

MOBILE SENSORS

- Devices of small dimension and low cost (~150 \$)
- Monitoring Unit (sensing)
- Transmitter/receiver Unit
- Small battery
- Motion system

Mobile sensors are especially useful in critical environments (e.g. in presence of dispersion of pollutants, gas plumes, fires, ...)

THE PROBLEM (1)

Given an Area of Interest (AoI) to cover:

We can assume that each sensor is able to monitor a disk centered at its position and having radius r=sensing radius.

The aim is to entireley cover the AoI (final equilibrium state).

THE PROBLEM (3)

- Traversed Distance:
- It is the dominant cost
- Number of starting/stopping
 - start/stop moves are more expensive than a continuous movement
- Communication cost
- It depends on the number of exchanged messages and on the packet dimension at each transmission
- Computation cost
- Usually negligible, unless processors are extremely sophisticated

THE PROBLEM (2)

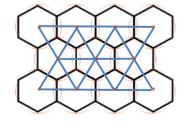
Coordination algorithm

- Initial Config.
 - Can be:
 - random
 - from a safe location
- Can be: • regular tassellation

Desired Config.

- any configuration, provided that the AoI is covered
- At the same time, some parameters need to be optimized:
 - Traversed Distance
 - Number of starting/stopping
 - Communication costs
- Computation costs

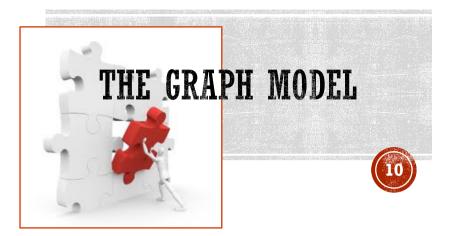
It is well known that an optimal coverage using equally sized circles is the one positioning the centers on the vertices of a triangular grid opportunely sized.



THE PROBLEM (5)

In the centralized case:

- The whole coverage is guaranteed assigning to each sensor a position on the grid
- The total energy consumption should be minimized
- We model this problem with the classical minimum weight perfect matching
- Obs. This model works only for the centralized case, where the AoI and the initial position of each sensor are known.



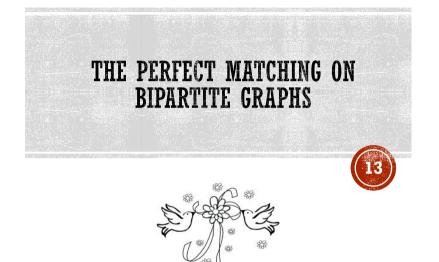
9

THE GRAPH MODEL (1)

- Formal definition of the problem:
- Set of *n* mobile sensors $S = \{S_1, S_2, ..., S_n\}$
- Set of p locations on the AoI $L=\{L_1, L_2, ..., L_p\}$
- $n \ge p$ (in order to guarantee the complete coverage)
- For each S_i, determine the location L_j that S_i will have to reach, so to minimize the total consumed energy.

THE GRAPH MODEL (2)

- Define a weighted bipartite graph
 - G=(S UL, E, w) as follows:
 - One node for each sensor S_i
 - One node for each location L_j
 - An edge between S_i and L_j for each i=1...n and j=1...p
 - For each edge e_{ij} , $w(e_{ij})$ is proportional to the energy consumed by S_i to reach location L_i
 - The aim is to choose a matching between sensors and locations so that the total consumed energy is minimized



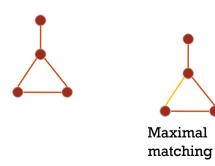
MATCHING (1)

- Def. A matching is a set of edges $M \subseteq E$ such that every node is adjacent to at most one edge in M.
- Maximal matching
 - There exists no $e \notin M$ such that $M \cup \{e\}$ is a matching
- Maximum matching
 - Matching *M* such that |*M*| is maximum
- Perfect matching
 - |M| = n/2: each node is adjacent to exactly one edge in M.

