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THE PROBLEM 
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THE PROBLEM (1) 

! We have already spoken about mobile sensor 
networks… 

! … and of the deployment problem. 
! A centralized solution is not always desirable 

because: 
!  Connection with a server is required 
!  Long delays are expected 
!  The solution is not fault-tolerant 

! The ability of moving around facilitates sensors 
to self-deploy starting from any initial 
configuration to a final distribution that 
guarantees that the AoI is completely covered. 
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THE PROBLEM (2) 

! The self-deployment is necessary in 
“hostile” environments: 
!  Contaminated places 
!  Fires 
!  Battlefields… 

! In these cases, sensors should position 
themselves and transmit the collected 
information. 
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THE PROBLEM (3) 

! Obs. The deployment problem is strictly 
related with the classical computational 
geometry problem called art gallery problem. 

! In this problem the aim is to determine, in a 
polygonal environment, the minimum number 
of cameras necessary to guarantee that the 
whole room is  supervised. 

! There exist several algorithms to solve the art 
gallery problem, but all of them assume a 
perfect knowledge of the environment => 
another approach is necessary. 

•  Idea: sensors are similar to 
charged particles (magnetic 
f o r c e ) h a v i n g a m a s s 
(gravitational force) 

•  Two sensors repel each other 
if they are too close 

•  Two sensors attract each 
other if they are far but can 
anyway communicate 

•  Two sensors ignore each other 
if they cannot communicate 
(too far) 

•  F r i c t i o n t o a t t e n u a t e 
oscillations 

rs#

rtx#

-k·v 

A POSSIBLE APPROACH: VIRTUAL FORCES (1) 
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A POSSIBLE APPROACH: VIRTUAL FORCES  (2) 
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Weaknesses: 
•  It is necessary a manual tuning of parameters 
•  Sensor oscillation 

•  Friction forces 
•  Stopping conditions 

•  In some versions, attracting effect of the border and of 
the obstacles (e.g. when only repulsive forces are 
considered) 

•  … 

A POSSIBLE APPROACH: VIRTUAL FORCES  (3) 
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Weaknesses (cntd): 
•  Sensors tend 

not to pass 
through doors 
and narrows 

Possible lesson 

A POSSIBLE APPROACH: VIRTUAL FORCES (4) 
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A PROTOCOL BASED ON VORONOI DIAGRAMS (1) 

Idea: 
! Each sensor is assigned an AoI portion and it has 

to take charge of it, trying to cover it  as best as it 
can 

! The sensor is “satisfied” if: 
!  It completely cover its portion 
or 
!  All its sensing radius is used to cover its portion 

!  If a sensor is not “satisfied” it has to move in 
order to improve its coverage 

! AoI prtions can be assigned according to the 
Voronoi diagram. 

Possible lesson 
10 
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A PROTOCOL BASED ON VORONOI DIAGRAMS (2) 

VORONOI DIAGRAMS 
12 



VORONOI DIAGRAM (1) 

Suppose that you live in a desert 
where the only sources of water 
are a few springs scattered here 
and there. For each spring, you 
would like to determine the 
locations nearest that spring. 
The result could be a map, like 
the one shown here, in which the 
terrain is divided into regions of 
locations nearest the various 
springs.  
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VORONOI DIAGRAM (2) 

 Maps like this appear frequently in various 
applications and under many names. To 
mathematicians, they are known as Voronoi 
diagrams. 

Voronoi d iagrams are rather natural 
constructions, and it seems that they, or 
something like them, have been in use for a 
long time.  
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VORONOI DIAGRAM (3) 

Voronoi diagrams have been used by: 
! anthropologists to describe regions of 

influence of different cultures;  
! crystallographers to explain the structure of 

certain crystals and metals;  
! ecologists to study competition between 

plants;  
! economists to model markets in a certain 

economy;  
! … 15 

VORONOI DIAGRAM (4) 
! An informal study of 

V o r o n o i d i a g r a m s 
dates back to Descartes 
(1644): he includes the 
following figure with 
his demonstration of 
h o w m a t t e r i s 
distributed throughout 
the solar system. 

! … 
16 



VORONOI DIAGRAM (5) 
! … 
! The English physicist Snow uses them for his 

analysis of the London cholera outbreak of 1854: 
!  Snow considers the sources of drinking water, pumps 

distributed throughout the city, and draws a line labeled 
"Boundary of equal distance between Broad Street Pump 
and other Pumps," which essentially indicates the Broad 
Street Pump's Voronoi cell.  

