
1

SECOND PART:
WIRELESS NETWORKS
2.B. SENSOR NETWORKS

2Prof. Tiziana Calamoneri

Network Algorithms

A.y. 2020/21

3

§ Devices of small dimension and low cost (~150 $)

§ Monitoring Unit (sensing)

§ Transmitter/receiver Unit

§ Small battery

§ Motion system

Mobile sensors are especially useful in critical
environments (e.g. in presence of dispersion of
pollutants, gas plumes, fires, …)

4

5

Given an Area of Interest (AoI) to cover:

We can assume that each sensor is able to monitor a
disk centered at its position and having radius r=sensing
radius.

The aim is to entireley cover the AoI (final equilibrium
state).

§ At the same time, some parameters need to be optimized:
§ Traversed Distance

§ Number of starting/stopping

§ Communication costs

§ Computation costs 6

Coordination algorithm

Initial Config. Desired Config.
Can be:
• random
• from a safe location

Can be:
• regular tassellation
• any configuration, provided
that the AoI is covered

§ Traversed Distance:
§ It is the dominant cost

§ Number of starting/stopping
§ start/stop moves are more expensive than a continuous

movement

§ Communication cost
§ It depends on the number of exchanged messages and

on the packet dimension at each transmission

§ Computation cost
§ Usually negligible, unless processors are extremely

sophisticated
7

It is well known that an optimal coverage using
equally sized circles is the one positioning the
centers on the vertices of a triangular grid
opportunely sized.

8

In the centralized case:

§ The problem is strictly related to the classical
computational geometry problem called art gallery
problem.
§ The aim is to determine, in a polygonal environment, the
minimum number of cameras necessary to guarantee that the
whole room is supervised, but the focus is on the final positions
and not on the routes…

9

In the centralized case:

§ The whole coverage is guaranteed assigning to each
sensor a position on the grid

§ The total energy consumption should be minimized

§ We model this problem with the classical minimum
weight perfect matching

10

11

Formal definition of the problem:

§ Set of n mobile sensors S={S1, S2, …, Sn}

§ Set of p locations on the AoI L={L1, L2, …, Lp}

§ n≥p (in order to guarantee the complete coverage)

§ For each Si, determine the location Lj that Si will have
to reach, so to minimize the total consumed energy.

12

§ Define a weighted bipartite graph G=(S ∪ L, E, w) as
follows:
§ One node for each sensor Si

§ One node for each location Lj

§ An edge between Si and Lj for each i=1…n and j=1…p

§ For each edge eij, w(eij) is proportional to the energy
consumed by Si to reach location Lj

§ The aim is to choose a matching between sensors and
locations so that the total consumed energy is
minimized

13

14

Given G=(V,E):

§Def. A matching is a set of edges M Í E such that
every node is adjacent to at most one edge in M.

§ Maximal matching
There exists no e ÏM such that M È {e} is a matching

§ Maximum matching
Matching M such that|M| is maximum

§ Perfect matching
Assuming n even,|M| = n/2: each node is adjacent to
exactly one edge in M.

If G is bipartite and V=V1 È V2, |M|=min{|V1|, |V2|}. 15 16

Example

Maximal
matching Maximum

matching

§ Nomenclature

17

matching

Free node
17

§ Note. The maximum matching is not unique

18

18

Original problem: wedding problem
§ the nodes of a set are men
§ the nodes of the other set are wemen
§ An edge connects a man and a woman
who like each other

19

¢ Maximum matching aims at maximizing the number of
couples

19

§ Given a graph G, to find a:
§ Maximal matching is easy (greedy)
§ Maximum matching is

§ polynomial; not easy.
§ Easier in the important case of bipartite graphs

§ Perfect matching
§ It is a special case of the maximum matching

§ For it, some theorems can help
20

TH. (P. Hall) Given a bipartite graph G with |V1|£|V2|, G
has a perfect matching iff for each set S of k nodes in V1

there are at least k nodes in V2 adjacent to some node in
S.

In symbols, " SÍV1, |S| £ |adj(S)|.
PROOF.
§ Necessary condition: If G has a perfect matching M and

S is any subset of V1, each node in S is matched
through M with a different node in adj(S).
Hence |S| £ |adj(S)|.

