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§Wireless Sensor Networks, once deployed, perform 
unattended operations for quite a long period. 

§During their lifetimes, it is necessary to fix 
software bugs, reconfigure system parameters, and 
upgrade the software in order to achieve reliable 
system performance. 

§ Especially for a large Wireless Sensor Networks, 
manually collecting and reconfiguring nodes is 
unfeasible

data dissemination, i.e. broadcast 3

Broadcast spreads data from a sink node to all 
nodes in the network, through wireless 
communication. 

Data can be a code image of a renewed 
program, system commands, or updated system 
parameters…

There are three requirements of data 
dissemination in Wireless Sensor Networks: 
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1. Reliability: all the nodes in the network must 
be covered. 
Since data dissemination is the building block 
of many services such as reprogramming and 
parameter distribution, even a single node not 
reached may result in inconsistency or crash of 
the whole network. 

5

2. Energy efficiency: the process must be done 
with minimal energy consumed. This is the 
consequence of limited power resources. 
The consumed energy consists of read-write and 
transmission. The read-write is inevitable for 
storing data blocks. Transmission activity is the 
major part of energy consumption and also the 
part that can be controlled. 
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3. Scalability: the number of nodes and the 
node density may vary. The dissemination 
protocol is scalable if the completion time of 
dissemination is linearly increasing with 
network scale. 
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§As we already know, a wireless ad-hoc 
network consists of a set S of (fixed) radio 
stations joint by wireless connections. 

§We assume that stations are located on the 
Euclidean plane (only partially realistic hp). 

§Nodes have omnidirectional antennas: each 
transmission is listened by all the 
neighborhood (natural broadcast).

§…
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§ Two stations communicate either directly (single-
hop)   -if they are sufficiently close- or through 
intermediate nodes (multi-hop).

§A transmission range is assigned to every station: 
a range assignment r : S → R determines a 
directed communi-cation graph G=(S,E), where 
edge (i, j) ∈ E iff dist(i, j) ≤ r(i) (dist(i, j)= 
euclidean distance between i and j). 

§ In other words, (i, j) ∈ E iff j belongs to the disk 
centered at i and having radius r(i).
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What does it means 

“sufficiently close”?…

§ For reasons connected with energy saving, each 
station can dynamically modulate its own 
transmission power. 

§ In fact, the transmission radius of a station 
depends on the energy power supplied to the 
station.
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§ In particular, the power Ps required by a station s 
to transmit data to another station t must 
satisfy:

 where α≥1 is the distance-power gradient.

 Usually 2≤α≤4 (it depends on the envorinment).

 In the empty space α=2.

§Hence, in order to have a communication from s 
to t, power Ps must be proportional to dist(s,t)α.

11

€ 

Ps
dist(s,t)α

≥1

The general aim is to save energy as much as 
possible, indeed all the devices depend on some 
common electricity generator (e.g., when the 
deployment of the stations is made in an ad hoc 
fashion and the electricity to which devices are 
connected is centralised). 
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Stations of a fixed wireless network cooperate 
in order to provide specific network 
connectivity properties by adapting their 
transmission ranges and, at the same time, 
they try to save energy.

…
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… According to the required property, different 
problems are proposed. 

For example, the transmission graph is required to:

§ be strongly connected
the problem is NP-hard and there is a 2-approximate alg. in 
2 dim. [Kirousis, Kranakis, Krizanc, Pelc ’01]; there exists an r>1 s.t. 
the problem is not r-approximable.

§ have diameter at most h
Not trivial; approximate results are not known.

§ include a spanning tree rooted at a given source 
node s … 14



In this latter case:

§A Broadcast Range Assignment  (for short  
Broadcast) is a range assignment that yields 
a communication graph G containing a 
directed spanning tree rooted at a given 
source station s.

§A fundamental problem in the design of ad-
hoc wireless networks is the Minimum-Energy 
Broadcast problem (for short Min Broadcast), 
that consists in finding a broadcast of 
minimum overall energy. 15

Th. Min Broadcast is not approximable within any 
constant factor.

 Proof. Recall the MinSetCover problem:

 given a collection C of subsets of a finite 
universe set U, find a subset C’ of C with min 
cardinality, s.t. each element in U belongs to at 
least one element of C’.

