
Prof. Tiziana Calamoneri

Network Algorithms

A.y. 2023/24

1

2

Whenever a data mule is not used, sensing
devices run with very low energy consumption to
sense and monitor the surrounding environment,
so data collection is the main reason of energy
consumption.

The aim of the data collection problem is to
transfer all of the periodically sensed data to
the sink efficiently by one or more hops so that
the network lifetime is maximized.

3

Many approaches to the problem:
§Naive approach: each sensor node increases its
transmission range to send data directly to the
sink, resulting in enormous energy consumption
which reduces network lifetime.

§Multi-hop data routing: sensor nodes send
gathered data to the nearest node on the shortest
path to the sink. So, the nodes close to the sink
send a large number of data to it and die out
quickly, causing an uneven load distribution in
network.

§…
4

Many approaches to the problem (contd)

§Clusters: sensors nodes are subdivided into
clusters transmitting aggregated data to the sink.
Usually, cluster head nodes accumulate data
packets from their member nodes and transmit
these data to the sink. Since energy dissipation is
directly proportional to the traversed distance,
an issue is to minimize the inter-cluster and
intra-cluster distances.

§…
5

Many approaches to the problem (contd):

§ Duty cycle based mode: sensor transmitters are active
only in some periods. Sleeping sensors are activated
either at fixed intervals or when they sense an event
or data. When a sender transmits data (which may be
either from a relay node or generated by itself), it
establishes a link for data transmission if there are
active nodes among its neighbor nodes. If all of them
are in a sleep state, the sender needs to remain
active until someone wakes up and data can be
transmitted. So, this mode increases the transmission
delay of the network.

6

Approach from [Sal19] based on the duty cycle mode:

A part of the nodes is selected to construct a
connected sub-network (backbone), whose nodes
adopt a periodic sleep/awake working mode at
fixed intervals, while the other nodes turn off the
radio device when there is no data to transmit,
and only sensing surrounding environment.
When there is data to be sent, the radio device is
turned on and send the data to the nodes in the
backbone, then route the data to the sink through
the nodes in the backbone. 7

Approach based on the duty cycle mode (contd)

Thus, many nodes are in the sleep state most of
the time, which can save a lot of energy.
Instead, the energy consumption of the nodes in
the backbone is relatively high.
Therefore, after the backbone works for a certain
period of time, the nodes with more residual
energy are selected to reconstruct a *new*
backbone, so that the energy consumption of nodes
in the network is more balanced, which improves
the network lifetime.

8

Approach based on the duty cycle mode (contd)

Requirements of the backbone:
(a) # of nodes in the backbone as small as possible

(min);
(b) at least one route to the sink for each node in

the backbone (connected);
(c) The other nodes in the network must

communicate directly with at least one node in
the backbone (dominating set).

In other words, these nodes constitute a min
connected dominating set… 9

MIN CONNECTED DOMINATING SET

10

11

Def. A (min) connected dominating set (CDS) for
a graph G = (V, E) is a subset D of V such that:
§D induces a connected subgraph of G
§D is a (min) DS (e.g., fig. (c)).

Def. A dominating set (DS) for
a graph G = (V, E) is a subset D of V such
that every node not in D is adjacent to
at least one member of D (e.g., fig (a))

A min DS is a dominating set with
smallest possible cardinality, call it d
(e.g., fig (b)).

12

Let d be the cardinality of a min CDS.
Any spanning tree T of G has at least two leaves.

A maximum leaf spanning tree is a spanning
tree that has the largest possible number of
leaves among all spanning trees of G. Call it l.
Theorem. In any n-node graph G, where n > 2,
n=d+l.
§ Proof. …

13

Proof. Prove the two inequalities:
§ If D is a CDS, then there exists a spanning
tree for G whose leaves include all nodes that are
not in D : start from the (connected) subgraph
induced by D and add as leaf each node v that is
not in D to a neighbor of v in D. Let l’≤l its # of
leaves.
Then, by construction, l ≥ l’ = n − d.

§ Let T be the max leaf spanning tree of G.
The nodes of T that are not leaves form a CDS D’
of G, so |D’|=d’ ≥d. This shows that n − l = d’ ≥d.

§ Putting these two inequalities together, we
have n=d+l.

Proof of Thm: n=d+l.

14

Computationally, this implies that determining
the connected domination number is equally
difficult as finding the max leaf number.

§ It is NP-complete to test whether there exists a
CDS with size less than a given threshold, or
equivalently to test whether there exists a
spanning tree with at least a given number of
leaves.

