
1

SECOND PART:
WIRELESS NETWORKS
2.B. (FIXED) SENSOR
NETWORKS

Prof. Tiziana Calamoneri
Network Algorithms

A.y. 2025/26

2

§A sensor is a device that detects and responds to
some type of input from the physical environment.

§ The specific input could be light, heat, motion,
moisture, pressure, or any one of a great number
of other environmental phenomena.

§ The output is generally a signal that is converted
to human-readable display at the sensor location
or transmitted electronically over a network for
reading or further processing.

3

§ Sensor networks are wireless networks of small,
typically but not necessarily low-cost sensors,
which collect te environmental data.

§ Sensor networks are rapidly growing for their
large applicability to various purposes.

4

5

From engineering perspectives, one of the most
critical issues in (fixed) sensor networks is
energy, because:

§ sensor networks can be deployed in remote
areas where line powers are hard to obtain.
This fact forces the sensor nodes to rely on
batteries, but replacing the batteries can also
hard.

§ sensor network applications often require
long-term measurements over months.

6

§ So, improving the energy efficiency is
mandatory for sensor networks.

§ Since sensors do not move in this context,
wireless communication is one of the most
energy-consuming operations on a sensor node

try to reduce communication
7

A possible approach:

Multi-hop communication to the base station:

not always a good solution.

Indeed:

1. the communication infrastructure between
nodes could be instable.

2. It can be inefficient depending on how
densely the sensor nodes are deployed:

…
8

§When the node deployment is very sparse, the
distance to the nearest node or base station
(i.e., each hop) becomes large, so the sensor
should set their transmission range to a too
high value, requiring a large amount of energy.

§When the node deployment is very dense, the
nodes close to the base station need to
forward the data from too many remote nodes
and thus tend to run out of energy soon.

9

Another approach:

Exploit the mobility:

A data mule is a mobile node that has:

§ wireless communication capabilities

§ a sufficient amount of storage to store the data
from the (fixed) sensor nodes in the field.

Data mule travels across the sensing field and
collects data from each sensor node when arrives
at short distance from it; later it deposits all the
data to the base station.

10

§ Each sensor node can save a significant amount
of energy, since it only needs to send the data
over a shorter distance and has no need to
forward other sensors’ data to the base station.

§As data mules return to the base station after
the travel, energy issue is usually not critical for
them.

§ This approach reduces the responsibility for
message routing from the nodes thereby
minimizing their processing power.

11

Data mule scheduling problem:

How to control a data mule such that it collects
data from all the nodes in the minimal amount
of time?
§We formulate it as a scheduling problem, since
we view communication from each node as a job.

§We can control the movement of the data mule
(path, speed) as well as its communication (i.e.,
which node it collects data from at certain time
duration), where the latter corresponds to job
allocation in classical scheduling problems. 12

Data mule scheduling problem (contd)

§Despite the similarities with a scheduling
problem, data mule scheduling problem is more
complex because it has both location and time
constraints.

§ location: Availability of each job is determined
by the range of wireless communication, which
primarily depends on the distance from a node
and thus serves as a location constraint.

§…
13

Data mule scheduling problem (contd)

§ time: since the bandwidth of wireless
communication is constant and the data mule
never stops, we also have a time constraint for
each node necessary for transmitting the data to
a data mule.

Namely, the problem can be decomposed into the
following three subproblems:

14

Data mule scheduling problem (contd)

1. Path selection is to determine the trajectory of
the data mule in the sensor field. To collect data
from each sensor, the data mule needs to go
within the sensor’s communication range at least
once.

2. …

15

Data mule scheduling problem (contd)

2. Speed control is to determine how the data mule
changes its speed along the chosen path, so that
it stays within each node’s communication range
long enough to collect all the data from it
without stopping.
More technical than algorithmic.

3. …

16

Data mule scheduling problem (contd)

3. Job scheduling: at each instant, the data mule
can be close to more than one sensor, and it
has to decide from which one to collect data.
Data collection from each sensor is a job,
having certain time-intervals in which it can
be executed.
It can be reduced to a classical job scheduling
problem = to determine the allocation of time-
slots to jobs so that all jobs can be completed.