 Example:

   U={1,2,3,4,5}     C={{1,2}, {1,2,3}, {3}, {3,4,5}}

   C’={{1,2,3},{3,4,5}} 16



Proof (cntd).

Note. MinSetCover is not approximable within c 
log n for some constant c>0, where n=|U|.

We will prove that, given an instance x of 
MinSetCover, it is possible to construct an 
instance y of MinBroadcast s.t. there exists a 
solution for x of cardinality k iff there exists a 
solution for y of cost k+1.

So, if MinBroadcast is approximable within a 
constant, then even MinSetCover is. 

Contradiction.   17

Proof (cntd).

Set Cover Problem:

Given a set of subsets S={ S1, …, Sn } of the 
universal set U such that            

what is the smallest subset C of {1, ..n} such that

          ?   
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Si =U
i∈J


Si =U
i=1..m


C



Proof (cntd). 

Reduction:

x=(U,C) instance of MinSetCover with: 
       U={s1, s2, …, sn} and C={C1, C2, …, Cm}.

We construct y=(G,w,s) of MinBroadcast.
Nodes of G: {s} U {VC} U {VU}
Edges of G:{(s, vi

C), 1≤i≤m} U {(vi
C, vj

U), 1≤i≤m, s.t. 
sj in Ci}

19

s

v1
C

vi
C

vm
C

VC

vj
U s.t. sj is in Ci

VU

Proof (cntd). 

Finally, define w(e)=1 for any edge e.

Let C’ be a solution for x.

A sol. for y assigns 1 to s and to all nodes of VC 

in C’.

The resulting transmission graph contains a 
spanning tree rooted at s because each element 
in U is contained in at least one element of C’. 
The cost of such a solution is |C’|+1.

20



Proof (cntd). 

…

Conversely, assume that r is a feasible sol. for y, 
(w.l.o.g. r(v) is either 0 or 1 if v is in VC: other 
values would be meaningless) and r(v)=0 if v is 
in VS.

We derive a solution C’ for x selecting all 
subsets Ci s.t. r(vi

C)=1.

It holds that |C’|=cost(r)-1.    
      n
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Note:

We proved that Min Broadcast is not 
approximable within a constant factor, but we 
have dealt with the general problem.

There are some special cases (e.g. the Euclidean 
bidimensional one) that are particularly 
interesting and that behave better!

In the following, we restrict to the special case 
of Euclidean plane…
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§Obs. Collaborating in order to minimize the 
overall energy is crucial:

23

S2 S3

S1

¢ S1 needs to communicate 
with S2

¢ let "=2
¢ Cost of S1 → S2 = dist(S1, S2)2

¢ Cost of S1 → S3 → S2=
 =dist(S1, S3)2+dist(S3, S2)2
¢ When angle S1S3S2 is obtuse:
 dist(S1, S2)2> 
  > dist(S1, S3)2+dist(S3, S2)2

§ In the Euclidean case, a range assignment r 
can be represented by the correspondent 

family 
D = {D1, . . . , Dl} of disks, and the overall 
energy is defined as:

 where ri is the radius of Di.

24
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cos t(D) = ri
α

i=1

l

∑



§Consider the complete and weighted graph G(α) 
where the weight of each arc e=(u,v) is 
dist(u,v)α.

§ The broadcast problem is strictly related with 
the minimum spanning tree on G(α), in view of 
some important properties… 

25
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The unavoidable set of connections 
used to perform a broadcast from s:
• cannot generate a cycle, because 
nodes do not need to be informed 
twice  

     tree
• minimizes the overall energy 

long arcs waste more energy than 
short ones…
       Min Spanning Tree?
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• The energy used by each node 
u is

(only the longest edge of each 
internal node gives its 
contribution) 

€ 

max(u,v )∈T dist(u,v){ }α

¢ NO: the Minimum Broadcast problem is not the 
same as the Min Spanning Tree problem:

• Leaves waste no energy

§ The Minimum Broadcast problem is NP-hard 
in its general version and it is neither 
approximable within (1-ε)∆, where ∆ is the 
maximum degree of T and ε is an arbitrary 
constant.