21

(proof of the Hall theorem - cntd) G bipartite with |V1|£|V2|, G has a perfect
matching iff " SÍV1, |S| £ |adj(S)|.

§ sufficient condition: We have to prove that if the Hall
condition is true then there is a perfect matching. By
contradiction, assume that M is a maximum matching but
|M|<|V1|.

§ By hypothesis,|M|<|V1|Þ$ u0ÎV1 s.t. u0ÏM.
Let S={u0}; it holds 1=|S|£|adj(S)| from the Hall cond.,
so there exists a v1ÎV2 adjacent to u0.

22

a. v1ÏM
b. v1ÎM

V1 V2

u0 v1

v1

23

(proof of the Hall theorem - cntd) G bipartite with |V1|£|V2|, G has a
perfect matching iff " SÍV1, |S| £ |adj(S)|.

a. If v1ÏM OK
b. Consider the node matched with v1 through M, call it u1.

V1 V2

u0

v1 u1
S={u0,u1} and 2= |S|£|adj(S)|.
There exists another node v2,
Different from v1, and adjacent either to
u0 or to u1.
a. v2ÏM
b. v2ÎM

v2

v2

24

(proof of the Hall theorem - cntd) G bipartite with |V1|£|V2|, G has a
perfect matching iff " SÍV1, |S| £ |adj(S)|.

Continue in this way. As G is finite, we will eventually reach
a node vr that is free w.r.t. M. Each vi is adjacent to at
least one among u0,u1,…,ui-1.

Analogously to the case r=2:

u0 v1 u1 v2 u2 ur-1 vr

u0 v1 u1 v2 u2 ur-1 vr

n

25

COR. If G is bipartite, k-regular, with|V1|=|V2|, then G has k
disjoint perfect matchings.

Proof. Let S be a subset of V1.
adj(S) has at least |S| nodes (if each node in adj(S) has

degree k in the subgraph induced by SÈ adj(S)) and at
most k|S| nodes (if each node in adj(S) has degree 1 in the
subgraph induced by S È adj(S)).

So, the Hall condition is true ⟹ there is a perfect matching.
Remove it and get a new graph that is bipartite, (k-1)-regular

and with |V1|=|V2|.

Repeat the reasoning. n

§ The P. Hall Theorem does not provide an algorithmic
method to construct a perfect matching.

§ The perfect matching problem in a bipartite graph is
equivalent to the maximum flow problem in a network:

Given G=(V=V1ÈV2, E), construct flow network G’=(V’, E’)
as follows:
§ V’=V U {s} È {t}
§ E’:

§ From the source s to all nodes in V1 :{(s,u)| u ∈ V1} U
§ All edges in E: {(u,v)| u ∈ V1, v ∈ V2, e (u,v)∈ E} U
§ From all nodes in V2 to the tale t: {(v,t)| v ∈ V2}

§ Capacity: c(u,v) = 1, for all (u,v) ∈ E'
26

§ Fact: Let M be a matching in a bipartite graph G. There
exists a flow f in the network G’ s.t. |M|=|f|.

Vice-versa, if f is a flow of G’, there exists a matching M
in G s.t. |M|=|f|.

27

§ Th: (integrality) If the capacity c assumes only integer
values, the max flow f is such that |f| is integer.
Moreover, for all nodes u and v, f(u,v) is integer.

§Corol.: The cardinality of a max matching M in a
bipartite graph G is equal to the value of the max flow f
in the associated network G’.

28

§ The algorithm by Ford-Fulkerson for the max flow in a
network runs in O(m|f|) time.

§ The max flow of G’ has cardinality upper bounded by
min{|V1|, |V2|}. Hence, the complexity of an algorithm
for the max matching exploiting the max flow runs in
O(nm) time.

29

§Def. Given a matching M in a graph G, an alternating
path w.r.t. M is the path alternating edges of M and
edges in E\M.

30

§Def. Given a matching M in a graph G, an augmenting path
w.r.t. M is an alternating path starting and finishing in two
free nodes w.r.t. M.

31

Swapping the role of
the edges in M and
in E\M,M has larger
cardinality.

§ Th. (Augmenting path) [Berge 1975] M is a max matching iff
there are no augmenting paths w.r.t. M.

§ Proof.