☞ possible students’ lesson
17

Data mule scheduling problem (contd)

We focus on the first sub-problem (path selection):
§Consider sensor nodes operating at different
sampling rates (e.g., in case of pollution sensors).

§ Each sensor has a finite buffer for storing the
sensed values and a data mule (acting as a base
station) does the job of the data gathering.

§Once the mobile element visits a sensor node, it
transfers the data to its own memory and the
sensor’s memory is freed.

18

Data mule scheduling problem (contd)

§ Problem: scheduling of the visits of the data
mule so that none of the sensor nodes’ buffer
overflows: Mobile Element Scheduling (MES)
problem.

19

Observe the similitude with the Traveling
Salesman Problem (TSP):

Given a set of cities, a salesman has to visit each
one of the cities starting from a certain one (e.g.,
the hometown) and returning to the same city.
The challenge of the problem is that the
traveling salesman wants to minimize the total
length of the trip.

20

In fact, MES and TSP are different:
§ In TSP, the goal is to find a (minimum cost)
tour that visits each node exactly once.

§ In MES, a node may need to be visited multiple
times before all the other nodes are visited
depending on the strictness of its deadline i.e.,
frequency of sampling.

§…

21

In fact, MES problem and TSP are different (contd):

§ In TSP, the optimization function minimizes the
cost of the tour and costs are fixed in the time.

§ In MES, as soon as a node is visited, its
deadline (i.e., time before which it should be revisited to
avoid buffer overflow), is updated. Thus, deadlines
are dynamically updated as the mobile element
performs the job of data gathering.

Nevertheless, TSP seems very useful to solve MES
problem.

22

23

HC (decisional problem):

§ Let G=(V,E) be a graph.

§A Hamiltonian cycle (HC) is a cycle passing
through all nodes exactly once.

§Question: Does G contains a Hamiltonian cycle?

§ The problem of finding a Hamiltonian cycle
(HC) is NP-complete.

24

TSP (decisional version):

§ Let Kn=(V,E) be a complete graph, w a non
negative edge-weight function, and t a non
negative real value.

§Question: Does Kn contains a Hamiltonian cycle
with cost not exceeding t?

§Note: Kn always contains a HC because it is
complete; here the problem is to minimize the
cost…

25

§The origins of TSP are unclear:
§A handbook for travelling salesmen from 1832
mentions the problem and includes example tours
through Germany and Switzerland but contains no
mathematical treatment.
§It was mathematically formulated in the 1800s
by W.R. Hamilton and T. Kirkman.
§The general form has been first studied during
the 1930s considering the obvious brute-force
algorithm and observing the non-optimality of
the nearest neighbor heuristic.

26

§ Th. TSP is NP-complete.
§ Proof.
1. TSP belongs to NP: check that the tour contains

each node exactly once + the sum of the costs
of all the edges in the tour is bounded by t.

2. We reduce HC to TSP:
Assume G=(V,E) is an instance of HC and
construct the complete graph Kn=(V,E’). Let t=n
and function w is defined as follows:
§w(i,j)=1 if (i,j) is in E
§w(i,j)=2 if (i,j) is in E’\E

27

NP-completeness proof (contd)

§Assume now that a HC C exists in G.

§All edges in C have weight 1 in Kn since they
are all in G.

§ So, if G has a HC then Kn has a TS tour of cost
n.

§Conversely, if Kn has a TS tour of cost n then
all the used edges must come from G and hence
the tour is a HC for G. n

28

TSP can be formulated as an ILP
[Dantzig, Fulkerson, Johnson ‘54]:

§Assume that the tour is oriented.

§We define:
§ boolean variables xij=1 iff the tour traverses
oriented edge (i,j), xij=0 otherwise.

§wij the weight of oriented edge (i,j).

§…

29

ILP formulation (contd)

…

The objective is: min Σi,j=1..nwij xij

subject to: Σj=1..nxij=1, Σi=1..nxij=1 (only one arc from i and to j)

and the subtour elimination constraints (guaranteeing

that a cycle cover is not a solution):

 Σi,j in S xij <|S| for each S proper subset of V,
indeed if S forms a cycle the sum is =|S|.