§Nothing is known about the hardness of the 
geometric version (i.e. in the Euclidean 
plane).
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§An approximation algorithm is based on the 
computation of the MST:

§  compute the MST of the complete graph induced 
by U,

§Assign a direction to arcs (from s to the leaves)
§Assign to each node i a radius equal to the 
length of the longest arc outgoing from i

§ Easy to implement è deep analysis of the approx 
ratio.
§ [Clementi+al.’01] the first constant approx ratio (about 40) 

§ [Ambüehl ’05] the best (tight) known approx ratio (6) 29
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§Obs. 1: If the weights are positive, then a MST is 
in fact a minimum-cost subgraph connecting all 
nodes.

§ Proof: A subgraph containing cycles necessarily 
has a higher total weight.        n
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§Obs. 2: There may be several minimum spanning 
trees of the same weight.

§ In particular, if all the edge weights of a given 
graph are the same, then every spanning tree of 
that graph is minimum. 

32



§ Obs. 3: If each edge has a distinct weight, then 
there is a unique MST.

§  This is true in many realistic situations, where it's 
unlikely that any two connections have exactly the 
same cost

§ Proof: Assume by contradiction that MST T is not 
unique. So, there is another MST with equal weight, 
say T’.

   …

33

(proof – cntd)

§ Let e1 be an edge that is in T but not in T’. As T’ is a 
MST, {e1} U T’ contains a cycle C and there is at least 
one edge e2 in T’ that is not in T and lies on C.

§ If the weight of e1 is less than that of e2 :

replacing e2 with e1 in T’ yields tree {e1} U  T’ \ {e2} 
which has a smaller weight compared to T’.

Contradiction, as we assumed T’ is a MST but it is 
not.

…
34



(proof – cntd)

§ If the weight of e1 is larger than that of e2: 
a similar argument involving tree {e2} U T \ {e1} also 
leads to a contradiction. 

§We conclude that the assumption that there is a 
further MST was false.     n

35

§Obs. 4: For any cycle C in the graph, if the weight 
of an edge e of C is larger than the weights of all 
other edges of C, then this edge cannot belong to 
an MST.

§Proof: Assuming the contrary, i.e. that e belongs to 
an MST T1, then deleting e will break T1 into two 
subtrees with the two endpoints of e in different 
subtrees. The remainder of C reconnects the 
subtrees, in particular there is an edge f of C with 
endpoints in different subtrees, i.e., it reconnects 
the subtrees into a tree T2 with weight less than 
that of T1, because the weight of f is less than the 
weight of e.          n

36



§Obs. 5: If in a graph there exists a unique edge e 
with the minimum weight, then this edge is 
included in any MST. 

§ Proof: If e was not included in the MST, 
removing any of the (larger cost) edges in the 
cycle formed after adding e to the MST, would 
yield a spanning tree of smaller weight.   n

37

§Obs. 6: For any cut C in the graph, if there exists 
a unique edge e of C with minimum weight in C, 
then this edge is included in any MST. 

§ Proof: If e was not included in the MST, adding e 
to the MST produces a cycle. Removing any of the 
(larger cost) edges of the cut in the cycle, would 
yield a spanning tree of smaller weight.      n

§ By similar arguments, if more than one edge is of 
minimum weight across a cut, then each such edge 
is contained in a minimum spanning tree.
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Three classical algorithms:

§ Kruskal [‘56]

§ Prim [‘57]

§ Boruvka [’26]

39

§ The three algorithms are all greedy algorithms and 
based on the same structure:
§Given a set of arcs A containing some MST arcs, 
e is a safe arc w.r.t. A if A U {e} contains only 
MST arcs, too.

§A=empty set
 While A is not a MST

 find a safe arc e w.r.t. A
 A=A U {e}

40

“difficult” issue



A=empty set
 while A is not a MST

 find a safe arc e w.r.t. A
 A=A U {e}

where: 

§A is acyclic

§ graph GA=(V, A) is a forest whose each connected 
component is either a node or a tree

§ Each safe arc connects different connected 
components of GA

§  the while loop is run n-1 times 41

§A=empty set
 While GA is not a MST

 find a safe arc e w.r.t. A
 A=A U {e}

Implementation using:

§Data structure Union-Find

§ The set of the arcs of GA is sorted w.r.t. their 
weight

§ Time Complexity: O(m log n) 

    [Johnson ‘75, Cheriton & Tarjan ‘76] 42

Among those 
connecting two 

different connected 
components in GA, 
choose the one with 
minimum weight
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§A=empty set
 While GA is not a MST

 find a safe arc e w.r.t. A
 A=A U {e}

Implementation using:

§Nodes in a min-priority queue w.r.t. key(v)=min 
weight of an arc connecting v to a node of the 
main connected component; ∞ if it does not exist

§ Priority queue = heap è Complexity: O(m log n)

§ Priority queue = Fibonacci heap è Complexity: 
O(m+n log n)   [Ahuja, Magnanti & Orlin ‘93] 44

Among those 
connecting the 
main connected 

component with an 
isolated node, 
choose the one 
with minimum 

weight
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46

(purpose: an efficient electrical 
     coverage of Moravia)

Hypothesis: each arc has a 
distinct weight

� A=empty set
 While A is not a MST

 for each connected component Ci of GA
  find a safe arc ei w.r.t. Ci

  A=A U {ei}
Trick: handle many arcs (exactly log of the # of 

connected components) during the same loop
Impossible to introduce cycles, thanks to the 

hipothesis!
Complexity: O(m log n)

Among those 
connecting Ci to 

another 
component, the 

one with minimum 
weight
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BORUVKA ALGORITHM (1) 

(purpose: an efficient electrical  
                   coverage of Moravia) 
Hipothesis: each arc has a  
distinct weight 

!  A=empty set 
 While A is not a MST 

 for each connected component Ci of GA 

  find a safe arc ei w.r.t. Ci 

  A=A U {ei} 
Trick: handle many arcs (exactly log of the # of connected 

components) during the same loop 
Impossible to introduce cycles, thanks to the hipothesis! 
Complexity: O(m log n) 

Among those 
connecting Ci to 

another 
component, the 

one with minimum 
weight 
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BORUVKA ALGORITHM (2) 
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OTHER ALGORITHMS (1) 

!  [Friedman & Willard ‘94] Linear time algorithm, but it 
assumes the edges are already sorted w.r.t. their 
weight. Not used in practice, as the asymptotic 
notation hides a huge constant. 

!  [Matsui ’95] Linear time algorithm for planar graphs 
(possible lesson) 
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OTHER ALGORITHMS (2) 

!  [Frederickson ‘85, Eppstein ‘94] Given a graph and its 
MST, it is even interesting to find a new MST 
after that the original graph has been slightly 
modified. It can be performed in average time 
O(log n) 

! Only O(n+m) time is necessary to verify whether 
a given spanning tree is minimum. 

40 
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[Friedman & Willard ‘94] 

Linear time algorithm, but it assumes the 
edges are already sorted w.r.t. their weight. 
Not used in practice, as the asymptotic 
notation hides a huge constant.
[Matsui ’95] 

Linear time algorithm for planar graphs 

☞possible lesson
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[Frederickson ‘85, Eppstein ‘94] 

Given a graph and its MST, it is even 
interesting to find a new MST after that 
the original graph has been slightly 

modified. It can be performed in average 
time O(log n)

Only O(n+m) time is necessary to verify 
whether a given spanning tree is minimum.

49
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In [Wieselthier, Nguyen, Ephremides, 00]: three heuristics all 
based on the greedy technique:

§ SPT (spanning path tree): it runs Dijkstra algorithm 
to get the minimum path tree, then it directs the 
edges of the tree from the root to the leaves.

§ BAIP (Broadcast Average Incremental Power): it is a 
modification of the Dijkstra algorithm based on the 
nodes (i.e. a new node is added to the tree on the 
basis of its minimum average cost).

§ MST (min spanning tree): it runs Prim algorithm to 
get a MST, then it directs the edges of the tree from 
the root to the leaves. 51

SPT (spanning path tree) and MST (min spanning 
tree) can be different:

52
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22Possibly many 
trees, not all of 
the same weight
(e.g., add the 
upper edge of 
weight 1)

Possibly many 
trees, all of the 
same (minimum) 
weight



Greedy is not always good [Wan, Calinescu, Li, Frieder ‘02]:

§ SPT: it runs Dijkstra algorithm to get the 
minimum path tree, then it directs the edges of 
the tree from the root to the leaves

53

(let α=2)
¢ SPT outputs a tree with 

total energy:
 ε2+n/2(1-ε)2

¢ If the root transmits with 
radius 1 the energy is 1

¢ When ε→0 SPT is far n/2 
from the optimal solution.

p1q1

q2

p3

q3

p2

pm

qm

1−ε ε o

BAIP (Broadcast Average Incremental Power): it is a 
modification of the Dijkstra algorithm based on the 
nodes: a new node is added to the tree on the basis 
of:

min avg cost = energy increasing / # of added nodes.