!  This map supports Snow's hypothesis that the cholera 
deaths are associated with contaminated water, in this 
case, from the Broad Street Pump. Snow recommends to 
the authorities that the pump handle be removed, after 
which action the cholera outbreak quickly ends. 

! ... 
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VORONOI DIAGRAM (6) 
! Dirichlet uses Voronoi diagrams in his studies 

on quadratic equations in 1850.  
! Voronoi diagrams are so called in honor of the 

Russian mathematician Georgy F. Voronoi, who 
defined and studied them in the n-dimensional 
space in 1908.  

! They are also called Thiessen polygons in 
meteorology in honor of the US meteorologist 
Alfred H. Thiessen; Wigner-Seitz cells in physics, 
fundamental domains in group theory and 
fundamental polygons in topology. 18 

VORONOI DIAGRAM (7) 

! Def. of Voronoi Diagram: 
!  P : set of n distinct sites on 

the plane 
!  VD(P): partition of the plane 

into n cells Vi such that: 
!  each Vi contains exactly one site 
!  if a point Q on the plane is in Vi 

then dist(Q, Pi) < dist(Q, Pj) for 
each Pi ∈ P, j ≠ i. 
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VORONOI DIAGRAM (8) 

! In other words: VD(P) is a 
partition of the plane into 
convex regions {V1, …, Vn}, 
such that Vi contains exactly 
one site Pi ∈ P  and for each 
other point in Vi the closest 
site in P  is Pi. 
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Voronoi cell 

Voronoi axis 

Voronoi vertex 



VORONOI DIAGRAM (9) 

Voronoi diagram of a single site 
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VORONOI DIAGRAM (10) 

Voronoi diagram of two sites 
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The axis extends to infinity in 
both directions, generating two 
halfplanes 

VORONOI DIAGRAM (11) 

Voronoi diagram of some colinear sites 
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VORONOI DIAGRAM (12) 
Voronoi diagram of 3 not colinear sites 
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Obs. Only one circle passes 
through 3 points  
The Voronoi vertex is the center 
of the circle passing through the 
3 sites (circumscribed to the 
triangle generated by the 3 sites) 

v 

halflines 

Voronoi axes coincide 
with the axes of the 
segments pairwise 
joining the sites 

The Voronoi vertex  
Has degree 3 



VORONOI DIAGRAM (13) 
Voronoi diagram of 4 not colinear sites 

v 

Unlimited cell Limited cell 

Segment 
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VORONOI DIAGRAM (14) 
Not always 4 not colinear sites create a limited 

cell: 

v 

General position 
assumption: each 3 
sites are not colinear  
and each 4 sites are 
not cocircular. 
Thanks to this 
assumption, all 
vertices have degree 3! 
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VORONOI DIAGRAM PROPERTIES (1) 

 A point q on the plane lies on the Voronoi 
segment between pi and pj iff the largest empty 
circle centered in q touches only pi and pj. 

–   A Voronoi segment is a subset of a Voronoi axis, i.e. 
the set of point equally distant from pi and pj 

e : Voronoi segment 
v : Voronoi vertex 

pi : sites of P  

e 

v 

pi 
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VORONOI DIAGRAM PROPERTIES (2) 
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 A point q in the plane is a Vornoi vertex iff the 
largest empty circle centered in q touches at 
least 3 sites of P. 

 A Voronoi vertex is the intersection of at least 3 axes, 
each generated by a pair of sites. 

v 

e pi 

pi : sites of P  
e : Voronoi segment 
v : Voronoi vertex 



VORONOI DIAGRAM COMPLEXITY 
29 

VORONOI DIAGRAM COMPLEXITY (1) 

! Th.: |v| ≤ 2n - 5 and|e| ≤ 3n - 6 for each 
n ≥ 3.  

! Proof: (Easy case) 
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… 

Colinear sites " |v| = 0, |e| = n – 1 

VORONOI DIAGRAM COMPLEXITY (2) 
Proof of Th.: |v| ≤ 2n - 5 and|e| ≤ 3n - 6 for each n ≥ 3 – cntd. 