Note: exponential number of constraints!
30

The following negative result holds:

Th. If there exists a polyomial time algorithm for TSP
with any approximation ratio r>1 then P=NP.

Proof. We prove that if TSP is r-approximable, then
there exists a polynomial time exact algorithm for HC.

Let G=(V,E) be an instance of HC and Kn a complete
graph with |V|=n.

…

31

If there exists a polyomial algorithm for TSP with any approximation
ratio r>1 then P=NP. (proof contd)

…

We define edge weights on Kn as follows:

w(i,j)=1 if (i,j) is an edge of E

w(i,j)=2+(r-1)n otherwise.

Then, a tour with cost n exists in Kn if and only
if G has a HC.

In this case, if we assume there exists an r-
approximation algorithm A for TSP, if the cost
is n, A will find a solution H with cost(H) ≤ r n.
… 32

If there exists a polyomial algorithm for TSP with any approximation
ratio r>1 then P=NP. (proof cntd)

…

If H contains an edge that is not in E, then:

 cost(H) ≥ (n-1)+2+(r-1)n=rn+1

Hence, a solution of TSP with cost(H) ≤ r n
exists iff an HC is in G and hence HC can be
solved in polynomial time: a contradiction. n

33

Inapproximability result: Bad news!

How to manage the problem?

 Some special cases…

34

Def. Given any three nodes a, b, c if:

 w(a,c) ≤ w(a,b)+w(b,c)

we say that w satisfies the triangle inequality.

§Note. The weigth of a minimum spanning tree T
(MST) is a lower bound on the cost of an optimal
traveling salesman tour. Indeed: let H* be an
optimal tour. A ST P can be deduced from H* by
deleting an edge. Moreover, P is a path. It holds
that:

w(T) ≤ w(P) ≤ w(H*).
35

In the hypothesis of triangle inequality (metric TSP):

2-Approx-mTSP
Input: Kn(V,E)
Output: a Hamiltonian cycle
1. Select a “root” node r of Kn

2. Compute an MST T from r

3. let L be the sequence of nodes visited in a
preorder walk of T
4. Return the HC that visits the nodes in the order L
without repetitions

36

1. Select a “root” node r of Kn

2. Compute an MST T from r

3. let L be the sequence of
nodes visited in a preorder
walk of T

4. Return the HC that visits
the nodes in the order L
without repetitions

37

example

1

2

34

5

1 2

2

2

2
3

1 1 4 3

1

2

34

5

1 2

2

2

2
3

1 1 4 3

Weight=5
L=1 5 4 5 3 5 1 2 1

1

2

34

5

1 2

2

2

2
3

1 1 4 3

Weight=9

to pass from L to a cycle…

38

example
1

2

34

5

L=1 5 4 5 3 5 1 2 1

1

2

34

5

L=1 5 4 5 3 5 1 2 1 L=1 5 4 3 5 1 2 1

1

2

34

5

L=1 5 4 3 1 2 1

1

2

34

5

L=1 5 4 3 2 1

1

2

34

5

Th. 2-Approx-TSP is a 2-approximation
algorithm for TSP if w satisfies the triangle
inequality.

Proof. Let H* be an optimal tour and T a MST.
We know that w(T) ≤ w(H*).

In L every edge appears exactly twice, so the
tour C deduced by L is such that w(C)=2 w(T).

…
39

2-Approx-TSP is a 2-approximation algorithm for TSP if w
satisfies the triangle inequality (proof contd)

Unfortunately, C is not a tour, since some nodes
are repetead. We can erase some visits without
increasing the cost: if a node a appears for the
second time in the full path between b and c,
we can go from b to c directly. In this way we
get a tour H. By the triangle inequality:

w(H) ≤ w(C) =2 w(T) ≤ 2 w(H*). n

40

Euclidean TSP

§When the cities that the salesman has to visit lie
in the Euclidean plane, the problem is called
Euclidean TSP.

§ Like the general TSP, Euclidean TSP is NP-hard.

§ It is a special case of metric TSP, since distances
in a plane obey the triangle inequality

 → 2-approximation algorithm.

