning to each sensor a position on a grid covering the Aol

- The total energy consumption should be minimized
- We model this problem with the classical minimum weight perfect matching in bipartite graphs.

THE GRAPH MODEL (1)

Formal definition of the problem:

- Set of n mobile sensors $S=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$
- Set of p locations on the Aol $L=\left\{L_{1}, L_{2}, \ldots, L_{p}\right\}$
- $n \geq p$ (in order to guarantee the complete coverage)
- For each S_{i}, determine the location L_{j} that S_{i} will have to reach, so to minimize the total consumed energy.

THE GRAPH MODEL (2)

- Define a weighted complete bipartite graph $G=(S \cup L, E$, w) as follows:
- One node for each sensor S_{i}
- One node for each location L_{j}
- An edge between S_{i} and L_{j} for each $i=1 \ldots n$ and $j=1 \ldots p$
- For each edge $e_{i j}, w\left(e_{i j}\right)$ is proportional to the energy consumed by S_{i} to reach location L_{j}
- The aim is to choose a matching between sensors and locations so that the total consumed energy is minimized.

MATCHING (1)

Given $G=(V, E)$:

- Def. A matching is a set of edges $M \subseteq E$ such that every node is adjacent to at most one edge in M.
- Maximal matching

There exists no $e \notin M$ such that $M \cup\{e\}$ is a matching

- Maximum matching

Matching M such that $|M|$ is maximum

- Perfect matching

Assuming n even, $|M|=n / 2$: each node is adjacent to exactly one edge in M.
If G is bipartite and $V=V_{1} \cup V_{2},|M|=\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}$.

THE PERFECT MATCHING ON BIPARTITE GRAPHS

26

MATCHING (2)

Example:

matching
matching
Maximum matching

MATCHING (3)

- Nomenclature

MATCHING (5)

Original problem: wedding problem

- the nodes of a set are men
- the nodes of the other set are wemen
- An edge connects a man and a woman who like each other

- Maximum matching aims at maximizing the number of couples

MATCHING (4)

- Note. The maximum matching is not unique

(30)

MATCHING PROBLEMS

- Given a graph G, to find a:
- Maximal matching is easy (greedy)
- Maximum matching is
- polynomial; not trivial.
- easier in the important case of bipartite graphs
- Perfect matching
- it is a special case of the maximum matching
- for it, some theorems can help

MAXIMUM MATCHING IN BIPARTITE GRAPHS (1)

TH. (P. Hall's marriage theorem) Given a bipartite graph G with $\quad\left|V_{1}\right| \unlhd\left|V_{2}\right|, G$ has a perfect matching iff for each set S of k nodes in V_{1} there are at least k nodes in V_{2} adjacent to some node in S.

In symbols, $\forall S \subseteq V_{1},|S| \leq|\operatorname{adj}(S)|$.
PROOF.

- Necessary condition: If G has a perfect matching M and S is any subset of V_{1}, each node in S is matched through M with a different node in $\operatorname{adj}(S)$.
Hence $|S| \leq|\operatorname{adj}(S)|$.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (3)

(proof of the Hall theorem - cntd) G bipartite with $\left|V_{1}\right| \leq\left|V_{2}\right|, G$ has a perfect matching iff $\forall S \subseteq V_{1},|S| \leq|\operatorname{adj}(S)|$.
a. If $v_{1} \notin M$ OK
b. Consider the node matched with v_{1} through M, call it u_{1}.
$S=\left\{u_{0}, u_{1}\right\}$ and $2=|S| \leq|\operatorname{adj}(S)|$.
There exists another node v_{2},
Different from v_{1}, and adjacent either to u_{0} or to u_{1}.
a. $v_{2} \notin M$
b. $v_{2} \in M$

MAXIMUM MATCHING IN BIPARTITE GRAPHS (2)

(proof of the Hall theorem - cntd) G bipartite with $\left|V_{1}\right| \leq\left|V_{2}\right|, G$ has a perfect matching iff $\forall S \subseteq V_{1},|S| \leq|\operatorname{adj}(S)|$.