Proof: (General case) 
! Problem: A Voronoi diagram cannot be considered as a 

planar graph because some of its edges and faces are 
unlimited 

! Solution: add a dummy node 
! Now the Voronoi diagram is a planar and connected 

graph " Euler formula:  
 |v|-|e|+f=2  
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e pi 

p∞ 

VORONOI DIAGRAM COMPLEXITY (3) 

Proof of Th.: |v| ≤ 2n - 5 and|e| ≤ 3n - 6 for each n ≥ 3 – cntd. 

  f=n+1. Euler formula becomes:  
 |v|-|e|+n+1=2  (1) 

 Moreover:                        
  
  since deg(v)≥3 " 2|e|≥3|v|(2) 

 

Joining (1) e (2): 

|v|≤2n-5 
|e|≤3n-6        QED 
  

32 

€ 

deg(v) = 2 | e |
v∈VD
∑



THE DUAL PROBLEM OF THE 
VORONOI DIAGRAM 
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THE DUAL PROBLEM OF THE VORONOI DIAGR. 
! The dual problem w.r.t. the decomposition of the 

plane into Voronoi cell is the Delaunay 
triangulation (obtained interescting each Voronoi 
axis with a segment joining the generating sites) 

34 

DELAUNAY TRIANGULATION (1) 

! Obs. Dual segments not necessarily intersect! 

35 

DELAUNAY TRIANGULATION (2) 

! Property: the circle circumscribed to a Delaunay 
triangle does not contain any site inside it 

36 



DELAUNAY TRIANGULATION (3) 

! Property: no segment can be 
illegal. 

! A segment is illegal if: 
   min �i<min �i 

!  If e is an illegal edge, then it 
is possible to swap the 
triangles to get a Delaunay 
triangulation. 
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DELAUNAY TRIANGULATION (4) 

! Some papers exploit a Delaunay triangulation to route 
sensors towards a position contributing to a complete 
coverage. 

! There are several algorithms to compute a Delaunay 
triangulation -> Possible lesson 

!  The Voronoi Diagram can be computed as dual 
construction of the Delaunay triangulation. 

! Otherwise… 

38 

ALGORITHMS TO COMPUTE THE 
VORONOI DIAGRAM  

39 

ALGORITHM BASED ON THE INTERSECTION 
OF HALFPLANES (1) 

A Voronoi cell can be obtained repeatedly  
intersecting opportune halfplanes: 

40 



ALGORITHM BASED ON THE INTERSECTION 
OF HALFPLANES (2) 
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ALGORITHM BASED ON THE INTERSECTION 
OF HALFPLANES (3) 
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This operation needs 
to be itearted for 
each site. 
 

ALGORITHM BASED ON THE INTERSECTION 
OF HALFPLANES (4) 

43 

How much does it cost to determine the 
intersection of a certain number k of 
halfplanes? 
From computational geometry, a possible 
algorithm exploits the divide-et-impera 
technique…  

ALGORITHM BASED ON THE INTERSECTION 
OF HALFPLANES  (5) 

44 

Divide: 
The set of k halfplanes is recursively split until k 
single halfplanes are obtained (Note: binary tree 
structure). 
Impera: 
The halfplane on each leaf is intersected with a 
rectangle R (the search space). In this way, each leaf 
contains now a polygon. 
Combine: 
Recursively, bottom-up, compute the intersection of 
two sibling polygon and put the result on the father 
node. 



ALGORITHM BASED ON THE INTERSECTION 
OF HALFPLANES (6) 

45 

Time Complexity of Combine: 
Let p and p’ be the number of vertices of two general 
polygons that have to be intersected at some step of 
the algorithm. This can be done in O(p+p’) time. 
 
It can be proved that the time complexity of the 
whole algorithm is O(k log k) and this is optimum 
because the sorting problem (using comparisons) can 
be reduced to the intersection of halfplanes. 
Time Complexity of the whole algorithm to compute 
the Voronoi diagram: in order to find a single cell, 
O(n) halfplanes need to be intersected, so O(n log n) 
per cell and O(n2 log n) for the whole algorithm. 46 

INTUITION (1) 

Not all the site pairs give raise to an axis! 

e pi 

INTUITION (2) 

!  Idea : use a wel l known technique in 
computational geometry. 

! The sweep line is used to solve geometrical  
bidimensional problems through a sequence of 
almost onedimensional subproblems. 

!  Example: [Bentley, Ottmann‘79] Compute the 
intersection points of n segments sweeping the 
plane with a horizontal line. 

!  When the sweep line moves, it encounters 
objects, and the algorithm solves the single 
problem related to each single object. 