If it is <1, it is considered profitable.

It has been designed to solve the problems of SPT.
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(let α=2):
¢ The min transmission power of the source to 

reach k receiving nodes is √k2 = k and thus the 
average power efficiency is k / k = 1

¢ The min transmission power of the source to 
reach all receiving nodes is (√n-ε)2 = n-ε  and 
thus the average power efficiency is 

  (n-ε)/n=1 - ε/n…

√1
√2

√3 …

€ 

n −ε

56

BAIP will let the source to transmit at power 
√n-ε to reach all nodes in a single step with power n-ε.
However, the opt. routing is a path consisting of all 
nodes from left to right. Its min power is:

√1
√2

√3 …

€ 

n −ε

€ 

( i − i −1)2 + ( n −ε − n −1)2
i=1

n−1

∑ < ( i − i −1)2 =
i=1

n

∑

€ 

( i − i −1)2 ( i + i −1)2

( i + i −1)2i=1

n

∑ =
(( i − i −1)( i + i −1))2

( i + i −1)2i=1

n

∑ =

€ 

=
(i − (i −1))2

( i + i −1)2i=1

n

∑ =
1

( i + i −1)2i=1

n

∑ =1+
1

( i + i −1)2i=2

n

∑ ≤
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(computation of the performance ratio of BAIP – cntd)
√1

√2
√3 …

€ 

n −ε

≤1+ 1
2i−1+ 2(i−1)

=1+ 1
4i−3i=2

n

∑ ≤1+ 1
4(i−1)i=2

n

∑ ≤
i=2

n

∑

Substituting i=j+1:

Thus the approx ratio of BAIP is at least:

€ 

n −ε
ln(n −1) + 5

4

→(ε →0) 4n
ln(n −1) + 5

=
4n
lnn

+ o(1)
€ 

≤1+
1
4 j

≤
j=1

n−1

∑ 1+
1
4

1
j
≤1+

1
4
(ln(n −1) +1) =

ln(n −1) + 5
4j=1

n−1

∑
€ 

≤1+
1

i + (i −1) + 2 i i −1)i=2

n

∑ ≤1+
1

2i −1+ 2(i −1)
≤

i=2

n

∑
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MST: it runs Prim algorithm to get a MST, then it 
directs the edges of the tree from the root to the 
leaves
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¢ Path op1…p6 is the unique 
MST, and its total energy is 6.

¢ On the other hand, the opt. 
routing is the star centered at 
o, whose energy is (1+ε)α.

¢ The approx. ratio converges to 
6, as ε goes to 0.

1

1

1

1

1

1

p3

p4

p5

p6

p1

p2

o

1+ε
1+ε

1+ε

1+ε

1+ε
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¢ We have just shown a lower bound on the 
approximation ratio of MST.

¢ This ratio is a constant and an upper bound is 
12.

¢ The proof involves complicated geometric 
arguments…
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Obs. The proof in [Wan, Calinescu, Li, Frieder ‘02] contains a 
flaw that can be solved, arriving to an 
approximation ratio of 12,15 [Klasing, Navarra, Papadopoulos, 
Perennes ’04]

Indipendently, an approximation ratio of 20 has 
been stated in [Clementi, Crescenzi, Penna, Rossi, Vocca ‘01]

Approx. ratio improved to 7,6 [Flammini, Klasing, Navarra, 
Perennes ‘04]

Approx. ratio improved to 6,33 [Navarra ‘05]

Optimal bound 6 [Ambüehl ’05]

For realistic instances, experiments suggest that 
the tight approximation ratio is not 6 but 4 
[Flammini, Navarra, Perennes ‘06] 
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The 3-dimensional space better models practical 
environments: 
in real life scenarios, radio stations are distributed 
over a 3-dimensional Euclidean space. 
The extension to the 3-dimensional case of the 
assumption that transmissions are propagated 
uniformly in a spherical shape naturally comes from 
the 2- dimensional case…
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…although it is not realistic: in general, in real 
world scenarios, the propagation is not uniform 
but a common core (not necessarily connected) 
covering a sphere.

