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BROADCAST (1)

= Wireless Sensor Networks, once deployed, perform
unattended operations for quite a long period.

= During their lifetimes, it is necessary to fix
software bugs, reconfigure system parameters, and
upgrade the software in order to achieve reliable
system performance.

= Especially for a large Wireless Sensor Networks,
manually collecting and reconfiguring nodes is

unfeasible 1

data dissemination, i.e. broadcast @

BROADCAST (2)

Broadcast spreads data from a sink node to all
nodes in the network, through wireless
communication.

Data can be a code image of a renewed
program, system commands, or updated system
parameters...

There are three requirements of data
dissemination in Wireless Sensor Networks:



BROADCAST (3)

1. Reliability: all the nodes in the network must
be covered.

Since data dissemination is the building block
of many services such as reprogramming and
parameter distribution, even a single node not
reached may result in inconsistency or crash of
the whole network.

BROADCAST (4)

2. Energy efficiency: the process must be done
with minimal energy consumed. This is the
consequence of limited power resources.

The consumed energy consists of read-write and
transmission. The read-write is inevitable for
storing data blocks. Transmission activity is the
major part of energy consumption and also the
part that can be controlled.



BROADCAST (5)

3. Scalability: the number of nodes and the
node density may vary. The dissemination
protocol is scalable if the completion time of
dissemination is linearly increasing with
network scale.

THE PROBLEM (1)

= As we already know, a wireless ad-hoc
network consists of a set S of (fixed) radio
stations joint by wireless connections.

= \We assume that stations are located on the
Euclidean plane (only partially realistic hp).

= Nodes have omnidirectional antennas: each
transmission is listened by all the
neighborhood (natural broadcast).



What does it means

TH E PROBLEM (2) ‘sufficiently close"?...

directly (single-
hop) -if they are sufficiently close- or through

= Two stations communicate eithe

intermediate nodes (multi-hop).

= A transmission range is assigned to every station:
a range assignment r : S — R determines a

directed communi-cation graph G=(S,E), where
edge (i, j) € E iff dist(i, j) < (i) (dist(i, j)=
euclidean distance between i and j).

«In other words, (i, j) € E iff j belongs to the disk
centered at i and having radius r(i).

THE PROBLEM (3)

= For reasons connected with energy saving, each
station can dynamically modulate its own
transmission power.

=In fact, the transmission radius of a station

depends on the energy power supplied to the

station.




THE PROBLEM (4)

= In particular, the power P required by a station s
to transmit data to another station t must

satisfy: ,

S

=
dist(s,1)”

where az1 is the distance-power gradient.
Usually 2<a<4 (it depends on the envorinment).
In the empty space a=2.
=Hence, in order to have a communication from s
to t, power P, must be proportional to dist(s,t)x

()

THE PROBLEM (5)

The general aim is to save energy as much as
possible, indeed all the devices depend on some
common electricity generator (e.g., when the
deployment of the stations is made in an ad hoc
fashion and the electricity to which devices are
connected is centralised).



THE PROBLEM (6)

Stations of a fixed wireless network cooperate
in order to provide specific network

connectivity properties by adapting their

transmission ranges and, at the same time,
they try to save energy.

THE PROBLEM (7)

According to the required property, different
problems are proposed.

For example, the transmission graph is required to:

=be strongly connected

the problem is NP-hard and there is a 2-approximate alg. in
2 dim. [Kirousis, Kranakis, Krizanc, Pelc 'O1]; there exists an r>1 s.t.
the problem is not r-approximable.

= have diameter at most h

Not trivial; approximate results are not known.

=include a spanning tree rooted at a given source

node s ..



THE PROBLEM (8)

In this latter case:

« A Broadcast Range Assignment (for short

) is a range assignment that yields
a communication graph G containing a
directed spanning tree rooted at a given
source station s.

= A fundamental problem in the design of ad-
hoc wireless networks is the Minimum-Energy
Broadcast problem (for short ),
that consists in finding a broadcast of
minimum overall energy. o)

INAPPROXIMABILITY of MinBroadcast (1)

Th. Min Broadcast is not approximable within any
constant factor.

Proof. Recall the MinSetCover problem:

given a collection C of subsets of a finite
universe set U, find a subset C' of C with min
cardinality, s.t. each element in U belongs to at
least one element of C..

Example:
U={1,2,3,4,5}  C={{1,2}, {1,2,3}, {3}, {3,4,5}}
C'={{1,2,3},{3,4,5}} ©



INAPPROXIMABILITY of MinBroadcast (2)

Proof (cntd).