47 

INTUITION (3) 

!   This method cannot work as it is for 
Voronoi diagrams, because it would be 
necessary to “predict” the site position 
before the sweep line encounters them. 

! Fortune [1986] designed an algorithm based 
on a different line, called beach line.  

48 



FORTUNE ALGORITHM (1) 
!  Idea: instead of considering the distance between sites, we 

introduce a line sweeping the plane (sweep line) helping us 
to compare distances.  

! Somehow, this line “discovers” the Voronoi diagram on the 
just sweeped plane portion.  

! Note. Given any point p and any external line l, the set of 
points equally distant from p and l is a parabola Pp,l. 

49 

Points that are closer to p 

Points that are closer to l 

FORTUNE ALGORITHM (2) 

! Consider any point q=(qx, qy).  
! The sweep line is horizontal and its y-coordinate is  ly. 

Hence dist(q,l)=ly-qy. 
! Given another point p, q lies on the parabola generated by 

p and l iff dist(q,p)=ly-qy. 
! More in general:  

!  dist(q,p)< ly-qy if q lies above the parabola 
!  dist(q,p)=ly-qy if q lies on the parabola 
!  dist(q,p)>ly-qy if q lies under the parabola 
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p 
q 

FORTUNE ALGORITHM (3) 

! The sweep line goes down. 
! At each instant, consider the sites above the sweep line 

and the parabolas they define with the sweep line. 
! Example: 

51 

FORTUNE ALGORITHM (4) 

! Define the beach line as the 
line formed by the union of 
the lower parabola arches. 

!  In other words: each vertical 
line crosses many parabolas; 
the lower intersection point 
belongs to the beach line. 

! Note. Each arch of the beach 
line is associated with a site 
above the sweep line.  

52 

To see an animation of the beach 
line: 
http://www.cs.princeton.edu/
~edwardz/voronoi/voronoi.html 
(press the button “Animate the 
sweep line”) 



FORTUNE ALGORITHM (5) 

! Notice that if a point is above the beach line, it is 
closer to one of the sites above the sweep line 
than to the sweep line itself. 

! In other words, this point lies inside the Voronoi 
cell of a site that the sweep line has already 
encountered. 

! Hence, the Voronoi diagram above the beach line 
is completely determined by the sites above the 
sweep line. 

53 

FORTUNE ALGORITHM (6) 
! Let us determine the condition such that the beach 

line passes through any point q. 
! Let pi be the i-th site and q be such that 

dist(q,p1)≤dist(q, pi) for any other i. 
! Point q lies on the parabola generated by p1 and l iff 

dist(q, p1)=ly-qy. 
! Joining the inequality and the condition:            

dist(q, pi)≥dist(q,p1)=ly-qy=dist(q,l). 
! Remind that dist(q,p)>dist(q,l) if q lies under the parabola Pp,l 

! So q is on Pp1,l and under any other parabola Ppi,l, so q 
is on the beach line. In other words: 
 When a point appears on the beach line, it is on the 
parabola associated to its closest site 54 

FORTUNE ALGORITHM (7) 

! Points on the beach line lying at the intersection of two 
parabola archs are called breakpoints.  

! Breakpoints are at the same time closest to two sites. 
In other words, 
 Breakpoints lie on the segments of the Voronoi 
diagram 

!  In order to construct the Voronoi diagram, it is enough 
to keep trace of the breakpoints.   

55 

FORTUNE ALGORITHM (8) 

Determine segments: 
! A pair of breakpoints, corresponding to a segment in the 

Voronoi diagram, appears on the beach line exactly when 
the sweep line encounters a new site.  

! We call this situation as site event.   
56 



FORTUNE ALGORITHM (9) 

Determine vertices: 
! While the sweep line moves, breakpoints move too, and 

they follow a segment; they reach a vertex when a 
parabola arch disappear. 57 

FORTUNE ALGORITHM (10) 
!  It is easy to detect a new parabola arch appearing on the beach 

line: it appears when the sweep line encounters a site.  

58 

! Analogously, it is easy to detect a 
parabola arch disappearing from the 
beach line: when this arch is reduced to 
a single point x, it lies on 3 parabolas: 
!  The one containing the disappearing arch 
!  The one to its right 
!  The one to its left 

!  So x is equally distant from 3 sites, corresponding to these 
3 parabola arches -> a circle centered at x passes through 
these 3 sites. 