15

§ In terms of approximation algorithms, connected
domination and maximum leaf spanning trees are
not the same: there exists an approximation for the
min CDS that achieves a factor of 2 ln ∆ + O(1),
where ∆ is the maximum degree of G [Guha & Khuller

’98]while the max leaf spanning tree problem can be
approximated within a factor of 2 [Solis-Oba & Roberto‘98].

§ In graphs of maximum degree 3, the CDS and its
complementary maximum leaf spanning tree
problem can be solved in polynomial time
[Ueno et al.‘88].

16

If we drop the constraint to induce a connected
subgraph, we require to find a min dominating
set, studied from the 1950s onwards, whose rate
of research significantly increased in the mid-
1970s.

In 1972, Karp proved the set cover problem to
be NP-complete, with immediate implications for
the dominating set problem:
§…

17

Theorem. There is a bijection between the
solutions of min dominating set and min set
cover problems.

** Proof skipped this year **

Proof. The following two reductions show that the
minimum dominating set problem and the set
cover problem are equivalent under L-reductions:
given an instance of one problem, we can
construct an equivalent instance of the other
problem.
…

18

Bijection between min dominating set and min set cover (contd)

From dominating set to set cover
Given G = (V, E) with V = {1, 2, ..., n}, construct a
set cover instance (U, S) as follows:
§ the universe U is V,
§ the family of subsets is S = {S1, S2, ..., Sn} such
that Sv consists of node v and all its adjacent
nodes.

Now, if D is a dominating set for G, then C =
{Sv : v ∈D} is a feasible set cover, with |C| = |D|.
Conversely, if C = {Sv : v ∈D} is a set cover,
then D is a dominating set for G, with |D| = |C|.
…

19

Bijection between min dominating set and min set cover (cntd)

Example: Given G
construct a set cover instance with universe U =
{1, 2, 3, 4, 5, 6} and subsets:
S1 = {1, 2, 5}, S2 = {1, 2, 3, 5}, S3 = {2, 3, 4, 6},
S4 = {3, 4}, S5 = {1, 2, 5, 6}, and S6 = {3, 5, 6}.
D = {3, 5} is a dominating set for G and
corresponds to set cover C = {S3, S5}.

20

Bijection between min dominating set and min set cover (cntd)

From set cover to dominating set
Let (U,S) be an instance of set cover with
universe U and the family of subsets S =
{Si : i ∈ I}; assume that U and the index set I are
disjoint.
Construct graph G = (V, E) as follows:
§ the set of nodes is V = I ∪U,
§ there is an edge {i, j} ∈ E between each
pair i, j ∈ I, and there is also an edge {i, u} for
each i ∈ I and u ∈ Si. It turns out that G is a split
graph: I is a clique and U is an independent set.

21

Bijection between min dominating set and min set cover (cntd)

Now if C = {Si : i ∈D} is a set cover for some D⊆ I,
then D is a dominating set for G, with |D| = |C|.
Indeed: for each u ∈U there is an i ∈D such
that u ∈ Si, and by construction, u and i are
adjacent in G; hence u is dominated by i;
moreover, since Dmust be nonempty, each i ∈ I is
adjacent to a node in D.
Conversely, let D be a dominating set for G. Then
construct another dominating set X s.t. |X|≤|D|
and X⊆ I: simply replace each u ∈D ∩U by a
neighbour i ∈ I of u. Then C = {Si : i ∈X} is a set
cover, with |C| = |X| ≤ |D|.

22

Bijection between min dominating set and min set cover (cntd)

Example Here U = {a, b, c, d, e}, I = {1, 2, 3, 4},
S1 = {a, b, c}, S2 = {a, b}, S3 = {b, c, d}, S4 = {c, d, e}.
Let C = {S1, S4} be a set cover; this corresponds to
the dominating set D = {1, 4}.
D = {a, 3, 4} is another dominating set for G.
Given D, we can construct a dominating set X =
{1, 3, 4} which is not larger than D and is a subset
of I.
Dominating set X corresponds to set
cover C={S1, S3, S4}.

23

In view of this equivalence, not only the
dominating set problem is NP-complete as well,
but an efficient algorithm for min dominating
set would provide an efficient algorithm for set
cover, and vice-versa.

Moreover, the reductions preserve
the approximation ratio: for any α, a polynomial-
time α-approximation algorithm for min
dominating set would provide a polynomial-
time α-approximation algorithm for set cover and
vice-versa.