Note. VinSetCover is not approximable within c
log n for some constant ¢>0, where n=|U|.

We will prove that, given an instance x of
MinSetCover, it is possible to construct an
instance y of MinBroadcast s.t. there exists a
solution for x of cardinality k iff there exists a
solution for y of cost k+1.

So, if MinBroadcast is approximable within a
constant, then even MinSetCover is.

Contradiction. @

INAPPROXIMABILITY of MinBroadcast (3)

Proof (cntd).

Set Cover Problem:

Given a set of subsets S={S, ..., S,}of the
universal set U such that

U s =U

i=l..m

what is the smallest subset C of {1, ..n} such that

s =u?

i€ C



INAPPROXIMABILITY of MinBroadcast (4)

Proof (cntd).
Reduction:
x=(U,C) instance of MinSetCover with:

U={s}, sy, ..., s,p and C={C,, C,, ..., C,,}.
We construct y=(G,w,s) of MinBroadcast.
Nodes of G: {s} U {Vc} U {V}
Edges of G:(s, vi¢), 1<ism} U {(v;¢, vY), l<izm, s.t.
s; in Gy}

v,C @

. ©

INAPPROXIMABILITY of MinBroadcast (5)

Proof (cntd).

Finally, define w(e)=1 for any edge e.

Let C' be a solution for x.

A sol. for y assigns 1 to s and to all nodes of V
in C.

The resulting transmission graph contains a
spanning tree rooted at s because each element

in U is contained in at least one element of C.
The cost of such a solution is |C'[+1.

(o)



INAPPROXIMABILITY of MinBroadcast (6)

Proof (cntd).

Conversely, assume that r is a feasible sol. for vy,
(w.l.o.g. r(v) is either O or 1 if v is in V: other
values would be meaningless) and r(v)=0 if v is
in V.

We derive a solution C° for selecting all
subsets C; s.t. r(v;6)=1.

It holds that |C'|=cost(r)-1.
0

EUCLIDEAN MINBROADCAST (1)
Note:

We proved that is not
approximable within a constant factor, but we
have dealt with the general problem.

There are some special cases (e.g. the Euclidean

bidimensional one) that are particularly
interesting and that behave better!

In the following, we restrict to the special case
of Euclidean plane..



EUCLIDEAN MINBROADCAST (2)

" Collaborating in order to minimize the
overall energy is crucial:

0S; needs to communicate

S with SZ
=N let a=2
/ o Cost of S; — S, = dist(Sq, S,)?
> o o Cost of S; — S3 — S,=
S, S, =dist(S;, S3)2+dist(S;, S»)?2

o When angle 5,535, is obtuse:
diSt(Sl, 52)2>
> diSt(Sl, S3)Z+dist(S3, 52)2

()

EUCLIDEAN MINBROADCAST (3)

= In the Euclidean case, a range assignment r
can be represented by the correspondent
family
D = {D;, ..., D} of disks, and the overall

energy is defined as:

l
cost(D) = Eria
i=1

1

where r; is the radius of D..



EUCLIDEAN MINBROADCAST (4)

= Consider the complete and weighted graph G
where the weight of each arc e=(uyv) is
dist(u,v)e.

= The broadcast problem is strictly related with
the minimum spanning tree on G®, in view of
some important properties..

EUCLIDEAN MINBROADCAST (5)

The unavoidable set of connections
used to perform a broadcast from s:
« cannot generate a cycle, because
nodes do not need to be informed

< \ e twice I

/ ' tree
&‘ * minimizes the overall energy

o l

long arcs waste more energy than

short ones...
Min Spanning Tree? ©



EUCLIDEAN MINBROADCAST (6)

o NO: the Minimum Broadcast problem is not the
same as the Min Spanning Tree problem:

« The energy used by each node

u1s max,, . r {dist(u,v)}oC

| \ ~(only the longest edge of each
’ internal  node  gives its

\ / \\ contrlbutlon)

a J

/

\ \ _~ + Leaves waste no energy

~ o — 9
o — a

EUCLIDEAN MINBROADCAST (7)

= The Minimum Broadcast problem is NP-hard
in its general version and it is neither
approximable within (1-g)A, where A is the
maximum degree of T and & is an arbitrary
constant.

= Nothing is known about the hardness of the
geometric version (i.e. in the Euclidean
plane).