fixed infrastructure for routing purposes. If we con-
sider sensor networks, sensors are also battery pow-
ered and the consumption of one single battery may
imply network failures. In such a setting, it is of
main interest to study the minimisation of the max-
imum transmission range associated to each sensor
(see for instance [3,4]). Conversely, when consider-
ing more powerful devices than sensors, the aim
could be to take care of the total energy consump-
tion since all the devices may depend on some com-
mon electricity generator. This comes out mainly
when the deployment of the stations is made in an
ad hoc fashion and the electricity to which devices
are connected is centralised. Thus, a naturally aris-
ing issue in this setting is that of supporting the
broadcast with minimum total energy consumption.
This problem, called Minimum Energy Broadcast
Routing (MEBR), is well-known in the literature
and it has been extensively studied (see [5–13]). In
general, it is NP-hard, while if a = 1 or the consid-
ered dimension d = 1, then it is solvable in polyno-
mial time [5,6]. Indeed, most of the studies
concern the 2-dimensional Euclidean space with
a = 2. Several papers progressively reduced the esti-
mate of the approximation ratio of the fundamental
Minimum Spanning Tree (MST) heuristic from 40
to 6 [7–13]. In [9] it was proven that for any consid-
ered dimension d > 1, the critical case to study is
when a = d since any result holding in this case
can be easily extended to any a 0 > a. Note that for
a < d the approximation ratios cannot be bounded
by any function of a and d [7]. The MST and other
heuristics have been presented in [2,14] also for the
multicasting variation of the problem. As already
noted, the performance of the MST heuristic has
been investigated by several authors and in the 2-
dimensional Euclidean space, for a = 2, the per-
formed approximation ratio is 6 [8], and it is opti-
mal [13]. Such a value coincides with the so-called
2-dimensional kissing number. In general, the d-
dimensional kissing number was proven to be a low-
er bound for the approximation ratio of the MST
heuristic for any dimension d > 1 and power a P d
[7]. More precisely, the d-dimensional kissing num-
ber is the maximum number of d-spheres (or hyper-
spheres) of a given radius r that can simultaneously
touch a d-sphere of the same radius r in the d-
dimensional Euclidean space [15]. The 3-dimen-
sional kissing number is 12 (see Fig. 1) but the best
known approximation ratio of the MST heuristic so
far is 26 [9]. The reduction of the gap between the
upper and the lower bound for the approximation

ratio of the MST heuristic in the 3-dimensional case
is of main theoretical and practical interest.

In this paper we investigate more carefully this 3-
dimensional case. Note that the 3-dimensional space
better models practical environments since, in real
life scenarios, radio stations are distributed over a
3-dimensional Euclidean space. The assumption
that transmissions are propagated uniformly in a
spherical shape instead of a planar circle, as it was
for the 2-dimensional case, might result somehow
too optimistic. On the other hand, the uniform
assumption comes straightforward from the 2-
dimensional case and its extension to the 3-dimen-
sional case is rather natural considering also that
our is one of the first approaches modelling such
kind of environment (see also [16] or [17] in the case
of sensor networks). In general, in real world sce-
narios, the propagation is not uniform but a com-
mon core covering a sphere as in Fig. 2 can be

Fig. 1. The kissing number in the 2- and 3-dimensional case. It is
given by 6 circles and 12 spheres, respectively, simultaneously
touching a central one.
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Fig. 2. The area containing nodes x, y, z and w represents the
transmission range of a node x under the Quasi Unit Disk Graph
model. Nodes y, w and z can receive messages sent from x, v
cannot. It is worth noting also the fact that the range may be
composed of disconnected surfaces. The dotted circle represents
the spherical core of the range.