§ (è) If M max, then there are no augmenting paths.
Negating, if there are some augmenting paths, then M
is not max. This is obvious because we can swap the
role of the edges in the augmenting path and increase
the cardinality of M.

§ …
32

(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M – cntd)

§ (ç) There are no augmenting paths, then M is max.

By contradiction M is not max. Let M’ s.t. |M’|>|M|.

Consider graph H induced by M and M’. Edges that are
both in M and in M’ are put twice. So H is a multigraph.

§ …

33

(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M – cntd)

§ H has the following property:
§ For each v in H, deg(v)≤2. (indeed each node has at

most one edge from M and one edge from M’)

§ So, each connected component of H is either a cycle or a
path.
§ Cycles necessarily have even length, otherwise a node

would be incident to two edges of the same matching
(M or M’); this is absurd by the definition of matching.

34

(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M – cntd)

§ More in detail, the connected components of H can be
classified into 6 kinds:

1. An isolated node

2. a 2-cycle

3. a 2k-cycle, k>1

…
35

(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M – cntd)

…
4. a 2k-path

5. a (2k+1)-path whose extremes are incident to M

6. a (2k+1)-path whose extremes are incident to M’

36

(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M – cntd)

§ Reminder: |M|<|M’| by hp.

§ Among all the components just defined, only 5 and 6
have a different number of edges from M and from M’;
only 6 has more edges from M’ than from M.

§ So, there is at least one component of kind 6

§ This comp. is an augmenting path w.r.t. M: contradiction.
n 37

§ We exploit the Augmenting Path Th. to design an
iterative algorithm.

§ During each iteration, we look for a new augmenting
path using a modified Breadth First Search starting
from the free nodes.

§ In this way, nodes are structured in layers.

38

Idea of the algorithm:

§ Let M be an arbitrary matching (possibly empty)
§ Find an augmenting path P

§ While there is an augmenting path:
§ Swap in P the role of the edges in and out of the

matching

§ Find an augmenting path P

Complexity: it dipends on the complexity of finding an
augmenting path.

39

Example: Let M be an arbitrary matching

40

¢ Find an augmenting path: Choose a free node…

¢ …and -in some way (??)- go through the graph…

41

…until another free node is reached, i.e. an augmenting
path has been found 42

Swap the role of edges in and out of the matching

43

Repeat: choose another free node…

…consider all its adjacent
nodes, and the adjacent
nodes of the adjacent
nodes…

… and swap
No more augmenting
paths.
Stop

§ Problem: how to find an augmenting path w.r.t. M?

§ Idea:
§ Choose a free node
§ Run a modified search as follows:

§ Keep trace of the current layer
§ If the layer is even, use an edge in M

§ If the layer is odd, use an edge in E\M

§ As soon as a free node has been encountered, a
new augmenting path has been found

44

§ Choose a free node
§ Run a modified search as follows:

§ Keep trace of the current layer
§ If the layer is even, use an edge in M
§ If the layer is odd, use edges in E\M
§ As soon as a free node has been

encountered, a new augmenting path has
been found

45

Example:

1

2
3

6
5

4

1

2
3

6
5

4

But also:

§ Problem: presence of odd cycles in the graph:
§ in an odd cycle there is always a free node adjacent to

two consecutive edges not in M belonging to the cycle
§ If the search goes through the cycle along the “wrong”

direction, the augmenting path is not detected

§ Graphs without odd cycles: bipartite graphs
46

1

2
3

6
5

4

Algorithm SearchAugmentingPathInBip (G=(U ∪ W,E), M)
§ Choose a free node in U
§ Repeat

§ If the current node is in U then follow an edge out of M
§ Else follow an edge in M
§ As soon as a free node in W has been reached, a new

augmenting path has been detected

Complexity: O(n+m)

Complexity of the algorithm finding the max matching:
n/2[O(n+m)+O(n)]=O(nm)

47
max no. of
iterations

Swapping of the edges
on the aug. path

§ The Hopcroft–Karp algorithm (1973) finds a max
matching in a bipartite graph in O(m√n) time.

§ The idea is similar to the previous one, and consists in
augmenting the cardinality of the current matching
exploiting augmenting paths.

§ During each iteration, this algorithm searches not one
but a maximal set of augmenting paths.

§ In this way, only O(√n) iterations are enough.