 \bigcirc

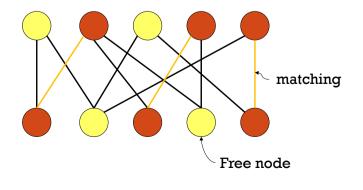
MATCHING (2)

Example



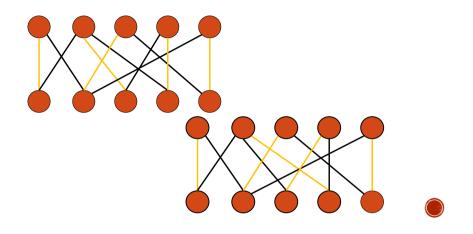
MATCHING (3)

Nomenclature



MATCHING (4)

• Note. The maximum matching is not unique



MATCHING (5)

Original problem: wedding problem

- the nodes of a set are men
- the nodes of the other set are wemen
- An edge connects a man and a woman who like each other

o Maximum matching aims at maximizing the number of couples

MATCHING PROBLEMS

- Given a graph *G*, to find a:
 - Maximal matching is easy (greedy)
 - Maximum matching is
 - polynomial; not easy.
 - Easier in the important case of bipartite graphs
 - Perfect matching
 - It is a special case of the maximum matching
 - For it, some theorems can help

MAXIMUM MATCHING IN BIPARTITE GRAPHS (1)

• TH. (P. Hall) Given a bipartite graph G with $|V_1| \le |V_2|$, G has a perfect matching iff for each set S of k nodes in V_1 there are at least k nodes in V_2 adjacent to some node in S.

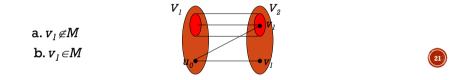
In symbols, $\forall S \subseteq V_l$, $|S| \leq |adj(S)|$.

- PROOF. Not this year: directly go to page 24
- Necessary condition: If G has a perfect matching M and S is any subset of V₁, each node in S is matched through M with a different node in adj(S). Hence |S| ≤ |adj(S)|.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (2)

(proof of the Hall theorem - cntd) G bipartite with $|V_1| \le |V_2|$, G has a perfect matching iff $\forall S \subseteq V_1$, $|S| \le |adj(S)|$.

- **PROOF.** sufficient condition: We have to prove that if the Hall condition is true then there is a perfect matching. By contradiction, assume that M is a maximum matching but $|M| < |V_1|$.
- By hypothesis, $|M| \le |V_1| \Rightarrow \exists u_0 \in V_1$ s.t. $u_0 \notin M$. Let $S = \{u_0\}$; it holds $1 = |S| \le |adj(S)|$ from the Hall cond., so there exists a $v_1 \in V_2$ adjacent to u_0 .

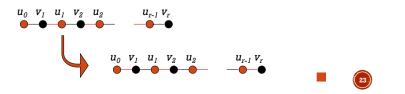


MAXIMUM MATCHING IN BIPARTITE GRAPHS (4)

(proof of the Hall theorem - cntd) G bipartite with $|V_1| \le |V_2|$, G has a perfect matching iff $\forall S \subseteq V_1$, $|S| \le |adj(S)|$.

Continue in this way. As G is finite, we will eventually reach a node v_r that is free w.r.t. M. Each v_i is adjacent to at least one among u_0, u_1, \dots, u_{i-1} .

Analogously to the case r=2:



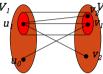
MAXIMUM MATCHING IN BIPARTITE GRAPHS (3)

(proof of the Hall theorem - cntd) *G* bipartite with $|V_1| \le |V_2|$, *G* has a perfect matching iff $\forall S \subseteq V_1$, $|S| \le |adj(S)|$.

a. If $v_l \not\in M OK$

b. Consider the node matched with v_l through M, call it u_l .

