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THE DATA COLLECTION PROBLEM (1)

Whenever a data mule is not used, sensing
devices run with very low energy consumption to
sense and monitor the surrounding environment,
so data collection is the main reason of energy
consumption.

The aim of the data collection problem is to
transfer all of the periodically sensed data to
the sink efficiently by one or more hops so that
the network lifetime is maximized.
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THE DATA COLLECTION PROBLEM (2)
Many approaches to the problem:

= Naive approach: each sensor node increases its

transmission range to send data directly to the
sink, resulting in enormous enerqy consumption

which reduces network lifetime.

= Multi-hop data routing: sensor nodes send

gathered data to the nearest node on the shortest
path to the sink. So, the nodes close to the sink

send a large number of data to it and die out
quickly, causing an uneven load distribution in
network.
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THE DATA COLLECTION PROBLEM (3)

Many approaches to the problem (contd)

= Clusters: sensors nodes are subdivided into
clusters transmitting aggregated data to the sink.
Usually, cluster head nodes accumulate data

packets from their member nodes and transmit

these data to the sink. Since energy dissipation is

directly proportional to the traversed distance,
an issue is to minimize the inter-cluster and
intra-cluster distances.
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THE DATA COLLECTION PROBLEM (4)

Many approaches to the problem (contd):

= Duty cycle based mode: sensor transmitters are active

only in some periods. Sleeping sensors are activated

either at fixed intervals or when they sense an event
or data. When a sender transmits data (which may be
either from a relay node or generated by itself), it
establishes a link for data transmission if there are
active nodes among its neighbors. If all of them are
in a sleep state, the sender needs to remain active
until someone wakes up and data can be transmitted.
So, this mode increases the transmission delay of the

network.



A POSSIBLE MIXED APPROACH (1)

Approach from [Sal19] based on the duty cycle mode:

A part of the nodes is selected to construct a
connected sub-network (backbone), whose nodes
adopt a periodic sleep/awake working mode at

fixed intervals, while the other nodes turn off the
radio device when there is no data to transmit,

and only sensing surrounding environment.

When there is data to be sent, the radio device is
turned on and send the data to the nodes in the
backbone, then route the data to the sink through
the nodes in the backbone. @

A POSSIBLE MIXED APPROACH (2)

Approach based on the duty cycle mode (contd)

Thus, many nodes are in the sleep state most of

the time, which can save a lot of energy.

Instead, the energy consumption of the nodes in
the backbone is relatively high.

Therefore, after the backbone works for a certain
period of time, the nodes with more residual

energy are selected to reconstruct a *new*

backbone, so that the energy consumption of nodes

in the network is more balanced, which improves
the network lifetime.
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A POSSIBLE MIXED APPROACH (3)

Approach based on the duty cycle mode (contd)

Requirements of the backbone:

(a) # of nodes in the backbone as small as possible
(min);

(b) at least one route to the sink for each node in
the backbone (connected);

(c) The other nodes in the network must
communicate directly with at least one node in
the backbone (dominating set).

In other words, these nodes constitute a min
connected dominating set..

MIN CONNECTED
DOMINATING SET




MIN CONNECTED DOMINATING SET (1)

Def. A dominating set (DS) for -
a graph G = (V, E) is a subset D of V such @_.

that every node not in D is adjacent to
at least one member of D (e.g., fig (a))

A min DS is a dominating set with
smallest possible cardinality, call it d

(e.g., fig (b)).
Def. A (min) connected dominating set (CDS) for

agraph G= (V,E)is asubset Dof Vsuch that:
=D induces a connected subgraph of G

=D is a (min) DS (e.g., fig. (c)). @

MIN CONNECTED DOMINATING SET (2)

Let d be the cardinality of a min CDS.
Any spanning tree T of G has at least two leaves.

A maximum leaf spanning tree is a spanning
tree that has the largest possible number of
leaves among all spanning trees of G. Call it L

Theorem. In any n-node graph G, where n > 2,
n=d+l.

» Proof. ..
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MIN CONNECTED DOMINATING SET (2)

Proof of Thm: n=d-+l.

Proof. Prove the two inequalities:

=If Dis a CDS, then there exists aspanning
tree for G whose leaves include all nodes that are not
in D : start from the (connected) subgraph induced
by D and add as leaf each nodev that is not inD to a
neighbor of vin D. Let /</ its # of leaves.
Then, by construction, /> {"= n-d.

=Let T be the max leaf spanning tree of G.
The nodes of T that are not leaves form a CDS D’
of G, so |D'|=d’ >d. This shows thatn-/=d’ > d.

= Putting these two inequalities together, we

have n=d+/. O @

COMPUTATIONAL COMPLEXITY (1)

Computationally, this implies that determining
the connected domination number is equally
difficult as finding the max leaf number.

It is NP-complete to test whether there exists a
CDS with size less than a given threshold, or
equivalently to test whether there exists a
spanning tree with at least a given number of
leaves.