§Christofides [C76] improves the previous
approximation to 3/2:

41

Euclidean TSP(cntd)

Christofides Algorithm:
Input: Kn(V,E)
Output: a Hamiltonian cycle
§Compute a MST T of G
§O = set of nodes with odd degree in T. |O | is even
§GO = subgraph induced by O
§ Find a min-weight perfect matching M in GO

§ The graph induced by M ∪ T is a connected
multigraph and each node has even degree

§ Form an Eulerian circuit
§ Return the HC that visits the nodes without
repetitions

42

1.Compute a MST T
2.Compute GO

3.Find a min-weight PM M
4.Return the HC that visits
the nodes of M U T in order
without repetitions

43

example

1

2

34

5

1 1

1

1

1
1

1 2 2 1

1

2

34

5

1 1

1

1

1
1

1 2 2 1

O={2,3,4,5}

1

2

34

5

1 1

1

1

1
1

1 2 2 1

GO

1

2

34

5

1 1

1

1

1
1

1 2 2 1

M

1

2

34

5

1 1

1

1

1
1

1 2 2 1

M U T L=1 3 4 1 2 5 1

1

2

34

5

1 1

1

1

1
1

1 2 2 1

Euclidean TSP(contd)

Th. Christofides Algorithm is a 3/2-approximation
algorithm for TSP if w satisfies the triangle
inequality.

Proof. Let H* be an optimal tour and T a MST. We
know that w(T) ≤ w(H*).

Number the nodes of GO in cyclic order around H*,
and partition H* into two sets of edges: the ones
with an odd number on the first node and the ones
with an even number on the first node. Each set is a
perfect matching: Mo∪Me⊆H*.

…

44

Euclidean TSP: Christofides Algorithm is a 3/2-approximation
algorithm for TSP if w satisfies the triangle inequality (proof contd)

…

So, w(Mo)+w(Me) ≤ w(H*); w.l.o.g. w(Mo)≤w(H*)/2.

M is a min-weight perfect matching of GO so w(M)≤
w(Mo).

Putting everything together:

w(H) ≤ w(M)+w(T)≤ w(H*)/2+w(H*)≤3/2 w(H*). n

45

Euclidean TSP(contd)

§ There exist inputs to TSP that cause the
Christofides algorithm to find a solution whose
approximation ratio is arbitrarily close to 3/2.

§Can we do better?

46

Euclidean TSP(cntd)

§Yes: in general, there is a polynomial time approx
scheme (PTAS) i.e. for any c > 0, if d is the
dimension of the Euclidean space, there is a
polynomial time algorithm that finds a tour of
length at most (1 + 1/c) times the optimal for
geometric instances of TSP in time

#(%(log %) ! " #
!"#
)

§Arora and Mitchell were awarded with the Gödel
Prize in 2010 for their concurrent discovery of a
PTAS for the Euclidean TSP.

§…
47

Euclidean TSP(cntd)

§…

§ In 2013, Bartal and Gottlieb improved the time
complexity of the PTAS

§ But in practice, simpler heuristics with weaker
guarantees continue to be used…

48

§ We can drop the condition that the travelling
salesman should visit each city exactly once, so that we
now consider not Hamiltonian cycles anymore, but
simply closed walks containing each node at least once.

§ If the problem is metric, any optimal tour will be also
an optimal solution, but this is not true in general:

49

w

y z

x
5 51

1

1

2

Example:
w-x-y-z-x-w is a shortest
closed walk (of length 6),
but the shortest tour w-
x-y-z-w has length 8.

Asymmetric TSP

§ Instead of Kn, we consider the complete
directed graph K’n on n nodes. Weights in the
two directions may be different.

§ This problem contains the usual TSP as a special
case, and hence it is likewise NP-hard.

50

§We may also consider an arbitrary connected graph
G with some length function w instead of Kn.

§ In this case, it is neither clear whether any tours
exist: we need to check first whether G is a
Hamiltonian graph (i.e., if it contains a HC). This
feasibility question is already an NP-complete
problem in itself.

51

§ The TSP, in particular the Euclidean variant of
the problem, has attracted the attention of
researchers in cognitive psychology:
It has been observed that humans are able to
produce good quality solutions quickly [Macgregor,
Ormerod ‘96].