 $S=\{u_0,u_1\}$ and $2=|S| \le |adj(S)|$. There exists another node v_2 , Different from v_1 , and adjacent either to u_0 or to u_1 . a. $v_2 \notin M$ b. $v_2 \in M$



MAXIMUM MATCHING IN BIPARTITE GRAPHS (5)

- **COR.** If G is bipartite, k-regular, with $|V_1| = |V_2|$, then G has k disjoint perfect matchings.
- **Proof.** Let *S* be a subset of V_1 .
- adj(S) has at most k|S| nodes (if each node in adj(S) has degree l in the subgraph induced by $S \cup adj(S)$).
- adj(S) has at least |S| nodes (if each node in adj(S) has degree k in the subgraph induced by $S \cup adj(S)$).
- In every case, the Hall condition is true and hence there is a perfect matching.
- Remove it and get a new graph that is bipartite, (k-1)-regular and with $|V_1| = |V_2|$.

Repeat the reasoning.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (6)

- The P. Hall Theorem does not provide an algorithmic method to construct a perfect matching.
- The perfect matching problem in a bipartite graph is equivalent to the maximum flow problem in a network:
 - Given $G=(V=V_1\cup V_2, E)$, construct a flow network G'=(V', E') as follows:
- *V*'=*V U* {*s*} ∪ {*t*}
- •*E':*
- From the source s to all nodes in V_1 :{(s,u) | $u \in V_1$ } U
- All edges in $E: \{(u,v) \mid u \in V_1, v \in V_2, e(u,v) \in E\} U$
- From all nodes in V_2 to the tale $t: \{(v,t) \mid v \in V_2\}$
- Capacity: c(u,v) = l, for all $(u,v) \in E'$

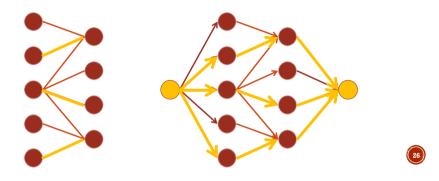
MAXIMUM MATCHING IN BIPARTITE GRAPHS (8)

- Th: (integrality) If the capacity c assumes only integer values, the max flow f is such that |f| is integer. Moreover, for all nodes u and v, f(u,v) is integer.
- Corol.: The cardinality of a max matching M in a bipartite graph G is equal to the value of the max flow f in the associated network G'.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (7)

• Fact: Let M be a matching in a bipartite graph G. There exists a flow f in the network G' s.t. |M| = |f|.

Vice-versa, if f is a flow of G', there exists a matching M in G s.t. |M| = |f|.

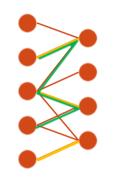


MAXIMUM MATCHING IN BIPARTITE GRAPHS (9)

- The algorithm by Ford-Fulkerson for the max flow in a network runs in O(m|f|) time.
- The max flow of G' has cardinality upper bounded by $min\{|V_1|, |V_2|\}$. Hence, the complexity of an algorithm for the max matching exploiting the max flow runs in O(nm) time.

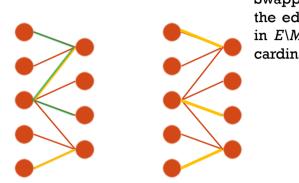
MAXIMUM MATCHING IN BIPARTITE GRAPHS (10)

• Def. Given a matching M in a graph G, an alternating path w.r.t. M is the path alternating edges of M and edges in $E \setminus M$.



MAXIMUM MATCHING IN BIPARTITE GRAPHS (11)

• Def. Given a matching *M* in a graph *G*, an augmenting path w.r.t. *M* is an alternating path starting and finishing in two free nodes w.r.t. *M*.



Swapping the role of the edges in M and in $E \setminus M, M$ has larger cardinality.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (12)

- Th. (Augmenting path) [Berge 1975] *M* is a max matching iff there are no augmenting paths w.r.t. *M*.
- Proof. not this year: directly go to page 37
- (→) If M max, then there are no augmenting paths. Negating, if there are some augmenting paths, then M is not max. This is obvious because we can swap the role of the edges in the augmenting path and increase the cardinality of M.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (13)

- (Proof of Th. *M* is a max matching iff there are no augmenting paths w.r.t. M cntd)
- (\leftarrow) There are no augmenting paths, then *M* is max.
- By contradiction M is not max. Let M' s.t.

|M'| > |M|.

Consider graph H induced by M and M'. Edges that are both in M and in M' are put twice. So H is a multigraph.

