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Whenever a data mule is not used, sensing 
devices run with very low energy consumption to 
sense and monitor the surrounding environment, 
so data collection is the main reason of energy 
consumption. 

The aim of the data collection problem is to 
transfer all of the periodically sensed data to 
the sink efficiently by one or more hops so that 
the network lifetime is maximized.
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Many approaches to the problem:
§Naive approach: each sensor node increases its 
transmission range to send data directly to the 
sink, resulting in enormous energy consumption 
which reduces network lifetime. 

§Multi-hop data routing: sensor nodes send 
gathered data to the nearest node on the shortest 
path to the sink. So, the nodes close to the sink 
send a large number of data to it and die out 
quickly, causing an uneven load distribution in 
network. 
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Many approaches to the problem (contd)

§Clusters: sensors nodes are subdivided into 
clusters transmitting aggregated data to the sink. 
Usually, cluster head nodes accumulate data 
packets from their member nodes and transmit 
these data to the sink. Since energy dissipation is 
directly proportional to the traversed distance, 
an issue is to minimize the inter-cluster and 
intra-cluster distances. 

§…
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Many approaches to the problem (contd):

§ Duty cycle based mode: sensor transmitters are active 
only in some periods. Sleeping sensors are activated 
either at fixed intervals or when they sense an event 
or data. When a sender transmits data (which may be 
either from a relay node or generated by itself), it 
establishes a link for data transmission if there are 
active nodes among its neighbors. If all of them are 
in a sleep state, the sender needs to remain active 
until someone wakes up and data can be transmitted. 
So, this mode increases the transmission delay of the 
network. 
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Approach from [Sal19] based on the duty cycle mode:

A part of the nodes is selected to construct a 
connected sub-network (backbone), whose nodes 
adopt a periodic sleep/awake working mode at 
fixed intervals, while the other nodes turn off the 
radio device when there is no data to transmit, 
and only sensing surrounding environment. 
When there is data to be sent, the radio device is 
turned on and send the data to the nodes in the 
backbone, then route the data to the sink through 
the nodes in the backbone. 
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Approach based on the duty cycle mode (contd)

Thus, many nodes are in the sleep state most of 
the time, which can save a lot of energy. 
Instead, the energy consumption of the nodes in 
the backbone is relatively high. 
Therefore, after the backbone works for a certain 
period of time, the nodes with more residual 
energy are selected to reconstruct a *new* 
backbone, so that the energy consumption of nodes 
in the network is more balanced, which improves 
the network lifetime. 
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Approach based on the duty cycle mode (contd)

Requirements of the backbone: 
(a) # of nodes in the backbone as small as possible 

(min); 
(b) at least one route to the sink for each node in 

the backbone (connected); 
(c) The other nodes in the network must 

communicate directly with at least one node in 
the backbone (dominating set). 

In other words, these nodes constitute a min 
connected dominating set…

9

MIN CONNECTED 
DOMINATING SET
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Def. A (min) connected dominating set (CDS) for 
a graph G = (V, E) is a subset D of V such that:
§D induces a connected subgraph of G
§D is a (min) DS (e.g., fig. (c)).

Def. A dominating set (DS) for 
a graph G = (V, E) is a subset D of V such 
that every node not in D is adjacent to 
at least one member of D (e.g., fig (a))

A min DS is a dominating set with 
smallest possible cardinality, call it d 
(e.g., fig (b)). 
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Let d be the cardinality of a min CDS.
Any spanning tree T of G has at least two leaves. 

A maximum leaf spanning tree is a spanning 
tree that has the largest possible number of 
leaves among all spanning trees of G. Call it l.
Theorem. In any n-node graph G, where n > 2, 
n=d+l.
§ Proof. …



13

Proof. Prove the two inequalities:
§ If D is a CDS, then there exists a spanning 
tree for G whose leaves include all nodes that are not 
in D : start from the (connected) subgraph induced 
by D and add as leaf each node v that is not in D to a 
neighbor of v in D. Let l’≤l its # of leaves. 
Then, by construction, l ≥ l’ = n − d.

§ Let T  be the max leaf spanning tree of G.
The nodes of T  that are not leaves form a CDS D’ 
of G, so |D’|=d’ ≥d. This shows that n − l = d’ ≥ d.

§ Putting these two inequalities together, we 
have n=d+l.   

Proof of Thm: n=d+l.
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Computationally, this implies that determining 
the connected domination number is equally 
difficult as finding the max leaf number.

It is NP-complete to test whether there exists a 
CDS with size less than a given threshold, or 
equivalently to test whether there exists a 
spanning tree with at least a given number of 
leaves. 
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§ In terms of approximation algorithms, connected 
domination and maximum leaf spanning trees are 
not the same: there exists an approximation for the 
min CDS that achieves a factor of 2 ln ∆ + O(1), 
where ∆ is the maximum degree of G [Guha&Khuller’98]

while the max leaf spanning tree problem can be 
approximated within a factor of 2 [Solis-Oba&Roberto‘98].