EUCLIDEAN MINBROADCAST (8)

= An approximation algorithm is based on the
computation of the MST:

= compute the MST of the complete graph induced
by U,

= Assign a direction to arcs (from s to the leaves)

= Assign to each node i a radius equal to the
length of the longest arc outgoing from i

= Easy to implement & deep analysis of the approx
ratio.

- [Clementi+al.’O1] the first constant approx ratio (about 40)
- [Ambiiehl ‘0O5] the best (tight) known approx ratio (6) @

THE MINIMUM
SPANNING
EREE PROUIBE
(RECUP)




MINIMUM SPANNING TREE (1)

= Obs. 1: If the weights are positive, then a MST is
in fact a minimum-cost subgraph connecting all
nodes.

= Proof: A subgraph containing cycles necessarily
has a higher total weight. O

MINIMUM SPANNING TREE (2)

= Obs. 2: There may be several minimum spanning
trees of the same weight.

= In particular, if all the edge weights of a given
graph are the same, then every spanning tree of
that graph is minimum.



MINIMUM SPANNING TREE (3)

= Obs. 3: If each edge has a distinct weight, then
there is a unique MST.

= This is true in many realistic situations, where it's
unlikely that any two connections have exactly the
same cost

= Proof: Assume by contradiction that MST T is not
unique. So, there is another MST with equal weight,
say T

MINIMUM SPANNING TREE (4)

(proof - cntd)

=Let e; be an edge that is in T but not in T'. As T" is a
MST, {e;} U T' contains a cycle C and there is at least

one edge e, in T’ that is not in T and lies on C.
= [f the weight of e; is less than that of e;:
replacing e, with e; in T' yields tree {e;} U T' \ {e,}
which has a smaller weight compared to T'.

Contradiction, as we assumed T’ is a MST but it is

not.

©



MINIMUM SPANNING TREE (5)

(proof - cntd)

« If the weight of e; is larger than that of ey:
a similar argument involving tree {e;} U T \ {e;} also

leads to a contradiction.

= We conclude that the assumption that there is a
further MST was false. O

MINIMUM SPANNING TREE (6)

=Obs. 4: For any cycle C in the graph, if the weight
of an edge e of C is larger than the weights of all
other edges of C, then this edge cannot belong to

an MST.

«Proof: Assuming the contrary, i.e. that e belongs to
an MST T,, then deleting e will break T; into two
subtrees with the two endpoints of e in different
subtrees. The remainder of C reconnects the
subtrees, in particular there is an edge f of C with
endpoints in different subtrees, i.e., it reconnects
the subtrees into a tree T, with weight less than
that of T;, because the weight of f is less than th@
weight of e. u



MINIMUM SPANNING TREE (7)

= Obs. 5: If in a graph there exists a unique edge e
with the minimum weight, then this edge is
included in any MST.

= Proof: If e was not included in the MST,
removing any of the (larger cost) edges in the
cycle formed after adding e to the MST, would
yield a spanning tree of smaller weight. ™

©

MINIMUM SPANNING TREE (8)

= Obs. 6: For any cut C in the graph, if there exists
a unique edge e of C with minimum weight in C,
then this edge is included in any MST.

= Proof: If e was not included in the MST, adding e
to the MST produces a cycle. Removing any of the
(larger cost) edges of the cut in the cycle, would
yield a spanning tree of smaller weight. Il

= By similar arguments, if more than one edge is of
minimum weight across a cut, then each such edge

©

is contained in a minimum spanning tree.



MINIMUM SPANNING TREE (9)

Three classical algorithms:
= Kruskal ['56]
= Prim ['57]

= Boruvka ['26]

MINIMUM SPANNING TREE (10)

= The three algorithms are all greedy algorithms and
based on the same structure:

= Given a set of arcs A containing some MST arcs,

e is a safe arc w.r.t. A if A U {e} contains only
MST arcs, too.