• • • •

MAXIMUM MATCHING IN BIPARTITE GRAPHS (14)

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. M - cntd)

- *H* has the following property:
 - For each v in H, $deg(v) \le 2$. (indeed each node has at most one edge from M and one edge from M')
- So, each connected component of *H* is either a cycle or a path.
 - Cycles necessarily have even length, otherwise a node would be incident to two edges of the same matching (*M* or *M*'); this is absurd by the definition of matching.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (16)

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. M - cntd)

•••

- 4. a 2k-path
- 5. a (2k+1)-path whose extremes are incident to M

• • • • • •

6. a (2k+1)-path whose extremes are incident to M'

MAXIMUM MATCHING IN BIPARTITE GRAPHS (15)

- (Proof of Th. *M* is a max matching iff there are no augmenting paths w.r.t. M cntd)
- More in detail, the connected components of *H* can be classified into 6 kinds:
 - 1. An isolated node
 - 2. a 2-cycle

. . .

3. a 2k-cycle, k>1

MAXIMUM MATCHING IN BIPARTITE GRAPHS (17)

(Proof of Th. *M* is a max matching iff there are no augmenting paths w.r.t. M - cntd)

- Reminder: |M| < |M'| by hp.
- Among all the components just defined, only 5 and 6 have a different number of edges from M and from M'; only 6 has more edges from M' than from M.
- So, there is at least one component of kind 6
- This comp. is an augmenting path w.r.t. M: contradiction.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (18)

- We exploit the Augmenting Path Th. to design an iterative algorithm.
- During each iteration, we look for a new augmenting path using a modified Breadth First Search starting from the free nodes.
- In this way, nodes are structured in layers.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (19)

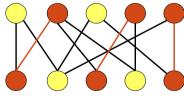
Idea of the algorithm:

- Let *M* be an arbitrary matching (possibly empty) •Find an augmenting path *P*
- While there is an augmenting path:
 - Swap in P the role of the edges in and out of the matching
 - Find an augmenting path P
- Complexity: it dipends on the complexity of finding an augmenting path.

37

• this year skip this example and directly go to page 43

• Example: Let *M* be an arbitrary matching

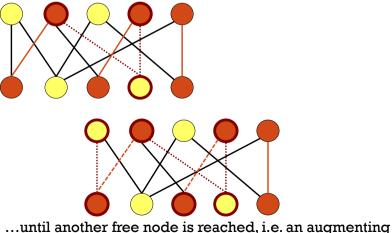


o Find an augmenting path: Choose a free node...

o ...and -in some way (??)- go through the graph...

39

MAXIMUM MATCHING IN BIPARTITE GRAPHS (21)



path has been found

MAXIMUM MATCHING IN BIPARTITE GRAPHS (22)

Swap the role of edges in and out of the matching

MAXIMUM MATCHING IN BIPARTITE GRAPHS (24)

- Problem: how to find an augmenting path w.r.t. M?
- Idea:
 - Choose a free node
 - Run a modified search as follows:
 - Keep trace of the current layer
 - If the layer is even, use an edge in M
 - If the layer is odd, use an edge in $E \setminus M$
 - As soon as a free node has been encountered, a new augmenting path has been found

MAXIMUM MATCHING IN BIPARTITE GRAPHS (23)

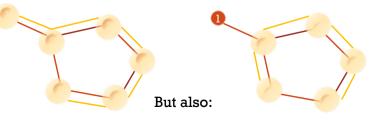
Repeat: choose another free node...

Example:

...consider all its adjacent nodes, and the adjacent nodes of the adjacent nodes... No more augmenting paths. Stop

MAXIMUM MATCHING IN BIPARTITE GRAPHS (25)

- Choose a free node
- Run a modified search as follows:
 - Keep trace of the current layer
 - If the layer is even, use an edge in M
 - If the layer is odd, use edges in $E \setminus M$
 - As soon as a free node has been encountered, a new augmenting path has been found



MAXIMUM MATCHING IN BIPARTITE GRAPHS (26)