- sufficient condition: We have to prove that if the Hall condition is true then there is a perfect matching. By contradiction, assume that M is a maximum matching but $|M|<\left|V_{1}\right|$.
- By hypothesis, $|M|<\left|V_{1}\right| \Rightarrow \exists u_{0} \in V_{1}$ s.t. $u_{0} \notin M$.

Let $S=\left\{u_{0}\right\}$; it holds $1=|S| \leq|\operatorname{adj}(S)|$ from the Hall cond., so there exists a $v_{1} \in V_{2}$ adjacent to u_{0}.
a. $v_{1} \notin M$
b. $v_{1} \in M$

MAXIMUM MATCHING IN BIPARTITE GRAPHS (4)

(proof of the Hall theorem - cntd) G bipartite with $\left|V_{1}\right| \leq\left|V_{2}\right|, G$ has a perfect matching iff $\forall S \subseteq V_{1},|S| \leq|\operatorname{adj}(S)|$.

Continue in this way. As G is finite, we will eventually reach a node v_{r} that is free w.r.t. M. Each v_{i} is adjacent to at least one among $u_{0}, u_{1}, \ldots, u_{i-1}$.
Analogously to the case $r=2$:

MAXIMUM MATCHING IN BIPARTITE CRAPHS (5)

COR. If G is bipartite, k-regular, with $\left|V_{1}\right|=\left|V_{2}\right|$, then G has k disjoint perfect matchings.

Proof. Let S be a subset of V_{1}.
$\operatorname{adj}(S)$ has at least $|S|$ nodes (if each node in $\operatorname{adj}(S)$ has degree k in the subgraph induced by $S \cup \operatorname{adj}(S)$) and at most $k|S|$ nodes (if each node in $\operatorname{adj}(S)$ has degree 1 in the subgraph induced by $S \cup \operatorname{adj}(S)$).
So, the Hall condition is true \Rightarrow there is a perfect matching.
Remove it and get a new graph that is bipartite, ($k-1$)-regular and with $\left|V_{1}\right|=\left|V_{2}\right|$.
Repeat the reasoning.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (6)

- The P. Hall Theorem does not provide an algorithmic method to construct a perfect matching (unless all subsets in V_{1} are enumerated - exponential time issue).
- The perfect matching problem in a bipartite graph is equivalent to the maximum flow problem in a network:
Given $G=\left(V=V_{1} \cup V_{2,}, E\right)$, construct flow network $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows:
...

MAXIMUM MATCHING IN BIPARTITE GRAPHS (7)

- $V^{\prime}=V \cup\{s\} \cup\{t\}$
- E':
- From the source s to all nodes in $V_{1}:\left\{(s, u) \mid u \in V_{1}\right\} \cup$
- All edges in $E:\left\{(u, v) \mid u \in V_{1}, v \in V_{2}\right.$, e $\left.(u, v) \in E\right\} \cup$
- From all nodes in V_{2} to the tale $t:\left\{(v, t) \mid v \in V_{2}\right\}$
- Capacity: $c(u, v)=1$, for all $(u, v) \in E^{\prime}$

MAXIMUM MATCHING IN BIPARTTTE GRAPHS (8)

- Fact: Let M be a matching in a bipartite graph G. There exists a flow f in the network G^{\prime} s.t. $|M|=|f|$.
Vice-versa, if f is a flow of G^{\prime}, there exists a matching M in G s.t. $|M|=|f|$.

- Th.: (integrality) If the capacity c assumes only integer values, the max flow f is such that $|f|$ is integer. Moreover, for all nodes u and $v, f(u, v)$ is integer.
- Corol.: The cardinality of a max matching M in a bipartite graph G is equal to the value of the max flow f in the associated network G'.
- The algorithm by Ford-Fulkerson for the max flow in a network runs in $O(m|f|)$ time.
- In our special setting, the max flow of G^{\prime} has cardinality upper bounded by $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}$. Hence, the complexity of an algorithm for the max matching exploiting the max flow runs in $O(n m)$ time.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (11)

- Def. Given a matching M in a graph G, an alternating path w.r.t. M is the path alternating edges of M and edges in $E \backslash M$.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (13)

- Th. (Augmenting path) [Berge 1975] M is a max matching iff there are no augmenting paths w.r.t. M.
- Proof.
- (\rightarrow) If M max, then there are no augmenting paths.