§ These results suggest that computer performance
on the TSP may be improved by understanding
and emulating the methods used by humans for
these problems and have also led to new
insights into the mechanisms of human thought. 52

Analysis of the structure of crystals

An X-ray diffractometer is used to obtain
information about the structure of crystalline
material: a detector measures the intensity of
X-ray reflections of the crystal from various
positions.

…

53

The measurement can be accomplished quite
fast, but there is a considerable overhead in
positioning time since up to hundreds of
thousands positions have to be realized for
some experiments.

The time needed to move from one position to
the other can be computed very accurately and
the result of the experiment does not depend
on the sequence of the measurements.

…
54

… However, the total time needed for the
experiment depends on the sequence.
Therefore, the problem consists of finding a
sequence that minimizes the total positioning
time.

This leads to the TSP.

55

DNA sequencing problem
Given an unknown DNA fragment, it can be
deduced via the sequencing by hybridization
method.
It consists of two phases, the biological phase
and the computational phase.

56

Biological phase:
a library of oligonucleotides (oligos for short),
i.e. short sequences of nucleotides of a given
length, say l, is built and placed on a DNA
chip.
Such a chip contains all possible 4l
oligonucleotides, each one of them
characterized by a unique set of coordinates
on the chip.
… 57

Biological phase (contd):
… the double-stranded DNA fragment (in fact
many clones of it) is separated into two
single-stranded DNA molecules (denaturing
process) by heating the double-stranded
molecule.
Once the single-stranded DNA fragment is
cooled again, it reacts, or hybridizes to
complementary fragments.
… 58

Biological phase (contd):
… Since each oligo on the chip has unique
coordinates, the fluorescent image on the chip
leads to the identification of which oligos
appear in the unknown DNA fragment.
The set of oligos from the library that
hybridize with the DNA fragment makes up the
spectrum of the fragment object of the study
and are given as input to the computational
phase. 59

Computational phase:
It is unknown where and how many times each
oligo appears in the sequence. The unknown
DNA sequence is, therefore, reconstructed by
finding the best permutation of oligos from
the spectrum.
If the hybridization experiment is ideal, i.e.,
with no experimental errors, the original DNA
sequence can be reconstructed in polynomial
time [Pevznev’89].

60

Computational phase (contd):
Let n be the length of the original sequence
(n can be identified with gel electrophoresis);
the spectrum is ideal when it contains
uniquely all the n-l+1 different fragments (of
length l) of the sequence.
The assembled sequence is the projection of
the ordered oligos where each overlaps the
previous one by l-1 oligos.
… 61

Computational phase (contd):
… However, when the experiment incorporates
errors, then the computational problem of
reconstructing the sequence becomes NP-hard
[Blazewicz & Kasprzak ‘03].

Realistic hybridization experiments produce
spectra with errors, due to false hybridization
and false reading from the DNA chip.
…

62

Computational phase (contd):
… Two classes of error can be identified:
§ positive errors, i.e., oligos not present in the
original sequence are included in the
spectrum,

§ negative errors, i.e., oligos that are present in
the original sequence are not included in the
spectrum.

…
 63

Computational phase (contd):
…
NOTE: Since an oligo is included in the
spectrum only once even if multiple fragments
of the sequence hybridize with it, multiple
repetitions of oligos are excluded and,
therefore, treated as negative errors.

64

Computational phase (contd):
…
the DNA sequence is constructed by
determining the best possible permutation of
oligos, taking into account the maximum
overlaps between consecutive nucleotides.

The maximum overlap between two oligos is
obviously less than or equal to l.

65

Computational phase (contd):
… this problem is modeled as an asymmetric
TSP [Nikolakopoulos & Sarimveis‘08], where the nodes
of the complete graph are the m oligos, and
the distance between u and v may be different
from the one between v and u.
Any permutation of the original sequence
among the m! can be considered as a candidate
solution, and the optimal solution minimizes
the sum of the distances of sequential nodes. 66

Computational phase (contd):
… Given two oligos, si and sj, let ov(si, sj) be
the cardinality of their overlap.
The distance between si and sj, in the graph is
defined as 2l - ov(si, sj).
NOTE. it is clear that the distance between
any two oligonucleotides is at least l+1.

67