!  We determine a Voronoi vertex when the sweep line has 
finished to sweep this circle. 

!  We call this situation as circle event.  

FORTUNE ALGORITHM (11) 
Fortune Algorithm 
!    Resume: In order to determine segments and vertices of 

the Voronoi diagram, we need to keep trace of the 
parabola arches appearing and disappearing on the beach 
line.  

!    We imagine to walk on the beach line left to right and we 
sort the order of the sites producing the parabola arches 
on it. 

! This order cannot change until either a site event or a 
circle event happens.  

! Breakpoints are implicitely stored as intersections of 
parabola arches on the beach line.   59 

FORTUNE ALGORITHM (12) 
Fortune algorithm (cntd.)  

!    If the next event encountered by the beach line is: 
!  A site event, we insert the new site in the list of sites in 

the order indicated by its parabola arch and we store a 
new segment in the Voronoi diagram. 

!  a circle event, we store both the new Voronoi vertex and 
the information that it is an extreme of the segments 
corresponding to two breakpoints joining in a single 
point.  

!    In both cases, we verify whether a new triple of sites 
producing a next circle event has been discovered.  

! The Voronoi diagram is computed considering the (finite) 
sequence of these events.  

60 



FORTUNE ALGORITHM (13) 
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To see an animation of Fortune algorithm:  
http://www.diku.dk/hjemmesider/studerende/duff/Fortune/ 

TIME COMPLEXITY 

!  The time complexity analysis of this algorithm follows 
tha typical scheme of all the algorithms based on the 
sweep line. 

!  Each event takes O(1) time to be detected + a 
constant number of accesses to the data structures to 
be stored. 

!  Each data structure contains O(n) information 
!  Each one of these accesses costs O(logn) time 
 
!  The whole time complexity is O(n log n), and the 

occupied space is O(n). 
!  This time complexity is optimum because the sorting 

problem (based on comparisons) can be reduced to the 
computation of the Voronoi diagram. 
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CONCLUSIONS 
!  Fortune algorithm is an efficient way to compute the Voronoi 

diagram.  
!  Whatever algorithm you use, it is reasonable to think that the 

time complexity grows up with the growth of the number of 
sites. 

! The algorithm based on the 
intersection of halfplanes runs 
in O(n2 log n) time if there are 
n sites. 

!  Fortune algorithm runs in  
O(n log n) time.  

63 
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HETEROGENEOUS SENSORS 



HETEROGENEOUS SENSORS 

!  Sensors are not necessarily all equal. We speak about 
a heterogeneous sensor network if: 
!  the devices are different 
!  The sensing and communicating ability of the 

sensors depend on their position (not smooth 
terrain, obstacles, …) 

 
!  The previously described approaches (based on virtual 

forces and on Voronoi cells) do not work well with 
heterogeneous sensors: 
!  Virtual forces: forces depend on the distance 
!  Voronoi: cells do not take into account the coverage 

capability 
65 

LIMITATIONS OF THE PROTOCOLS BASED 
ON VORONOI CELLS (1) 
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! The protocol based on the 
construction of Voronoi 
cells would assign: 
!  The left halfplane to s1 

(included the blue zone) 
!  The right halfplane to s2 

Vor Desired 
line 

s1 s2 

LIMITATIONS OF THE PROTOCOLS BASED 
ON VORONOI CELLS (2) 
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! Stale situation: 
!  the sensors on the left (big 

circles) do not move since 
they completely cover 
their cells 

!  the sensors on the right 
(small circles) do not move 
since their circles are 
completely used to cover a 
portion of their cell (in 
o t h e r w o r d s ,  t h e i r 
coverage capac i ty i s 
maximized). 

68 

LIMITATIONS OF THE PROTOCOLS BASED 
ON VORONOI CELLS (3) 
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•  In the known algorithms, the heterogeneity is 
ignored 

•  We introduce a new notion of distance  
 keeping into account: 

#  The Euclidean distance 
#  The heterogeneity of the devices 

•  There are many possibilities, but we aim at having: 
# Diagrams with straigh edges (convex polygons) 
#  a distance whose set of points equally distant from 

two sensors contains the intersection of their sensing 
circles 

s1 s2 

A NEW NOTION OF DISTANCE LAGUERRE DISTANCE (1) 
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W. Blaschke. Vorlesungen uber Differentialgeometrie III. Springer Berlin. 1929. 

