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§ Devices of small dimension and low cost
(~150 $)

§ Monitoring Unit (sensing)

§ Transmitter/receiver Unit

§ Small battery

§ Motion system

Mobile sensors are especially useful in critical
environments (e.g. in presence of dispersion
of pollutants, gas plumes, fires, …)
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Given an Area of Interest (AoI) to cover:

We can assume that each sensor is able to monitor a disk 
centered at its position and having radius r=sensing 
radius.

The aim is to entireley cover the AoI (final equilibrium
state).

§ At the same time, some parameters need to be
optimized:
§ Traversed Distance
§ Number of starting/stopping
§ Communication costs
§ Computation costs 6

Coordination algorithm

Initial Config. Desired Config.
Can be:
• random
• from a safe location

Can be:
• regular tassellation
• any configuration, provided 
that the AoI is covered

§ Traversed Distance:
§ It is the dominant cost

§ Number of starting/stopping
§ start/stop moves are more expensive than a

continuous movement

§ Communication cost
§ It depends on the number of exchanged

messages and on the packet dimension at each
transmission

§ Computation cost
§ Usually negligible, unless processors are

extremely sophisticated
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It is well known that an optimal coverage using
equally sized circles is the one positioning the
centers on the vertices of a triangular grid
opportunely sized.
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In the centralized case:

§ The whole coverage is guaranteed assigning to
each sensor a position on the grid

§ The total energy consumption should be minimized

§ We model this problem with the classical minimum
weight perfect matching

§ Obs. This model works only for the centralized case,
where the AoI and the initial position of each sensor
are known.
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§ Formal definition of the problem:

§ Set of n mobile sensors S={S1, S2, …, Sn}

§ Set of p locations on the AoI L={L1, L2, …, Lp}

§ n≥p (in order to guarantee the complete coverage)

§ For each Si, determine the location Lj that Si will have
to reach, so to minimize the total consumed energy.
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§ Define a weighted bipartite graph

G=(S U L, E, w) as follows:
§ One node for each sensor Si

§ One node for each location Lj

§ An edge between Si and Lj for each i=1…n and j=1…p
§ For each edge eij, w(eij) is proportional to the energy

consumed by Si to reach location Lj

§ The aim is to choose a matching between sensors and
locations so that the total consumed energy is minimized
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§Def. A matching is a set of edges MÍE such that
every node is adjacent to at most one edge in M.

§Maximal matching
§ There exists no eÏM such that M È {e} is a matching

§Maximum matching
§ Matching M such that|M| is maximum

§Perfect matching
§ |M| = n/2: each node is adjacent to exactly one edge in

M.
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Example

Maximal
matching Maximum 

matching

§ Nomenclature
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matching

Free node



§ Note. The maximum matching is not unique
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Original problem: wedding problem

§ the nodes of a set are men

§ the nodes of the other set are wemen

§ An edge connects a man and a woman

who like each other
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¢ Maximum matching aims at maximizing the number of
couples

§ Given a graph G, to find a:
§ Maximal matching is easy (greedy)
§ Maximum matching is

§ polynomial; not easy.
§ Easier in the important case of bipartite graphs

§ Perfect matching
§ It is a special case of the maximum matching
§ For it, some theorems can help
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§ TH. (P. Hall) Given a bipartite graph G with
|V1|£|V2|, G has a perfect matching iff for each set S
of k nodes in V1 there are at least k nodes in V2
adjacent to some node in S.
In symbols," SÍV1, |S| £ |adj(S)|.

§ PROOF. Not this year: directly go to page 24
§ Necessary condition: If G has a perfect matching M

and S is any subset of V1, each node in S is matched
through M with a different node in adj(S). Hence |S|
£ |adj(S)|.
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(proof of the Hall theorem - cntd) G bipartite with |V1|£|V2|, G has a
perfect matching iff " SÍV1, |S| £ |adj(S)|.

§ PROOF. sufficient condition: We have to prove that if the
Hall condition is true then there is a perfect matching. By
contradiction, assume that M is a maximum matching but
|M|<|V1|.

§ By hypothesis,|M|<|V1|Þ$ u0ÎV1 s.t. u0ÏM.
Let S={u0}; it holds 1=|S|£|adj(S)| from the Hall cond.,
so there exists a v1ÎV2 adjacent to u0.
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a. v1ÏM
b. v1ÎM

V1 V2 

u0 v1 

v1 
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(proof of the Hall theorem - cntd) G bipartite with |V1|£|V2|, G has a perfect
matching iff " SÍV1, |S| £ |adj(S)|.

a. If v1ÏM OK
b. Consider the node matched with v1 through M, call it u1.