COMPUTATIONAL COMPLEXITY (2)

= In terms of approximation algorithms, connected
domination and maximum leaf spanning trees are
not the same: there exists an approximation for the
min CDS that achieves a factor of 2 ln A + O(1),
where A is the maximum degree of G [GuhagKhuller'9g]
while the max leaf spanning tree problem can be
approximated within a factor of 2 (solis-Oba&Roberto'98].
= In graphs of maximum degree 3, the CDS and its
complementary maximum leaf spanning tree
problem can be solved in polynomial time [Ueno et al8gl.
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MIN DOMINATING SET (1)

If we drop the constraint to induce a connected
subgraph, we require to find a min dominating
set, studied from the 1950s onwards, whose rate
of research significantly increased in the mid-
1970s.
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A PARENTHESIS ON MIN SET COVER

Set Cover Problem:

Given a set of subsets S={S;, .., S} of the
universal set U such that

Us=U

i=l..m

what is the smallest subset J of {1,..,n} such that

Us.=u?

ieJ

In 1972, Karp proved the set cover problem to
be NP-complete, with immediate implications for
the dominating set problem:

e @

MIN DOMINATING SET (2)

Theorem. There is a bijection between the
solutions of min dominating set and min set
cover problems.

Proof. The following two reductions show that the
minimum dominating set problem and the set
cover problem are equivalent under L-reductions:
given an instance of one problem, we can
construct an equivalent instance of the other
problem.
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MIN DOMINATING SET (3)

Bijection between min dominating set and min set cover (contd)

From dominating set to set cover

Given G= (V,E)with V= {1, 2, ..., n}, construct a set
cover instance (U, S) as follows:

= the universe U isV,

= the family of subsets isS={S;,S,, ... S,} such
that S, consists of node vand all its adjacent nodes.

Now, if Dis a dominating set for G, then
C={S,:veD}is a feasible set cover, with|C| = |D|.

Conversely, if C={S,:v e D}is a set cover, thenDis a
dominating set for G, with |D| = |C|.

()

MIN DOMINATING SET (4)

Bijection between min dominating set and min set cover (cntd)

2 3 4
1@
5 6

Example: Given G

construct a set cover instance with universe U =
{1, 2, 3, 4, 5, 6} and subsets:

S,= {1, 2, 5},S,= {1, 2, 3, 5},5:= {2, 3, 4, 6},

S.= 13, 4},Sc= {1, 2, 5, 6},and Sg= {3, 5, 6}.

D= {3, 5}is a dominating set for G and
corresponds to the set cover C = {S3, Sgl.



MIN DOMINATING SET (5)

Bijection between min dominating set and min set cover (cntd)

From set cover to dominating set

Let (U,S) be an instance of set cover with
universe U and the family of subsets
S={S,:i€el};assume that U and the index 2 4 4

set [ are disjoint. m
Construct graph G= (V,E) as follows:

a b ¢ d e
=the set of nodes isV=IuUU,

= there is an edge{i, j} € E between each
pairi,j€I, and there is also an edge {i, u} for
eachie€elandu€S; It turns out that Gis asplit
graph: Iis aclique and Uis an independent set. @

MIN DOMINATING SET (6)

Bijection between min dominating set and min set cover (cntd)

Now if C= {S;:ie D}is a set cover for some Dc,
then Dis a dominating set for G, with [D| = |C|.

Indeed: for eachu €U there is ani € D such
thatu€eS;, and by construction,uandiare
adjacent in G; henceuis dominated by i;
moreover, since D must be nonempty, eachi€lis
adjacent to a node in D.

Conversely, let D be a dominating set for G. Then
construct another dominating set X s.t. [X|<|D|

and X € I: simply replace eachueDnUby a
neighbouri€Iof u. ThenC= {S;:ie X}is a set

cover, with|C| = [X| < |D|. ©



MIN DOMINATING SET (7) m
Bijection between min dominating set and min set cover (cntd)

a b ¢ d e

Example Here U= {a,b,c,d,e}, I=1{1, 2, 3, 4},
Si1={a,b,c},S2={a, b}, S3=1{b,c,d}, S4={c, d,el.

Let C = {S1,S4} be a set cover; this corresponds to
the dominating set D = {1, 4}.

D= {a, 3, 4}is another dominating set for G.
Given D, we can construct a dominating set X =
{1, 3, 4} which is not larger than D and is a subset
of L.

Dominating set X corresponds to set
cover C={Sy, Ss, S4l. -

©

MIN DOMINATING SET (8)

In view of this equivalence, not only the dominating
set problem is NP-complete as well, but an efficient
algorithm for min dominating set would provide an
efficient algorithm for set cover, and vice-versa.

Moreover, the reductions preserve the approximation
ratio: for any a, a polynomial a-approx algorithm for
min dominating set would provide a polynomial
a-approx algorithm for set cover and vice-versa.
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GREEDY
ALGORITHMS
FOR MIN CDS

A TWO-STEP GREEDY ALGORITHM (1)

Two-step greedy algoritm [Guha & Khuller '98]:
= Consider G and a subset C of its nodes.