A. Navarra / Ad Hoc Networks 6 (2008) 734–743 735
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• the approximation ratio of 6 for the MST 
heuristic in the 2- dimensional Euclidean space 
for a=2 coincides with the 2-dimensional kissing 
number. fixed infrastructure for routing purposes. If we con-

sider sensor networks, sensors are also battery pow-
ered and the consumption of one single battery may
imply network failures. In such a setting, it is of
main interest to study the minimisation of the max-
imum transmission range associated to each sensor
(see for instance [3,4]). Conversely, when consider-
ing more powerful devices than sensors, the aim
could be to take care of the total energy consump-
tion since all the devices may depend on some com-
mon electricity generator. This comes out mainly
when the deployment of the stations is made in an
ad hoc fashion and the electricity to which devices
are connected is centralised. Thus, a naturally aris-
ing issue in this setting is that of supporting the
broadcast with minimum total energy consumption.
This problem, called Minimum Energy Broadcast
Routing (MEBR), is well-known in the literature
and it has been extensively studied (see [5–13]). In
general, it is NP-hard, while if a = 1 or the consid-
ered dimension d = 1, then it is solvable in polyno-
mial time [5,6]. Indeed, most of the studies
concern the 2-dimensional Euclidean space with
a = 2. Several papers progressively reduced the esti-
mate of the approximation ratio of the fundamental
Minimum Spanning Tree (MST) heuristic from 40
to 6 [7–13]. In [9] it was proven that for any consid-
ered dimension d > 1, the critical case to study is
when a = d since any result holding in this case
can be easily extended to any a 0 > a. Note that for
a < d the approximation ratios cannot be bounded
by any function of a and d [7]. The MST and other
heuristics have been presented in [2,14] also for the
multicasting variation of the problem. As already
noted, the performance of the MST heuristic has
been investigated by several authors and in the 2-
dimensional Euclidean space, for a = 2, the per-
formed approximation ratio is 6 [8], and it is opti-
mal [13]. Such a value coincides with the so-called
2-dimensional kissing number. In general, the d-
dimensional kissing number was proven to be a low-
er bound for the approximation ratio of the MST
heuristic for any dimension d > 1 and power a P d
[7]. More precisely, the d-dimensional kissing num-
ber is the maximum number of d-spheres (or hyper-
spheres) of a given radius r that can simultaneously
touch a d-sphere of the same radius r in the d-
dimensional Euclidean space [15]. The 3-dimen-
sional kissing number is 12 (see Fig. 1) but the best
known approximation ratio of the MST heuristic so
far is 26 [9]. The reduction of the gap between the
upper and the lower bound for the approximation

ratio of the MST heuristic in the 3-dimensional case
is of main theoretical and practical interest.

In this paper we investigate more carefully this 3-
dimensional case. Note that the 3-dimensional space
better models practical environments since, in real
life scenarios, radio stations are distributed over a
3-dimensional Euclidean space. The assumption
that transmissions are propagated uniformly in a
spherical shape instead of a planar circle, as it was
for the 2-dimensional case, might result somehow
too optimistic. On the other hand, the uniform
assumption comes straightforward from the 2-
dimensional case and its extension to the 3-dimen-
sional case is rather natural considering also that
our is one of the first approaches modelling such
kind of environment (see also [16] or [17] in the case
of sensor networks). In general, in real world sce-
narios, the propagation is not uniform but a com-
mon core covering a sphere as in Fig. 2 can be

Fig. 1. The kissing number in the 2- and 3-dimensional case. It is
given by 6 circles and 12 spheres, respectively, simultaneously
touching a central one.
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Fig. 2. The area containing nodes x, y, z and w represents the
transmission range of a node x under the Quasi Unit Disk Graph
model. Nodes y, w and z can receive messages sent from x, v
cannot. It is worth noting also the fact that the range may be
composed of disconnected surfaces. The dotted circle represents
the spherical core of the range.

A. Navarra / Ad Hoc Networks 6 (2008) 734–743 735

• the d-dimensional kissing 
number is the maximum 
number of d-spheres of a 
given radius r that can 
simultaneously touch a d-
sphere of the same radius 
r in the d-dimensional 
Euclidean space 
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• In general, the d-dimensional kissing number 
was proven to be a lower bound for the 
approximation ratio of the MST heuristic for 
any dimension d > 1 and power a ≥d

• The 3-dimensional kissing number is 12, but the 
best known approximation ratio of the MST 
heuristic so far is 18,8 [Navarra ‘08]

    ☞ student lesson



1. Clustering — First construct MST and then 
determine a threshold value for breaking 
some edges in the MST using Intercluster 
distances and Intracluster distances

2. Image Segmentation — First construct an 
MST on a graph where pixels are nodes and 
distances between pixels are based on some 
similarity measure (color, intensity, etc.)
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