48

Hopcroft–Karp Algorithm

During the k-th step:

§ Run a modified breadth first search starting from ALL the free
nodes in V1. The BFS ends when some free nodes in V2 are
reached at layer k.

§ All the detected free nodes in V2 at layer k are put in a set F.

Obs. v is put in F iff it is the endpoint of an aug. path

§ Find a maximal set of length k aug. paths node disjoint using a
depth first search from the nodes in F to the starting nodes in V1
(climbing on the BFS tree).

§ Each aug. Path is used to augment the cardinality of M.

§ The algorithm ends when there are no more aug. paths. 49

Example: Hopcroft–Karp algorithm

50

1 2 3 4 5

a b c d e

k=1
2

a e

4

b c e

1 2 3 4 5

a b c d e

k=2

1 2 3 4 5

a b c d e

2

a e

1

b d

5

Analysis of the Hopcroft–Karp algorithm (sketch)

§ Each step consists in a BFS and a DFS. Hence it runs in
O(n+m)=O(m) time.

§ The first √n steps take O(m √n) time.

§ Note. At each step, the length of the found aug. paths is
larger and larger; indeed, during step k, ALL paths of
length k are found and, after that, only longer aug. paths
can be in the graph.

§ So, after the first √n steps, the shortest aug. path is at
least √n long.

§ … 51

Analisis of the Hopcroft–Karp algorithm (sketch) – cnt.d

§ The symmetric difference between a maximum matching
and the partial matching M found after the first √n steps is a
set of vertex-disjoint alternating cycles, alternating paths and
augmenting paths.

§ Consider the augmenting paths. Each of them must be at
least √n long, so there are at most √n such paths. Moreover,
the maximum matching is larger than M by at most √n
edges.

§ Each step of the algorithm augments the dimension of M by
one, so at most √n furhter steps are enough.

§ The whole algorithm executes at most 2√n steps, each
running in O(m) time, hence the time complexity is O(m √n)
in the worst case. 52

§ In many cases this complexity can be improved.

§ For example, in the case of random sparse bipartite
graphs it has been proved [Bast et al.’06] that the
augmenting paths have in average logarithmic length.

§ As a consequence, the Hopcroft–Karp algorithm runs
only O(log n) steps and so it can be executed in
O(m log n) time.

53

54

§ Each edge has a cost

§ The definition of weighted matching is the same as the
simple matching (weight does not affect the definition)

§ We look for a minimum weight perfect matching

§Note. This is equivalent to look for a maximum weight
perfect matching, where the weights are all negative.

55 56

46 6
3

Weight of this matching:
6+3+1=10

46 6
3Max weight matching:

6+4+1+1+1=13

(the unweighted edges have weight=1)

57

Def. An augmenting path (different w.r.t. the previous one!) is
any alternating path such that the weight of the edges out of
the matching is greater than the weight of the edges in the
matching.
Weight of the augmenting path= weight of the edges out of
M – weight of the edges in M

46 6
3

Note. In this case, aug. paths do not need to end in a free node.

Algorithm:

§ Start with an empty matching

§ Repeat
§ Find an aug. path P with max weight
§ If this weight is positive, swap the role of the edges

§ Else return the found matching (that is the one of
max weight).

§ Complexity: at least O(nm).
58

§ It is possible to model the minimum weight perfect matching
problem as an ILP problem (Hungarian method):
§ Given a matching M, let x be its incidence matrix, where xij = 1

if (i, j) is in M and xij = 0 otherwise.
§ The problem can be written as follows:

minimize subject to

§ Complexity: O(n3).

59

€

cij xij
i, j
∑

€

xij
j
∑ =1,i∈ A

xij
i
∑ =1, j ∈B

xij ≥ 0,i∈ A, j ∈B
xij int eger,i∈ A, j ∈B

60

§ We have already noted that the critical point of
general graphs are odd cycles containing a maximal
number of edges in the matching

61

¢ Such cycles are called blossoms

§ Lemma (cycle contraction). Let M be a matching of G and
let B be a blossom. Let B node-disjoint from the rest of M.
Let G’ be the graph obtained by G contracting B in a
single node. Then M’ of G’ induced by M is maximum in
G’ iff M is maximum in G.