V1 V2 

u0 

v1 u1
S={u0,u1} and 2= |S|£|adj(S)|.
There exists another node v2, 
Different from v1, and adjacent either to 
u0 or to u1.
a. v2ÏM

b. v2ÎM

v2 

v2 
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(proof of the Hall theorem - cntd) G bipartite with |V1|£|V2|, G has a perfect
matching iff " SÍV1, |S| £ |adj(S)|.

Continue in this way. As G is finite, we will eventually
reach a node vr that is free w.r.t. M. Each vi is adjacent
to at least one among u0,u1,…,ui-1.

Analogously to the case r=2:

u0 v1 u1 v2 u2 ur-1 vr

u0 v1 u1 v2 u2 ur-1 vr

n 24

COR. If G is bipartite, k-regular, with|V1|=|V2|, then G has k
disjoint perfect matchings.

Proof. Let S be a subset of V1.
adj(S) has at most k|S| nodes (if each node in adj(S) has

degree 1 in the subgraph induced by S È adj(S)).
adj(S) has at least |S| nodes (if each node in adj(S) has

degree k in the subgraph induced by SÈadj(S)).
In every case, the Hall condition is true and hence there is a

perfect matching.
Remove it and get a new graph that is bipartite, (k-1)-regular

and with |V1|=|V2|.

Repeat the reasoning. n



§ The P. Hall Theorem does not provide an algorithmic
method to construct a perfect matching.

§ The perfect matching problem in a bipartite graph is
equivalent to the maximum flow problem in a network:

Given G=(V=V1ÈV2,E), construct a flow network G’=(V’,
E’) as follows:
§ V’=V U {s} È {t}
§ E’:

§ From the source s to all nodes in V1 :{(s,u)| u �V1} U
§ All edges in E: {(u,v)| u �V1, v �V2, e (u,v)�E} U
§ From all nodes in V2 to the tale t: {(v,t)| v �V2}

§ Capacity: c(u,v) = 1, for all (u,v) � E'
25

§ Fact: Let M be a matching in a bipartite graph G. There
exists a flow f in the network G’ s.t. |M|=|f|.

Vice-versa, if f is a flow of G’, there exists a matching
M in G s.t. |M|=|f|.
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§ Th: (integrality) If the capacity c assumes only
integer values, the max flow f is such that |f| is
integer. Moreover, for all nodes u and v, f(u,v) is
integer.

§ Corol.: The cardinality of a max matching M in a
bipartite graph G is equal to the value of the max
flow f in the associated network G’.
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§ The algorithm by Ford-Fulkerson for the max flow
in a network runs in O(m|f|) time.

§ The max flow of G’ has cardinality upper bounded
by min{|V1|, |V2|}. Hence, the complexity of an
algorithm for the max matching exploiting the max
flow runs in O(nm) time.
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§ Def. Given a matching M in a graph G, an
alternating path w.r.t. M is the path alternating
edges of M and edges in E\M.
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§ Def. Given a matching M in a graph G, an augmenting path
w.r.t. M is an alternating path starting and finishing in two
free nodes w.r.t. M.
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Swapping the role of
the edges in M and
in E\M,M has larger
cardinality.

§ Th. (Augmenting path) [Berge 1975] M is a max
matching iff there are no augmenting paths w.r.t. M.

§ Proof. not this year: directly go to page 37
§ (è) If M max, then there are no augmenting paths.

Negating, if there are some augmenting
paths, then M is not max. This is obvious
because we can swap the role of the
edges in the augmenting path and
increase the cardinality of M.

§…
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(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M – cntd)

§ (ç) There are no augmenting paths, then M is max.

By contradiction M is not max. Let M’ s.t.

|M’|>|M|.

Consider graph H induced by M and M’. Edges that
are both in M and in M’ are put twice. So H is a
multigraph.

§ …
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(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. M –
cntd)

§ H has the following property:
§ For each v in H, deg(v)≤2. (indeed each node has at

most one edge from M and one edge from M’)

§ So, each connected component of H is either a cycle or
a path.
§ Cycles necessarily have even length, otherwise a

node would be incident to two edges of the same
matching (M or M’); this is absurd by the definition of
matching.
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(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M – cntd)

§ More in detail, the connected components of H can be
classified into 6 kinds:

1. An isolated node

2. a 2-cycle

3. a 2k-cycle, k>1

…
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(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. M –
cntd)

…
4. a 2k-path

5. a (2k+1)-path whose extremes are incident to M

6. a (2k+1)-path whose extremes are incident to M’
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(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. M –
cntd)

§ Reminder: |M|<|M’| by hp.

§ Among all the components just defined, only 5 and 6
have a different number of edges from M and from
M’; only 6 has more edges from M’ than from M.

§ So, there is at least one component of kind 6

§ This comp. is an augmenting path w.r.t. M:
contradiction. n
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§ We exploit the Augmenting Path Th. to design an
iterative algorithm.

§ During each iteration, we look for a new
augmenting path using a modified Breadth First
Search starting from the free nodes.