24

25

Two-step greedy algoritm [Guha & Khuller ‘98]:
§Consider G and a subset C of its nodes.
§All nodes in G can be divided into three classes
w.r.t. C:
§ B (Black): nodes in C
§ Gr (Gray): nodes not in C but adjacent to C
§ W (White): nodes not in C and not adjacent to C
either

§Clearly, B U Gr U W=V, and C is a CDS if and
only if there is no white node AND the
subgraph induced by black nodes is connected.

§Call CC the # of connected components in this
black subgraph. Then: |W|+CC=1.

26

Greedy algorithm based on the potential
function Pf = |W|+ CC:

First-Step Greedy Algorithm (G)

Repeat
if there exists a white or gray node s. t.
coloring it in black and its adjacent white
nodes in gray would reduce the value of Pf
then choose such a node and reduce the value
of Pf
else return

27

Clearly, when the loop ends, no white node will
exist, i.e., all black nodes form a dominating set:

however, the subgraph induced by black nodes
may be not connected…

Pf=5+1

Pf=0+2

28

Second-Step Greedy Algorithm (G)
Repeat

color either one or two gray nodes in black to reduce
CC

Until CC=1
This step guarantees to obtain a connected
dominating set.

Pf=0+2

Pf=0+1

29

The authors prove that the approximation ratio
is 3+ln D with D = max degree of G.

It is possible to introduce a more complex
potential function, design a single-step greedy
algorithm and get a better approximation ratio
of 2+ln D [Ruan et al. 04]

30

31

Consider a set of n equal-sized
circles in the plane.

The intersection graph of these
circles is an n-node graph; each
node corresponds to a circle, and
there is an edge between two
nodes when the corresponding
circles intersect (tangent circles
are assumed to intersect).

32

Such intersection graphs are called
unit disk graphs, and the set of n
circles is an intersection model.
Disk graphs are suitable to model
wireless networks: each circle
center is a transceiver and the
radius represent the transmission
radius. If the network is
homogeneous, the circles will be
approximately equal in size and,
w.l.o.g., it is equal to 1.

33

When restricted to UDGs, min CDS is still NP-
hard [Lichtenstein ‘82]. It remains NP-hard when
restricted to grids, that are a subclass of UDGs
[Clark, Colbourn, Johnson ‘90].

[Cheng et al 2003] gives a polynomial time
approximation scheme (PTAS), that is, for any
(arbitrarily small) ε > 0, there exists a polynomial-
time (1 + ε)-approximation; note that the time is
polynomial in the problem size for every fixed ε,
but can be different for different ε.

But this algorithm is not used in practice…

34

[Purohit & Sharma ‘10] gives an easy distributed
algorithm for UDGs reducing a given (also trivial)
CDS.

Def. The convex hull for a set of points X in the
2D space is the minimum convex set containing X.

35

Algorithm Distributed_Reduce_CDS
Repeat
 Select a minimum degree node u from the given CDS
 Compute CH(N[u]) and, ∀ i ∈ N(u), CH(N[i])

 if CH(N[u]) ⊆ ⋃i∈N(u) CH (N[i])

 then remove node u from the given CDS
Until there are unconsidered nodes in the given CDS

Note. N[v] is the closed neighborhood, i.e., v and its
adjacent nodes.

36

Algorithm Distributed_Reduce_CDS
Repeat
 Select a minimum degree node u from the given CDS
 Compute CH(N[u]) and, ∀ i ∈ N(u), CH(N[i])
 if CH(N[u]) ⊆ ⋃i∈N(u) CH (N[i])

 then remove node u from the given CDS
Until there are unconsidered nodes in the given CDS

Example:

37

Algorithm Distributed_Reduce_CDS
Repeat
 Select a minimum degree node u from the given CDS
 Compute CH(N[u]) and, ∀ i ∈ N(u), CH(N[i])
 if CH(N[u]) ⊆ ⋃i∈N(u) CH (N[i])

 then remove node u from the given CDS
Until there are unconsidered nodes in the given CDS

Example:

and so on…

38

Algorithm Distributed_Reduce_CDS
Repeat
 Select a minimum degree node u from the given CDS
 Compute CH(N[u]) and, ∀ i ∈ N(u), CH(N[i])
 if CH(N[u]) ⊆ ⋃i∈N(u) CH (N[i])

 then remove node u from the given CDS
Until there are unconsidered nodes in the given CDS

Example:
nodes with
larger degree
are not
worthy to be
considered…

39

This algorithm:
- is very easy and sometimes reduces the

dimension of the given CDS because it
exploits geometric reasonings

- has the merit to work in a distributed
fashion (no global knowledge is necessary)

BUT
no approximation ratio is guaranteed!!