•  Defined in R3 
•  Given two points P=(x,y,z) and Q=(x’,y’,z’), their 

Laguerre distance is: 
#  dL

2(P,Q)=(x-x’)2+(y-y’)2-(z-z’)2 

•  P can be seen as the (oriented) circle centered at 
(x,y) and having radius |z| 

LAGUERRE DISTANCE (2) 
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•  Given two circles C1 and C2, centered at C1 
and C2 respectively, and with radii r1 and r2, 
their Laguerre distance is: 
#  dL

2(C1,#C2)= dE
2(C1, C2 ) - (r1 - r2 )2 

•  The Laguerre distance between a point P=(x,y)  
and a circle C=(x’,y’,r) is: 
#  dL

2(P,C)=(x-x’)2+(y-y’)2-r2 

LAGUERRE DISTANCE (3) 
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•  Lemma. Given two circles C1 and C2 centered 
at C1 and  C2 (C1≠C2) and radii r1 and r2, the 
sets of point equally distant from C1 and C2 is 
a straight line (called radical axis) orthogonal 
to the segment joining C1 and C2 and at 
distance k from C1, where  

C1 

C2 

€ 

k =
dE (C1,C2)

2
+

r1
2 − r2

2

2dE (C1,C2)



LAGUERRE DISTANCE (4) 
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Proof. Consider the set of points P(t)=(x(t), y(t)) equally 
distant fromC1 and C2, i.e. such that  

   dL(P(t), C1)=dL(P(t), C2). 
•  If C1=C2 and r1=r2 ⇒ P(t)  is the whole plane 
•  If C1=C2 and r1≠r2 ⇒ P(t) is the empty set 
•  If C1≠C2:  

 x(t)2+y(t)2-r1
2=(dE(C1,C2)-x(t))2+y(t)2-r2

2                  QED 
 
 
 

C1 

C2 

dL
2(P,C)=(x-x’)2+(y-y’)2-r2 

LAGUERRE DISTANCE (5) 
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•  Lemma. Given two circles C1 and C2 centered at C1 and 
C2 (C1≠C2) and having radii r1 and r2, theri centers lie on 
the same side w.r.t. the radical axis if and only if  
   dE

2(C1,C2) < |r1
2-r2

2|. 
Proof. The axis can lie either to the right or to the left. 
•  Right: 
 

  dE
2(C1,C2) ≤ r1

2-r2
2 ⇒r1≥r2 

•  Left: 
 

  dE
2(C1,C2) ≤ r2

2-r1
2 ⇒r2≥r1          QED 

C1 

C2 

€ 

k =
dE (C1,C2)

2
+

r1
2 − r2

2

2dE (C1,C2)
≥ dE (C1,C2)

€ 

dE (C1,C2)
2

+
r1
2 − r2

2

dE (C1,C2)
≤ 0

LAGUERRE DISTANCE (6) 
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•  Possible positions of the radical axis of two 
criclesC1 andC2 

VORONOI-LAGUERRE DIAGRAM (1) 

76 

Voronoi-Laguerre diagram ofC1, …, Cn: 
#  Vi = ∩ {p ∈ R2 | dL

2(Ci,P) < dL
2(Cj,P)} 

 
H. Imai, M. Iri, K. Murota. “Voronoi Diagram in the Laguerre Geometry and its 

Applications”. SIAM J. Comput. 14(1), 93-105. 1985. 

They have similarities 
and differences w.r.t. the 
classical Voronoi 
diagrams… 



VORONOI-LAGUERRE DIAGRAM (2) 

Similarities: 
•  Voronoi-Laguerre polygons partition the plane 
•  Vi is always convex because it is the intersection 

of some halfplanes 
•  if ri=0 for each i=1, …, n, theVoronoi-Laguerre 

diagram is in fact the classical Voronoi diagram. 
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VORONOI-LAGUERRE DIAGRAM (3) 

Differences: 
•  Ci can be external to Vi 

(see C2) 
•  Vi can be empty (e.g. if Ci 

is inside the union of 
other circles - see C3) 

 

V(C1 ) V(C2 ) 

C2 C1 

V(C3) V(C2 ) 

C2 C3 C1 
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VORONOI-LAGUERRE DIAGRAM (4) 
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•  Theorem. Given n circles Ci centered at 
Ci=(xi,yi) and having radii ri, i=1, …, n, let Vi be 
their Voronoi-Laguerre polygons.  
 For each i and j, Vi∩Cj⊆Ci.  
 In other words, the intersection of Vi with a 
circleCj is included in Ci. 