= All nodes in G can be divided into three classes w.r.t. C:
= B (Black): nodes in C
= Gr (Gray): nodes not in C but adjacent to C
= W (White): nodes not in C and not adjacent to C
Clearly, B U Gr U W=V, and C is a CDS if and only if

there is no white node AND the subgraph induced by
black nodes is connected.

CC: # of conn. components in this black subgraph.

Then: [W|+CC=1.



A TWO-STEP GREEDY ALGORITHM (2)

Greedy algorithm based on the potential
function Pf = |W|+ CC:

First-Step Greedy Algorithm (G)
Repeat

if there exists a white or gray node s. t.
coloring it in black and its adjacent white nodes in
gray would reduce the value of Pr

then choose such a node and reduce the value of Pf

else return

@

A TWO-STEP GREEDY ALGORITHM (3)

Clearly, when the loop ends, no white node will
exist, i.e., all black nodes form a dominating set:

O 0—O % O P51
O O—O O P0%2

however, the subgraph induced by black nodes
may be not connected..
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A TWO-STEP GREEDY ALGORITHM (4)

Second-Step Greedy Algorithm (G)

Repeat
color either one or two gray nodes in black to reduce CC

Until CC=1

This step guarantees to obtain a connected
dominating set.

O

O OPf=O+2

O o—© OPf=O+1

A ONE-STEP GREEDY ALGORITHM

The authors prove that the approximation ratio
is 3+ln D with D = max degree of G.

It is possible to introduce a more complex
potential function, design a single-step greedy
algorithm and get a better approximation ratio
of 2+ln D [Ruan et al. '04]
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MIN CDS IN UNIT DISK GRAPHS

UNIT DISK GRAPHS (1)

Consider a set of n equal-sized
circles in the plane.

The intersection graph of these
circles is an n-node graph; each
node corresponds to a circle, and
there is an edge between two

nodes when the corresponding
circles intersect (tangent circles
are assumed to intersect).



UNIT DISK GRAPHS (2)

Such intersection graphs are called
unit disk graphs, and the set of n
circles is an intersection model.

Disk graphs are suitable to model

wireless networks: each circle

\ 2t V“

center is a transceiver and the Q“S{e\a

radius represent the transmission ‘A—%A A KN
20 NIV

radius. If the network is
homogeneous, the circles will be
approximately equal in size and,
w.l.o.g., it is equal to 1.

(&)

MIN CDS IN UNIT DISK GRAPHS (1)

When restricted to UDGs, min CDS is still NP-
hard [Lichtenstein '82]. It remains NP-hard when
restricted to grids, that are a subclass of UDGs
[Clark, Colbourn, Johnson '90].

[Cheng et al 2003] gives a polynomial time
approximation scheme (PTAS), that is, for any
(arbitrarily small) € > O, there exists a polynomial-
time (1 + e)-approximation; note that the time is
polynomial in the problem size for every fixed ¢,
but can be different for different e.

But this algorithm is not used in practice.. @



MIN CDS IN UNIT DISK GRAPHS (2)

[Purohit & Sharma '10] gives an easy distributed

algorithm for UDGs reducing a given (also trivial)
CDS:

Def. The convex hull for a set of points X in the
2D space is the minimum convex set containing X.

R

V-

a) Set of points b) Its convex hull

MIN CDS IN UNIT DISK GRAPHS (3)

Algorithm Distributed_Reduce_CDS

Repeat
Select a min degree node u from the given CDS
Compute CH(N[u]) and, ¥ i € N(u), CH(NIi])

if CH(N[U]) € U;gpyy) CH (NED

then remove node u from the given CDS
Until there are unconsidered nodes in the given CDS

Note. N[v] is the closed neighborhood, i.e., v and its
adjacent nodes.
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MIN CDS IN UNIT DISK GRAPHS (4)

Algorithm Distributed_Reduce_CDS

Example: Repeat
Select a minimum degree node u from the given
CDS

Compute CH(N[u]) and, Vv i € N(u), CH(NIi])
if CHIN[u) € U;eny) CH (NED

then remove node u from the given CDS
Until there are unconsidered nodes in the given CDS

MIN CDS IN UNIT DISK GRAPHS (4)

Algorithm Distributed_Reduce_CDS

Example: Repeat
Select a minimum degree node u from the given
CDS

Compute CH(NI[u]) and, v i € N(u), CH(N[i])
if CHIN[u) & U;eny) CH (NLD

then remove node u from the given CDS
Until there are unconsidered nodes in the given CDS

and so on..



MIN CDS IN UNIT DISK GRAPHS (4)

Algorithm Distributed _Reduce_CDS

Example: Repeat
Select a minimum degree node u from the given

nodes CDS

with Compute CH(N[u]) and, Vv i € N(u), CH(NIi])
larger if CH(N[u]) < UieN(u)CH (N[i])

d then remove node u from the given CDS
ng%ree are Until there are unconsidered nodes in the given CDS
worthy to

be

considered

MIN CDS IN UNIT DISK GRAPHS (4)

This algorithm:

- is very easy and sometimes reduces the
dimension of the given CDS because it
exploits geometric reasonings

- has the merit to work in a distributed
fashion (no global knowledge is necessary)

BUT

no approximation ratio is guaranteed!!