Negating, if there are some augmenting paths, then M is not max. This is obvious because we can swap the role of the edges in the augmenting path and increase the cardinality of M.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (15)

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. M - cnt.d)

- H has the following property:
- For each v in H, $\operatorname{deg}(v) \leq 2$. (indeed each node has at most one edge from M and one edge from M^{\prime})
- So, each connected component of H is either a cycle or a path.
- Cycles necessarily have even length, otherwise a node would be incident to two edges of the same matching (M or M^{\prime}); this is absurd by the definition of matching.

MAXIMUM MATCHING IN BIPARTTTE GRAPHS (14)

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. M - cnt.d)

- (七) There are no augmenting paths, then M is max.

By contradiction M is not max. Let M^{\prime} s.t. $\left|M^{\prime}\right|>|M|$.
Consider graph H induced by M and M '. Edges that are both in M and in M ' are put twice. So H is a multigraph.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (16)

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. $M-$ cntd)

- More in detail, the connected components of H can be classified into 6 kinds:

1. An isolated node
2. a 2-cycle
3. a $2 k$-cycle, $\mathrm{k}>1$

MAXIMUM MATCHING IN BIPARTITE GRAPHS (17)

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. M - cntd)
4. a $2 k$-path

5. a (2k+1)-path whose extremes are incident to M
6. a $(2 k+1)$-path whose extremes are incident to M^{\prime}

MAXIMUM MATCHING IN BIPARTITE GRAPHS (19)

- We exploit the Augmenting Path Th. to design an iterative algorithm.
- During each iteration, we look for a new augmenting path using a modified Breadth First Search starting from the free nodes.
- In this way, nodes are structured in layers.
- This comp. is an augmenting path w.r.t. M : contradiction.

MAXIMUM MATCHING IN BIPARTTTE GRAPHS (18)

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. M - cntd)

- Reminder: $|M|<\left|M^{\prime}\right|$ by hp
- Among all the components just defined, only 5 and 6 have a different number of edges from M and from M^{\prime}; only 6 has more edges from M ' than from M.
- So, there is at least one component of kind 6

MAXIMUM MATCHING IN BIPARTTTE GRAPHS (20)

Idea of the algorithm:

- Let M be an arbitrary matching (possibly empty)
- Find an augmenting path P
- While there is an augmenting path:
- Swap in P the role of the edges in and out of the matching
- Find an augmenting path P

Complexity: it dipends on the complexity of finding an augmenting path.

MIXIMUM MATCHING IN BIPARTITE GRAPHS (21)

Question: how to decide the existence of an augmenting path and how to find one, if one exists?
If $G=\left(V_{1}, V_{2}, E\right)$, direct edges in G according to M as follows:

- An edge goes from V_{1} to V_{2} if it does not belong to the matching M
- an edge goes from V_{2} to V_{1} if it does.

Call this directed graph D.
Claim. There exists an augmenting path in G with respect to M iff there exists a directed path in D between a free node in V_{1} and a free node in V_{2}.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (23)

- For each free node
- Run a modified DFS:

What if G is not
bipartite? (we do not have V_{1} and anymore V_{2})

- Keep trace of the current layer
- If the layer is even, use an edge in M
- If the layer is odd, use an edge in $E \backslash M$
- As soon as a free node has been encountered, a new augmenting path has been found

But also:

MAXIMUM MATCHING IN BIPARTITE GRAPHS (22)

- Idea:
- For each free node in V_{1}
- Run a DFS on D:
- As soon as a free node in V_{2} has been encountered, a new augmenting path has been found.