= A=empty set
While A is not a MST

find a safe arc e w.r.t. A | “difficult” issue
A=A U {e}




MINIMUM SPANNING TREE (11)

A=empty set

while A is not a MST
find a safe arc e w.r.t. A
A=A U {e}

where:
= A is acyclic

= graph Ga=(V, A) is a forest whose each connected
component is either a node or a tree

= Each safe arc connects different connected
components of Gy

= the while loop is run n-1 times ()

KRUSKAL ALGORITHM (1)

= A=empty set Among those

While GA is not a MST connecting two
find a safe arc e w.r.t. A different connected
A=A components in G,

- {E} choose the one with
Implementation using: minimum weight

= Data structure Union-Find

=The set of the arcs of G, is sorted w.r.t. their
weight

= Time Complexity: O(m log n)

[Johnson ‘75, Cheriton & Tarjan '76] @
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PRIM ALGORITHM (1) AL ANESE
connecting the
= A=empty set main connected
While G, is not a MST component with an
find a safe arc e w isolated node,

A=A U {el ch.oose fch.e one
with minimum
Implementation using: weight

= Nodes in a min-priority queue w.r.t. key(v)=min
weight of an arc connecting v to a node of the
main connected component; o if it does not exist

= Priority queue = heap 9@ Complexity: O(m log n)

= Priority queue = Fibonacci heap & Complexity:
O(m+r1 1og n) [Ahuja, Magnanti & Orlin ‘93] @



PRIM ALGORITHM (2)

Among those
connecting C; to

BORUVKA ALGORITHM (1) another

(purpose: an efficient electrical component, the
coverage of Moravia) one with minimum
Hypothesis: each arc has a weight
distinct weight
« A=empty set
While A is not a MST
for each connected compdénent C; of G,
find a safe arc e; w.r.t. C;
A=A U {e;}
Trick: handle many arcs (exactly log of the # of
connected components) during the same loop

Impossible to introduce cycles, thanks to the

hipothesis! @
Complexity: O(m log n)



BORUVKA ALGORITHM (2)
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OTHER ALGORITHMS (1)

[Friedman & Willard '94]

Linear time algorithm, but it assumes the
edges are already sorted w.r.t. their weight.
Not wused in practice, as the asymptotic
notation hides a huge constant.

[Matsui '95]

Linear time algorithm for planar graphs

IZ"possible lesson



OTHER ALGORITHMS (2)

[Frederickson '85, Eppstein '94]

Given a graph and its MST, it is even
interesting to find a new MST after that
the original graph has been slightly

modified. It can be performed in average
time O(log n)

Only O(n+*m) time is necessary to verify
whether a given spanning tree is minimum.

AGAIN ON
MINIMUM ENERGY
BROADCAST




HEURISTICS (1)

In [Wieselthier, Nguyen, Ephremides, OO]: three heuristics all
based on the greedy technique:

= SPT (spanning path tree): it runs Dijkstra algorithm
to get the minimum path tree, then it directs the
edges of the tree from the root to the leaves.

=« BAIP (Broadcast Average Incremental Power): it is a
modification of the Dijkstra algorithm based on the
nodes (i.e. a new node is added to the tree on the

basis of its minimum average cost).

=« MST (min spanning tree): it runs Prim algorithm to
get a MST, then it directs the edges of the tree from
the root to the leaves. @

A PARENTHESIS

SPT (spanning path tree) and MST (min spanning
tree) can be different:

) 4 3 Dijkstra algorithm (SPT)
4

o 3

Prim algorithm (MST)

1 2
® 1
Possibly ‘many

trees, not all of
the same weight

Possibly many

(e.g., addd thef trees, all of the
U er e e O -8
we[i)ght 133 same (minimum)

weight @



HEURISTICS (2)
GREEDY IS NOT ALWAYS GOOD

Greedy is not always good [wan, Calinescy, Li, Frieder ‘02]:

«SPT: it runs Dijkstra algorithm to get the
minimum path tree, then it directs the edges of
the tree from the root to the leaves

(let a=2)

o SPT outputs a tree with
total energy:
g2+n/2(1-¢)>2

o If the root transmits with
radius 1 the energy is 1

o When e-0 SPT is far n/2
from the optimal solution.@

HEURISTICS (3)
GREEDY IS NOT ALWAYS GOOD

BAIP (Broadcast Average Incremental Power): it is a
modification of the Dijkstra algorithm based on the

nodes: a new node is added to the tree on the basis
Of:

min avg cost = energy increasing / # of added nodes.
If it is <1, it is considered profitable.

It has been designed to solve the problems of SPT.

(-2)



HEURISTICS (4)

GREEDY IS NOT ALWAYS GOOD
)\ A \ \
| A V3 _._n_g
V2

Vi ® @ e e e @

e = ——

(let a=2):

o The min transmission power of the source to
reach k receiving nodes is vk2 = k and thus the
average power efficiency is k / k =1

o The min transmission power of the source to
reach all receiving nodes is (Vn-g)2 = n-¢ and
thus the average power efficiency is

(n-€)/n=1 - €/n..