§ Proof. M max in G => M’ max in G’

By contradiction. Assume M’ not max. Hence there exists
an aug. path P in G’ w.r.t. M’.

Let b be the node representing B.

… 62

Proof of the Cycle contraction lemma – cntd.

Two cases can hold:

1. P does not cross b ⟹ P augmenting for M, too.
Contradiction.

Observe that b is free as it represents the node v in B
adjacent to two edges out of M. In other words, v is free if we
restrict to B.

2. P crosses b⟹ b must be an end-point of P.

Define P’=P ∪ P” where P” is inside B.

P’ is augmenting for G. Contradiction.

…
63

Proof of the Cycle contraction lemma – cntd.

§ M’ max in G’ ⟹ M max in G
By contradiction, M is not max. Let P be an aug. path
for M.
Two cases hold:

1. P does not cross b ⟹ P is aug. for G’. A contradiction.
2. P crosses b. Since B contains only one free node, at

least an end-point of P lies outside B. Let it be w.
Let P’ be the sub-path of P joining w with b.
P’ is an aug. path for G’. A contradiction. n

64

In order to find an aug. path in general graphs, it is
“enough” to modify the algorithm on bipartite graphs in
order to include blossom search:

§ For each found blossom B
B is shrinked in a node and a new (reduced) graph is

generated.

§ Each aug. path found in this new graph can be easily
“translated” back into an aug. path in G.

Thanks to the previous lemma, if M is max in the new
graph, it is max even in G.

65

This is the Edmonds algorithm [‘65].

The time complexity depends on how blossoms are
handled. Varying with the used data structures, it can be
either O(n3) or O(mn2).

The best known time complexity is O(m√n)

[Micali & Vazirani ‘80]

66

Example:

67

Example – cntd

68

69

Edmonds Algorithm [‘65]

¢ M matching for G

¢ L subset of the free nodes (if L empty => M max)

¢ F forest s.t. each node of L is the root of a tree in F

¢ Expand F by adding

¢ Nodes that are at odd distance from a node of L have
degree 2 (1 in M and 1 in E\M): we call them internal
nodes

¢ The other nodes: external nodes

¢ …
70

Edmonds algorithm – cntd

¢ Consider the neighbors of the external nodes.
¢ 4 possibilities hold:

1. There esists x esternal and incident to a node y
not in F:

add to F edges (x,y) and (y,z), and (y,z) is in M.

…

x

71

Edmonds algorithm – cntd

2. Two external nodes lying in two different
components of F are adjacent:
augmenting path

… …

72

Edmonds algorithm – cntd

3. Two external nodes x, y in the same component
in F are adjacent:
let C be the found cycle. It is possible to move
the edges in M around C so that the cycle
contraction lemma can be used => reduced
graph G’

… x

y

73

Edmonds algorithm – cntd

4. All the external nodes are adjacent to internal
nodes:
M is maximum.

…

…

74

Lemma. At each step of the Edmonds algorithm, either
the dimension of F increases, or the dimension of G
decreases, or an aug. path is found, or M is maximum.

Complexity. Number of iterations ≤

num. of times F is increased (at most n)+
num. of times a blossom is shrinked (at most n)+
num. of found aug. paths (at most n/2).
The time complexity depends on how blossoms are
handled. Varying with the used data structures, it can
be either O(n3) or O(mn2).

Best known time complexity: O(m√n) [Micali & Vazirani ‘80]

ANOTHER APPLICATION

75

Reminder:

§ Interconnection topologies are constituted by layers
of basic modules that are 2x2 cross-bar switches

§ Any output can be reached by any input by properly
setting some switches

§ A single routing can be easily performed if the
network is self-routing (e.g. Butterfly, Baseline, etc.)

76

§ The log N-stage networks are not rearrangeable, i.e.
not all routes can be done simultaneously

§ Two packets may want to use the same link at the
same time

§ Solution: buffering (though buffers increase delay)

77

The multistage topologies are good to use, because they are:

§ modular

§ scalar

Nevertheless, the buffers at each node provoke:

§ delays for going through the stages

§ decreased throughput due to internal blocking

Solution: (input) buffers that are external to the topology

78

Eytan Modiano
Slide 19

Input buffer architecture

• Packets buffered at input rather than output
– Switch fabric does not need to be as fast

• During each slot, the scheduler established the crossbar
connections to transfer packets from the input to the outputs

– Maximum of one packet from each input
– Maximum of one packet to each output

• Head of line (HOL) blocking – when the packet at the head of two
or more input queues is destined to the same output, only one can
be transferred and the other is blocked

Crossbar switch

X = connect

Scheduler
X

X

X

X

1

2

3

4

1 2 3 4

§ Head of line (HOL) buffer: only the first packet can leave
the buffer.