§ In graphs of maximum degree 3, the CDS and its 
complementary maximum leaf spanning tree 
problem can be solved in polynomial time [Ueno et al.‘88].
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If we drop the constraint to induce a connected 
subgraph, we require to find a min dominating 
set, studied from the 1950s onwards, whose rate 
of research significantly increased in the mid-
1970s.
§…



17

Set Cover Problem:
Given a set of subsets S={S1, …, Sn} of the 
universal set U such that            

what is the smallest subset J of {1,…,n} such that
      ?

In 1972, Karp proved the set cover problem to 
be NP-complete, with immediate implications for 
the dominating set problem:
§…

Si =U
i∈J


Si =U
i=1..m

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Theorem. There is a bijection between the 
solutions of min dominating set and min set 
cover problems.

Proof. The following two reductions show that the 
minimum dominating set problem and the set 
cover problem are equivalent under L-reductions: 
given an instance of one problem, we can 
construct an equivalent instance of the other 
problem.
…
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Bijection between min dominating set and min set cover (contd)

From dominating set to set cover
Given G = (V, E) with V = {1, 2, ..., n}, construct a set 
cover instance (U, S) as follows: 

§ the universe U is V, 

§ the family of subsets is S = {S1, S2, ..., Sn} such 
that Sv consists of node v and all its adjacent nodes.

Now, if D is a dominating set for G, then
C = {Sv : v ∈D} is a feasible set cover, with |C| = |D|. 

Conversely, if C = {Sv : v ∈D} is a set cover, then D is a 
dominating set for G, with |D| = |C|.

…
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Bijection between min dominating set and min set cover (cntd)

Example: Given G
construct a set cover instance with universe U = 
{1, 2, 3, 4, 5, 6} and subsets:
S1 = {1, 2, 5}, S2 = {1, 2, 3, 5}, S3 = {2, 3, 4, 6},
S4 = {3, 4}, S5 = {1, 2, 5, 6}, and S6 = {3, 5, 6}.
D = {3, 5} is a dominating set for G and 
corresponds to the set cover C = {S3, S5}.
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Bijection between min dominating set and min set cover (cntd)

From set cover to dominating set
Let (U,S) be an instance of set cover with 
universe U and the family of subsets
S = {Si : i ∈ I}; assume that U and the index 
set I are disjoint. 
Construct graph G = (V, E) as follows: 
§ the set of nodes is V = I ∪ U, 

§ there is an edge {i, j} ∈ E between each 
pair i, j ∈ I, and there is also an edge {i, u} for 
each i ∈ I and u ∈ Si. It turns out that G is a split 
graph: I is a clique and U is an independent set.
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Bijection between min dominating set and min set cover (cntd)

Now if C = {Si : i ∈D} is a set cover for some D ⊆ I, 
then D is a dominating set for G, with |D| = |C|. 

Indeed: for each u ∈ U there is an i ∈D such 
that u ∈ Si, and by construction, u and i are 
adjacent in G; hence u is dominated by i; 
moreover, since D must be nonempty, each i ∈ I is 
adjacent to a node in D.
Conversely, let D be a dominating set for G. Then 
construct another dominating set X s.t. |X|≤|D| 
and X ⊆ I: simply replace each u ∈D ∩ U by a 
neighbour i ∈ I of u. Then C = {Si : i ∈ X} is a set 
cover, with |C| = |X| ≤ |D|.
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Bijection between min dominating set and min set cover (cntd)

Example Here U = {a, b, c, d, e}, I = {1, 2, 3, 4},
S1 = {a, b, c}, S2 = {a, b}, S3 = {b, c, d}, S4 = {c, d, e}.

Let C = {S1, S4} be a set cover; this corresponds to 
the dominating set D = {1, 4}. 
D = {a, 3, 4} is another dominating set for G. 
Given D, we can construct a dominating set X = 
{1, 3, 4} which is not larger than D and is a subset 
of I. 

Dominating set X corresponds to set 
cover C={S1, S3, S4}.
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In view of this equivalence, not only the dominating 
set problem is NP-complete as well, but an efficient 
algorithm for min dominating set would provide an 
efficient algorithm for set cover, and vice-versa. 

Moreover, the reductions preserve the approximation 
ratio: for any α, a polynomial α-approx algorithm for 
min dominating set would provide a polynomial
α-approx algorithm for set cover and vice-versa.
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Two-step greedy algoritm [Guha & Khuller ‘98]:

§ Consider G and a subset C of its nodes. 