Complexity: $O(n+m)$
Complexity of the algorithm finding the max matching: $n / 2[O(n+m)+O(n)]=O(n m)$

MAXIMUM MATCHING IN BIPARTITE GRAPHS (24)

- Problem: presence of odd cycles in the graph
- in an odd cycle there is always a free node adjacent to two consecutive edges not in M belonging to the cycle
- If the search goes through the cycle along the "wrong" direction, the augmenting path is not detected
- It is necessary to have graphs without odd cycles = bipartite graphs

MAXIMUM MATCHING IN BIPARTITE GRAPHS (25)

- The Hopcroft-Karp algorithm (1973) finds a max matching in a bipartite graph in $O(m \sqrt{ } n)$ time (better than the previous $O(m n)$).
- The idea is similar to the previous one, and consists in augmenting the cardinality of the current matching exploiting augmenting paths.
- During each iteration, this algorithm searches not one but a maximal set of augmenting paths.
- In this way, only $O(\sqrt{ } n)$ iterations are enough.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (27)

Example: Hopcroft-Karp algorithm

MAXIMUM MATCHING IN BIPARTITE GRAPHS (26)
Hopcroft-Karp Algorithm
During the k-th step:

- Run a modified breadth first search starting from ALL the free nodes in V_{1}. The BFS ends when some free nodes in V_{2} are reached at layer k.
- All the detected free nodes in V_{2} at layer k are put in a set F.

Obs. v is put in F iff it is the endpoint of an aug. path

- Find a maximal set of length k aug. paths node disjoint using a depth first search from the nodes in F back to the starting nodes in V_{1} (climbing on the BFS tree).
- Each aug. path is used to augment the cardinality of M.
- The algorithm ends when there are no more aug. paths.

MAXIMUM MATCHING IN BIPARTTTE GRAPHS

Analysis of the Hopcroft-Karp algorithm (sketch)

Each step consists in a BFS and a DFS. Hence it runs in $O(n+m)=O(m)$ time.

How many steps?

- The first $\sqrt{ } n$ steps take $O(m \sqrt{ } n)$ time.
- Note. At each step, the length of the found aug. paths is larger and larger; indeed, during step k, ALL paths of length k are found and, after that, only longer aug. paths can be in the graph.
- So, after the first $\sqrt{ } n$ steps, the shortest aug. path is at least $\sqrt{ } n$ long.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (29)

- The symmetric difference between a maximum ma 0 and the partial matching M found after the first $\sqrt{ } n$ steps is a set of vertex-disjoint alternating cycles, alternating paths and augmenting paths.
- Consider the augmenting paths. Each of them must be at least $\sqrt{ } n$ long, so there are at most $\sqrt{ } n$ such paths. Moreover, the maximum matching is larger than M by at most $\sqrt{ } n$ edges.
- Each step of the algorithm augments the dimension of M by one, so at most $\sqrt{ } n$ furhter steps are enough.
- The whole algorithm executes at most $2 \sqrt{ } n$ steps, each running in $O(m)$ time, hence the time complexity is $O(m \vee n)$ in the worst case.

minimum WEight PRRFECT MATCHING IN BIPRRTITE GRAPHS

MAXIMUM MATCHING IN BIPARTITE GRAPHS (30)

- In many cases this complexity can be improved.
- For example, in the case of random sparse bipartite graphs it has been proved [Bast et al.'06] that the augmenting paths have in average logarithmic length.
- As a consequence, the Hopcroft-Karp algorithm runs only $O(\log n)$ steps and so it can be executed in $O(m \log n)$ time.

WEIGHTED MATCHING (1)

- Each edge has a cost
- The definition of weighted matching is the same as the simple matching (weight does not affect the definition)
- We look for a minimum weight perfect matching
- Note. This is equivalent to look for a maximum weight perfect matching, where the weights are all negative.

WEIGHTED MATCHING (2)

Max weight matching: $6+4+1+1+1=13$

WEIGHTED MATCHING (4)

Algorithm:

- Start with an empty matching
- Repeat
- Find an aug. path P with max weight
- If this weight is positive, swap the role of the edges
- Else return the found matching (that is the one of max weight).

WEICHTED MATCHING (3)

Def. An augmenting path (different w.r.t. the previous one!) is any alternating path such that the weight of the edges out of the matching is greater than the weight of the edges in the matching.
Weight of the augmenting path= weight of the edges out of M - weight of the edges in M

Note. In this case, aug. paths do not need to end at a free node

WEICHTED MATCHING (5)