VORONOI-LAGUERRE DIAGRAM (5) 

80 

Proof. By contradiction, assume that ther exists 
a point P⊆Vi in Cj but non in Ci, for some j≠i. 

•  Since P⊆Vi it holds dL(P, Ci) < dL(P, Cj) for 
each j≠i, i.e. 
   dE

2(P,Ci)-ri
2<dE

2(cj,P)-rj
2 

•  Since P is in Cj but non in Ci,  
   dE

2(P,Cj)≤rj
2 and dE

2(P,Ci) ≥ ri
2 

•  Combining: 0<0 Contradiction.         QED 



ALGORITHM BASED ON VORONOI-LAGUERRE 
DIAGRAM (1) 

81 

Algorithm executed by each sensor si: 
•  Compute Vi 
•  If si is inside Vi, move toward the minimax (by at 

most by di
max=rtx/2-ri wherertx=mini ri

tx) if the 
coverage of Vi is increased 

•  If si is outside Vi, move toward the minimax  (by 
at most di

max=rtx/2-ri ) 
•  if Vi is empty, do nothing. 

ALGORITHM BASED ON VORONOI-LAGUERRE 
DIAGRAM (2) 
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Big Circles 
Some of them move to 

better cover their 
polygons 

Small circles 
Many of them move 

because they are 
external w.r.t. 
their polygon 

Initial Configuration 

Initial Configuration Round 6 Round 9 Round 12: 
The Stale is solved! 
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ALGORITHM BASED ON VORONOI-LAGUERRE 
DIAGRAM (3) 

PROPERTIES OF THE ALGORITHM (1) 
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•  Obs.: 
#  “local” polygon≠“global” polygon and the set of local 

polygons do not constitute a partition! 



PROPERTIES OF THE ALGORITHM (2) 
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•  We define a curve polygon V’i generated intersecting the 
“local” polygon with the circle of radius di

max+ri=rtx/2.  

PROPERTIES OF THE ALGORITHM (3) 
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•  Lemma. V’i ∩ V’j =ϕ ∀ i ≠ j 
•  Lemma. ∀ i ≠ j, V’ i ∩ Cj ⊆ Ci.  

 In other words, each curve polygon can be covered 
by the sensor generating it better than by any 
other sensor. 

PROPERTIES OF THE ALGORITHM (4) 
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Th. The algorithm converges. 
Proof. Let V’ i(k) be the curve polygon of si at round k. 
•  Let Ai

(k) and Ai
(k)(si) be the areas covered inside V’i(k) by 

all the sensors and by the sole sensor si at round k, 
respectively. Let Ai’(k) be the covered area considering 
the positions of the sensors at round k+1. 

•  Obs. Ai’(k) ≠ Ai
(k+1)  

•  Let A(k)
total be the area covered by the AoI by all the 

sensors. 
•  We have to prove that A(k)

total < A(k+1)
total  

PROPERTIES OF THE ALGORITHM (5) 
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Proof. (cntd.)  
•  P (k)={V’1(k), V’2(k), …, AoI\∪i V’i(k)} is a partition of the AoI. 
•  AoI\∪i V’i (k) is constituted by points that are uncovered and 

cannot be covered in a single round; it does not contribute to 
A(k)

total . 
•  A(k)

total =Σi Ai
(k) 

•  Ai
(k) = Ai

(k)(si) (by the previous lemma) 
•  Ai

(k)(si)< Ai’(k)(si) (by the algorithm) 

•  Ai’(k)(si) ≤ Ai’(k) 

•  Hence: A(k)
total =Σi Ai

(k) < Σi Ai’(k) 

•  Since the coverage at round k+1 does not depends on the 
partition:  
Σi Ai’(k)= A(k+1)

total       QED 



PROPERTIES OF THE ALGORITHM (6) 
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•  Convergence does not imply termination. 
•  In order to guarantee termination, we introduce a 

minimum movement threshold ε, so that sensors do not 

move if they are suppose to do by less than ε. 
•  Corollary. The algorithm, with the addition of the 

minimum movement threshold, terminates. 

OPEN PROBLEMS 
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•  Obstacles and terrain asperities 
# Anisotropy 
# Movement obstacles 

•  AOI with complex shape 
# concave regions and corridors 

•  … 