§ Buffers are connected through a crossbar network to the
inputs of the topology

§ During each slot, the scheduler establishes the crossbar
connections to transfer packets from the buffers to the
inputs

79

§ When the packets at the head of two or more input
queues are destined to the same input node, only
one can be transferred and the other is blocked

§ This behavior limits throughput because some
inputs (and consequently outputs) are kept idle
during a slot even when they have other packets to
send

§ …

80

§ If the inputs are allowed to transfer packets that are not at
the head of their buffers, throughput can be improved

§ Example:

§ How does the scheduler decide which input to transfer to
the network? 81

Eytan Modiano
Slide 24

Overcoming HOL blocking

• If inputs are allowed to transfer packets that are not at the head of
their queues, throughput can be substantially improved (not
FCFS)

Example:

• How does the scheduler decide which input to transfer to which
output?

21

23

34

24

input 1

input 2

input 3

input 4

Eytan Modiano
Slide 25

Backlog matrix

• Each entery in the backlog matrix represent the number of
packets in input i’s queue that are destined to output j

• During each slot the scheduler can transfer at most one packet
from each input to each output
– The scheduler must choose one packet (at most) from each row, and

column of the backlog matrix
– This can be done by solving a bi-partite graph matching algorithm
– The bi-partite graph consists of N nodes representing the inputs and

N nodes representing the outputs

1

2

3

input

output

1 2 3

3 3

2 0

2

0

0

0 0

Backlog matrix:

§ rows: input buffers

§ columns: outputs

§ each entry (i,j) represents the number of packets in
buffer i destined to output j

82

§ During each slot, the scheduler can transfer at most
one packet from each buffer to each output

§ The scheduler must choose at most one packet from
each row and from each column of the backlog
matrix

§ This can be done by solving a bipartite matching
algorithm…

83

Eytan Modiano
Slide 26

Bi-partite graph representation

• There is an edge in the graph from an input to an output if there is a
packet in the backlog matrix to be transferred from that input to that
output
– For previous backlog matrix, the bi-partite graph is:

• Definition: A matching is a set of edges, such that no two edges share
a node
– Finding a matching in the bi-partite graph is equivalent to finding a set of

packets such that no two packets share a row or column in the backlog
matrix

• Definition: A maximum matching is a matching with the maximum
possible number of edges
– Finding a maximum matching is equivalent to finding the largest set of

packets that can be transferred simultaneously

1

2

3

1

2

3

Eytan Modiano
Slide 25

Backlog matrix

• Each entery in the backlog matrix represent the number of
packets in input i’s queue that are destined to output j

• During each slot the scheduler can transfer at most one packet
from each input to each output
– The scheduler must choose one packet (at most) from each row, and

column of the backlog matrix
– This can be done by solving a bi-partite graph matching algorithm
– The bi-partite graph consists of N nodes representing the inputs and

N nodes representing the outputs

1

2

3

input

output

1 2 3

3 3

2 0

2

0

0

0 0

§ The bipartite graph G=(V ∪ W, E) is built as follows:
§ V: N nodes representing the buffers
§ W: N nodes representing the outputs
§ E: there is an edge from a buffer i to an output j iff there is a

packet in the backlog matrix to be transferred from i to j.
§ Example:

§ Finding a maximum matching is equivalent to finding the
largest set of packets that can be transferred simultaneously

84

§ Finding a maximum matching during each time slot does
not eliminate the effects of HOL blocking

§ It is, indeed, necessary to look beyond a single slot when
making scheduling decisions

§ Solution: edge (i,j) is assigned a weight equal to the
value of element (i,j) of the backlog matrix

§ Theorem: A scheduler that chooses, during each time
slot, the maximum weighted matching achieves full
utilization.

§ Proof and other details: see [McKeon et al. 1999]
85