- It is possible to model the minimum weight perfect matching problem as an ILP problem (Hungarian method - in honour of Konig and Egevary):
- Given a matching M, let x be its incidence matrix, where $x_{i j}=1$ if (i, j)
is in M and $x_{i j}=0$ otherwise.
- The problem can be written as follows:

$$
\begin{aligned}
& \qquad \operatorname{minimize} \sum_{i, j} c_{i j} x_{i j} \text { subject to: } \sum_{j} x_{i j}=1, i \in V_{1} \\
& - \text { Complexity: } O\left(n^{3}\right) . \\
& \sum_{i} x_{i j}=1, j \in V_{2}
\end{aligned}
$$

NOTE: With this definition, the bipartite graph problem is converted into a matrix problem: the rows of the matrix represent the nodes in V_{1}, and the columns represent the nodes

BLOSSOMS (2)

- Lemma (cycle contraction). Let M be a matching of G and let B be a blossom. Let B node-disjoint from the rest of M. Let G^{\prime} be the graph obtained by G contracting B in a single node. Then M^{\prime} of G^{\prime} induced by M is maximum in G^{\prime} iff M is maximum in G.
- Proof. M max in $G \Rightarrow M^{\prime}$ max in G^{\prime} :

By contradiction. Assume M^{\prime} not max. Hence there exists an aug. path P in G^{\prime} w.r.t. M^{\prime}.
Let b be the node representing B.

BLOSSOMS (1)

- We have already noted that the critical point of general graphs are odd cycles containing a maximal number of edges in the matching

- Such cycles are called blossoms

BLOSSOMS (3)

Proof of the Cycle contraction lemma - cntd

Two cases can hold:

1. P does not cross $b \Rightarrow P$ augmenting for M, too. Contradiction.

Observe that b is free as it represents the node v in B adjacent to two edges out of M. In other words, v is free if we restrict to B.
2. P crosses $b \Rightarrow b$ must be an end-point of P.

Define $P^{\prime}=P \cup P^{\prime \prime}$ where $P^{\prime \prime}$ is inside B.
P^{\prime} is augmenting for G. Contradiction.

BLOSSOMS (4)

Proof of the Cycle contraction lemma - cntd.

- M^{\prime} max in $G^{\prime} \Rightarrow M$ max in G :

By contradiction, M is not max. Let P be an aug. path for M.
Two cases hold:

1. P does not cross $b \Rightarrow P$ is aug. for G^{\prime}. A contradiction.
2. P crosses b. Since B contains only one free node, at least an end-point of P lies outside B. Let it be w.
Let P^{\prime} be the sub-path of P joining w with b.
P^{\prime} is an aug. path for G^{\prime}. A contradiction.

MAX MATCHING IN GENERAL GRAPHS (2)

This is the Edmonds algorithm ['65].
The time complexity depends on how blossoms are handled. Varying with the used data structures, it can be either $O\left(n^{3}\right)$ or $O\left(m n^{2}\right)$.

The best known time complexity is $\mathrm{O}(\mathrm{m} \sqrt{ } \mathrm{n})$
[Micali \& Vazirani '80]

MAX MATCHING IN GENERAL GRAPHS (1)

In order to find an aug. path in general graphs, it is "enough" to modify the algorithm on bipartite graphs in order to include blossom search:

- For each found blossom B
B is shrinked in a node and a new (reduced) graph is generated.
- Each aug. path found in this new graph can be easily "translated" back into an aug. path in G.

Thanks to the previous lemma, if M is max in the new graph, it is max even in G.

MAX MATCHING IN GENERAL GRAPHS (3)

MAX MATCHING IN GENERAL GRAPHS (4)

MAX MATCHING IN GENERAL GRAPHS (6)

Edmonds algorithm - cntd

- Consider the neighbors of the external nodes.
- 4 possibilities hold:

1. There esists x esternal and incident to a node y not in F : add to F edges (x, y) and (y, z), and (y, z) is in M.

(2)

MAX MATCHING IN GENERAL GRAPHS (5)

Edmonds Algorithm ['65]

- M matching for G
- L subset of the free nodes (if L empty => M max)
- F forest s.t. each node of L is the root of a tree in F
- Expand F by adding
- Nodes that are at odd distance from a node of L have degree 2 (1 in M and 1 in $E(M$): we call them internal nodes
- The other nodes: external nodes