§ All nodes in G can be divided into three classes w.r.t. C:
§ B (Black): nodes in C

§ Gr (Gray): nodes not in C but adjacent to C

§ W (White): nodes not in C and not adjacent to C 

Clearly, B U Gr U W=V, and C is a CDS if and only if 
there is no white node AND the subgraph induced by 
black nodes is connected. 

CC: # of conn. components in this black subgraph. 

Then: |W|+CC=1.
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Greedy algorithm based on the potential 
function   Pf = |W|+ CC:

First-Step Greedy Algorithm (G)

Repeat
if there exists a white or gray node s. t.
coloring it in black and its adjacent white nodes in 
gray would reduce the value of Pf
then choose such a node and reduce the value of Pf
else return
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Clearly, when the loop ends, no white node will 
exist, i.e., all black nodes form a dominating set: 

however, the subgraph induced by black nodes 
may be not connected…

Pf=5+1

Pf=0+2
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Second-Step Greedy Algorithm (G)
Repeat

color either one or two gray nodes in black to reduce CC

Until CC=1

This step guarantees to obtain a connected 
dominating set. 

Pf=0+2

Pf=0+1
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The authors prove that the approximation ratio 
is 3+ln D with D = max degree of G. 

It is possible to introduce a more complex 
potential function, design a single-step greedy 
algorithm and get a better approximation ratio 
of 2+ln D [Ruan et al. ‘04]
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Consider a set of n equal-sized 
circles in the plane. 

The intersection graph of these 
circles is an n-node graph; each 
node corresponds to a circle, and 
there is an edge between two 
nodes when the corresponding 
circles intersect (tangent circles 
are assumed to intersect). 
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Such intersection graphs are called 
unit disk graphs, and the set of n 
circles is an intersection model. 

Disk graphs are suitable to model 
wireless networks: each circle 
center is a transceiver and the 
radius represent the transmission 
radius. If the network is 
homogeneous, the circles will be 
approximately equal in size and, 
w.l.o.g., it is equal to 1. 
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When restricted to UDGs, min CDS is still NP-
hard [Lichtenstein ‘82]. It remains NP-hard when 
restricted to grids, that are a subclass of UDGs 
[Clark, Colbourn, Johnson ‘90].

[Cheng et al 2003] gives a polynomial time 
approximation scheme (PTAS), that is, for any 
(arbitrarily small) ε > 0, there exists a polynomial-
time (1 + ε)-approximation; note that the time is 
polynomial in the problem size for every fixed ε, 
but can be different for different ε.

But this algorithm is not used in practice…
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[Purohit & Sharma ‘10] gives an easy distributed 
algorithm for UDGs reducing a given (also trivial) 
CDS:

Def. The convex hull for a set of points X in the 
2D space is the minimum convex set containing X. 
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Algorithm Distributed_Reduce_CDS 
Repeat
 Select a min degree node u from the given CDS
 Compute CH(N[u]) and, ∀ i ∈ N(u), CH(N[i])
 if CH(N[u]) ⊆ ⋃i∈N(u)CH (N[i])

  then remove node u from the given CDS
Until there are unconsidered nodes in the given CDS

Note. N[v] is the closed neighborhood, i.e., v and its 
adjacent nodes.
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Algorithm Distributed_Reduce_CDS 
Repeat
 Select a minimum degree node u from the given 
CDS
 Compute CH(N[u]) and, ∀ i ∈ N(u), CH(N[i])
 if CH(N[u]) ⊆ ⋃i∈N(u)CH (N[i])
  then remove node u from the given CDS
Until there are unconsidered nodes in the given CDS

Example:
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Example:

and so on…

Algorithm Distributed_Reduce_CDS 
Repeat
 Select a minimum degree node u from the given 
CDS
 Compute CH(N[u]) and, ∀ i ∈ N(u), CH(N[i])
 if CH(N[u]) ⊆ ⋃i∈N(u)CH (N[i])
  then remove node u from the given CDS
Until there are unconsidered nodes in the given CDS
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Example:
nodes 
with 
larger 
degree are 
not 
worthy to 
be 
considered
…

Algorithm Distributed_Reduce_CDS 
Repeat
 Select a minimum degree node u from the given 
CDS
 Compute CH(N[u]) and, ∀ i ∈ N(u), CH(N[i])
 if CH(N[u]) ⊆ ⋃i∈N(u)CH (N[i])
  then remove node u from the given CDS
Until there are unconsidered nodes in the given CDS
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This algorithm:
- is very easy and sometimes reduces the 

dimension of the given CDS because it 
exploits geometric reasonings 

- has the merit to work in a distributed 
fashion (no global knowledge is necessary)

BUT
no approximation ratio is guaranteed!!