-~

HEURISTICS (5) i

GREEDY IS NOT ALWAYS |

GOOD o V] ® e e e e e
BAIP will let the source to transmit at power
Vn-¢ to reach all nodes in a single step with power n-e.

However, the opt. routing is a path consisting of all
nodes from left to right. Its min power is:

E(\f Vi1 +(Wn-¢-~/n-1) <E(\f Ni—1)? =

- — L Witi-1)? & (i - F)(«EH/T»
Z(«ﬁ—ﬁ) i +fi-1) El (i +fi= 1)

n n

=E (i-@G-1) =E =1+E 1 -
i=1 (W/;+\/l'—1)2 — (W/;+‘Vl'—1)2 i2 (W/;"‘ Vi-1)* @




HEURISTICS (6) *

[ )| |
GREEDY IS NOT ALWAYS v WERN L
GOOD o J1 @ o oo o
(computation of the performance ratio of BAIP - cntd)

n

<1+n ! <]+E ! <
T L (i-D+24ini-1) T E2i-1420-1)"

i=2
1 1 |
<1+ =1+ =1+ =
gzi—1+2(i—1) ;41'—3 ;4(1'—1)
Substituting i=j+1:

n-1 n-1
1 Il 1 In(n -1)+5
<l+ ) —=<l+— ) —=<l+—(In(rn-1)+1) =

;4] 4; 4 4

Thus the approx ratio of BAIP is at least:
n-E&
Tooas ey
4

4n 4

-2+ o)
In(n-1)+5 Inn

HEURISTICS (7)
GREEDY IS NOT ALWAYS GOOD

MST: it runs Prim algorithm to get a MST, then it

directs the edges of the tree from the root to the
leaves

o Path op;..pg is the unique
MST, and its total energy is ©.

o On the other hand, the opt.
routing is the star centered at

o, whose energy is (1+g)~

o The approx. ratio converges to
6, as € goes to O.

©



HEURISTICS (8)

o We have just shown a lower bound on the
approximation ratio of MST.

o This ratio is a constant and an upper bound is
12.

o The proof 1involves complicated geometric
arguments...

HEURISTICS (9)

Obs. The proof in [wan, Calinescy, Li, Frieder '02] contains a
flaw that can be solved, arriving to an
approximation ratio of 12,15 [Klasing, Navarra, Papadopoulos,

Perennes '04]

Indipendently, an approximation ratio of 20 has
been stated in [Clementi, Crescenzi, Penna, Rossi, Vocca ‘0O1]

Approx. ratio improved to 7,6 [Flammini, Klasing, Navarra,
Perennes '04]

Approx. ratio improved to 6,33 [Navarra '05]
Optimal bound 6 [Ambient 05

For realistic instances, experiments suggest that
the tight approximation ratio is not 6 but 4@

[Flammini, Navarra, Perennes '06]



HEURISTICS (10)

The 3-dimensional space better models practical
environments:

in real life scenarios, radio stations are distributed
over a 3-dimensional Euclidean space.

The extension to the 3-dimensional case of the
assumption that transmissions are propagated
uniformly in a spherical shape naturally comes from
the 2- dimensional case..

HEURISTICS (11)

..although it is not realistic: in general, in real
world scenarios, the propagation is not uniform
but a common core (not necessarily connected)
covering a sphere.




HEURISTICS (12)

* the approximation ratio of 6 for the MST
heuristic in the 2- dimensional Euclidean space
for a=2 coincides with the 2-dimensional kissing
number.

* the d-dimensional kissing
number is the maximum
number of d-spheres of a
given radius r that can
simultaneously touch a d-
sphere of the same radius
r in the d-dimensional

Euclidean space
@

HEURISTICS (13)

* In general, the d-dimensional kissing number
was proven to be a lower bound for the
approximation ratio of the MST heuristic for
any dimension d > 1 and power a >d

« The 3-dimensional kissing number is 12, but the
best known approximation ratio of the MST
heuristic so far is 18,8 [Navarra '08]

== student lesson



APPLICATIONS FROM DATA
SCIENCE

1. Clustering — First construct MST and then
determine a threshold value for breaking

some edges in the MST using Intercluster
distances and Intracluster distances

2. Image Segmentation — First construct an

MST on a graph where pixels are nodes and
distances between pixels are based on some
similarity measure (color, intensity, etc.)