0

MAX MATCHING IN GENERAL GRAPHS (7)
 Edmonds algorithm - cntd

2. Two external nodes lying in two different components of F are adjacent: augmenting path

MAX MATCHING IN GENERAL GRAPHS (8)
 Edmonds algorithm - cntd

3. Two external nodes x, y in the same component in F are adjacent:
let C be the found cycle. It is possible to move the edges in M around C so that the cycle contraction lemma can be used => reduced graph G'

4. All the external nodes are adjacent to internal nodes:
M is maximum.

MHX MATCHING IN GENERHL GRAPHS (10)

Lemma. At each step of the Edmonds algorithm, either the dimension of F increases, or the dimension of G decreases, or an aug. path is found, or M is maximum.
Complexity. Number of iterations \leq
num. of times F is increased (at most n)+ num. of times a blossom is shrinked (at most n) ${ }^{+}$ num. of found aug. paths (at most $n / 2$).
The time complexity depends on how blossoms are handled. Varying with the used data structures, it can be either $O\left(n^{3}\right)$ or $O\left(m n^{2}\right)$.
Best known time complexity: $\mathrm{O}(\mathrm{m} \sqrt{ } \mathrm{n}) \quad$ [Micali \& Vazirani ' 80] (B)

SWITCH BUFFER (1)

Reminder:

- Interconnection topologies are constituted by layers of basic modules that are 2×2 cross-bar switches
- Any output can be reached by any input by properly setting some switches
- A single routing can be easily performed if the network is self-routing (e.g., Butterfly, Baseline, etc.)

mUITISTREE TOPOLOGIES WITH BUFFERS (1)

The multistage topologies are good to use, because they are:

- modular
- scalar

Nevertheless, the buffers at each node provoke:

- delays for going through the stages
- decreased throughput due to internal blocking

Solution: (input) buffers that are external to the topology

SWITCH BUFFER (2)

- The log N-stage networks are not rearrangeable, i.e. not all routes can be done simultaneously
- Two packets may want to use the same link at the same time
- Solution: buffering (though buffers increase delay)

MULTISTAGE TOPOLOGIES WITH BUFFERS (2)

- Head of line (HOL) buffer: only the first packet can leave the buffer.
- Buffers are connected through a crossbar network to the inputs of the topology
- During each slot, the scheduler establishes the crossbar connections to transfer packets from the buffers to the inputs

MULTISTAGE TOPOLOGIES WITH BUFFERS (3)

- When the packets at the head of two or more input queues are destined to the same input node, only one can be transferred and the other is blocked
- This behavior limits throughput because some inputs (and consequently outputs) are kept idle during a slot even when they have other packets to send
-...

MULTISTAEE TOPOLOGIES WITH BUFFERS (5)

Backlog matrix:

- rows: input buffers
- columns: outputs
- each entry ($(i, j$) represents the number of packets in buffer i destined to output j
output

MULTISTAGE TOPOLOGIES WITH BUFFERS (4)

- If the inputs are allowed to transfer packets that are not at the head of their buffers, throughput can be improved
- Example:

- How does the scheduler decide which input to transfer to the network?

MULTISTAGE TOPOLOGIES WITH BUFPERS (6)

- During each slot, the scheduler can transfer at most one packet from each buffer to each output
- The scheduler must choose at most one packet from each row and from each column of the backlog matrix
- This can be done by solving a bipartite matching algorithm...

MULTISTAGE TOPOLOGIES WITH BUFFERS (7)

- The bipartite graph $G=(V \cup W, E)$ is built as follows:
- V : N nodes representing the buffers
- W: N nodes representing the outputs
- E : there is an edge from a buffer i to an output j iff there is a packet in the backlog matrix to be transferred from i to j.
- Example:

- Finding a maximum matching is equivalent to finding the largest set of packets that can be transferred simultaneously

MULTISTAGE TOPOLOGIES WITH BUFPERS (8)

- Finding a maximum matching during each time slot does not eliminate the effects of HOL blocking
- It is, indeed, necessary to look beyond a single slot when making scheduling decisions
- Solution: edge (i, j) is assigned a weight equal to the value of element (i,j) of the backlog matrix
- Theorem: A scheduler that chooses, during each time slot, the maximum weighted matching achieves full utilization.
- Proof and other details: see [McKeon et al. 1999]