§ In this way, nodes are structured in layers.
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Idea of the algorithm: 

§ Let M be an arbitrary matching (possibly empty)
¢Find an augmenting path P

§ While there is an augmenting path:
§ Swap in P the role of the edges in and out of the 

matching
§ Find an augmenting path P

Complexity: it dipends on the complexity of finding an 
augmenting path.
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§ this year skip this example and directly go to page 43
§ Example: Let M be an arbitrary matching
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¢ Find an augmenting path: Choose a free node…

¢ …and -in some way (??)- go through the graph… 40

…until another free node is reached, i.e. an augmenting
path has been found
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Swap the role of edges in and out of the matching
42

Repeat: choose another free node…

…consider all its adjacent
nodes, and the adjacent
nodes of the adjacent
nodes…

… and swap
No more augmenting
paths.
Stop

§ Problem: how to find an augmenting path w.r.t. M?

§ Idea:
§ Choose a free node
§ Run a modified search as follows:

§ Keep trace of the current layer
§ If the layer is even, use an edge in M
§ If the layer is odd, use an edge in E\M
§ As soon as a free node has been encountered, a

new augmenting path has been found
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§ Choose a free node
§ Run a modified search as follows:

§ Keep trace of the current layer
§ If the layer is even, use an edge in M
§ If the layer is odd, use edges in E\M
§ As soon as a free node has been

encountered, a new augmenting path
has been found
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Example:
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But also:



§ Problem: presence of odd cycles in the graph:
§ in an odd cycle there is always a free node adjacent to

two consecutive edges not in M belonging to the cycle
§ If the search goes through the cycle along the “wrong”

direction, the augmenting path is not detected

§ Graphs without odd cycles: bipartite graphs
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1

2
3

6
5

4

Algorithm SearchAugmentingPathInBip (G=(U U W,E), M)
§ Choose a free node in U
§ Repeat

§ If the current node is in U then follow an edge out of M
§ Else follow an edge in M
§ As soon as a free node in W has been reached, a new

augmenting path has been detected

Complexity: O(n+m)
Complexity of the algorithm finding the max matching:

n/2[O(n+m)+O(n)]=O(nm)

46
max no. of 
iterations

Swapping of the edges
on the aug. path

§ The Hopcroft–Karp algorithm (1973) finds a max
matching in a bipartite graph in O(m√n) time.

§ The idea is similar to the previous one, and
consists in augmenting the cardinality of the
current matching exploiting augmenting paths.

§ During each iteration, this algorithm searches not
one but a maximal set of augmenting paths.

§ In this way, only O(√n) iterations are enough.

No details this year: directly go to page 53
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Hopcroft–Karp Algorithm

During the k-th step:

§ Run a modified breadth first search starting from ALL the
free nodes in V1. The BFS ends when some free nodes in V2
are reached at layer k.

§ All the detected free nodes in V2 at layer k are put in a set F.

Obs. v is put in F iff it is the endpoint of an aug. path

§ Find a maximal set of length k aug. paths node disjoint using
a depth first search from the nodes in F to the starting nodes
in V1 (climbing on the BFS tree).

§ Each aug. Path is used to augment the cardinality of M.

§ The algorithm ends when there are no more aug. paths.
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Example: Hopcroft–Karp algorithm
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1    2    3    4    5

a    b c d e

k=1
2

a     e

4

b c e

1    2    3    4    5

a    b c d e

k=2 2

a    e

1

b d

1    2    3    4    5

a    b c d e

Analysis of the Hopcroft–Karp algorithm (sketch)

§ Each step consists in a BFS and a DFS. Hence it runs in
O(n+m)=O(m) time.

§ The first √n steps take O(m √n) time.

§ Note. At each step, the length of the found aug. paths is
larger and larger; indeed, during step k, ALL paths of
length k are found and, after that, only longer aug. paths
can be in the graph.

§ So, after the first √n steps, the shortest aug. path is at
least √n long.

§ …
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Analisis of the Hopcroft–Karp algorithm (sketch) – cnt.d

§ The symmetric difference between a maximum matching and the
partial matching M found after the first √n steps is a set of vertex-
disjoint alternating cycles, alternating paths and augmenting paths.

§ Consider the augmenting paths. Each of them must be at least √n long,
so there are at most √n such paths. Moreover, the maximum matching
is larger than M by at most √n edges.

§ Each step of the algorithm augments the dimension of M by one, so at
most √n furhter steps are enough.

§ The whole algorithm executes at most 2√n steps, each running in O(m)
time, hence the time complexity is O(m √n) in the worst case.
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§ In many cases this complexity can be improved.

§ For example, in the case of random sparse bipartite graphs it has
been proved [Bast et al.’06] that the augmenting paths have in
average logarithmic length.

§ As a consequence, the Hopcroft–Karp algorithm runs only
O(log n) steps and so it can be executed in O(m log n) time.
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