- Problem: presence of odd cycles in the graph:
 - in an odd cycle there is always a free node adjacent to two consecutive edges not in *M* belonging to the cycle
 - If the search goes through the cycle along the "wrong" direction, the augmenting path is not detected
- Graphs without odd cycles: bipartite graphs

MAXIMUM MATCHING IN BIPARTITE GRAPHS (28)

- The Hopcroft-Karp algorithm (1973) finds a max matching in a bipartite graph in $O(m\sqrt{n})$ time.
- The idea is similar to the previous one, and consists in augmenting the cardinality of the current matching exploiting augmenting paths.
- During each iteration, this algorithm searches not one but a maximal set of augmenting paths.
- In this way, only $O(\sqrt{n})$ iterations are enough.

No details this year: directly go to page 53

MAXIMUM MATCHING IN BIPARTITE GRAPHS (27)

Algorithm SearchAugmentingPathInBip (G=(U U W,E), M)

- Choose a free node in U
- Repeat
 - If the current node is in U then follow an edge out of M
 - Else follow an edge in M
 - As soon as a free node in W has been reached, a new augmenting path has been detected

Complexity: O(n+m)

Complexity of the algorithm finding the max matching: n/2[O(n+m)+O(n)]=O(nm)

max no. of Swapping of the edges on the aug. path

MAXIMUM MATCHING IN BIPARTITE GRAPHS (29)

Hopcroft–Karp Algorithm

During the *k*-th step:

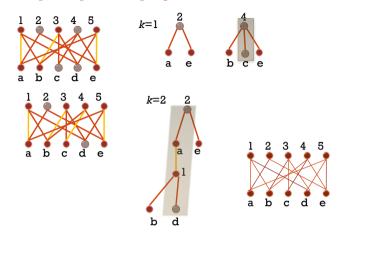
- Run a modified breadth first search starting from ALL the free nodes in V_1 . The BFS ends when some free nodes in V_2 are reached at layer k.
- All the detected free nodes in V_2 at layer k are put in a set F.

Obs. *v* is put in *F* iff it is the endpoint of an aug. path

- Find a maximal set of length k aug. paths node disjoint using a depth first search from the nodes in F to the starting nodes in V_1 (climbing on the BFS tree).
- Each aug. Path is used to augment the cardinality of *M*.
- The algorithm ends when there are no more aug. paths.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (30)

Example: Hopcroft-Karp algorithm



MAXIMUM MATCHING IN BIPARTITE GRAPHS (32)

Analisis of the Hopcroft-Karp algorithm (sketch) - cnt.d

- The symmetric difference between a maximum matching and the partial matching M found after the first \sqrt{n} steps is a set of vertexdisjoint alternating cycles, alternating paths and augmenting paths.
- Consider the augmenting paths. Each of them must be at least \sqrt{n} long, so there are at most \sqrt{n} such paths. Moreover, the maximum matching is larger than *M* by at most \sqrt{n} edges.
- Each step of the algorithm augments the dimension of M by one, so at most \sqrt{n} further steps are enough.
- The whole algorithm executes at most $2\sqrt{n}$ steps, each running in O(m) time, hence the time complexity is $O(m\sqrt{n})$ in the worst case.

MAXIMUM MATCHING IN BIPARTITE GRAPHS (31)

Analysis of the Hopcroft-Karp algorithm (sketch)

- Each step consists in a BFS and a DFS. Hence it runs in O(n+m)=O(m) time.
- The first \sqrt{n} steps take $O(m \sqrt{n})$ time.
- Note. At each step, the length of the found aug. paths is larger and larger; indeed, during step k, ALL paths of length k are found and, after that, only longer aug. paths can be in the graph.
- So, after the first \sqrt{n} steps, the shortest aug. path is at least \sqrt{n} long.
- • • •

MAXIMUM MATCHING IN BIPARTITE GRAPHS (33)

- In many cases this complexity can be improved.
- For example, in the case of random sparse bipartite graphs it has been proved [Bast et al.'06] that the augmenting paths have in average logarithmic length.
- As a consequence, the Hopcroft-Karp algorithm runs only $O(\log n)$ steps and so it can be executed in $O(m \log n)$ time.

