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THE MINIMUM ENERGY 
BROADCAST PROBLEM
I.E.
THE MINIMUM SPANNING TREE
PROBLEM
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§ Wireless Sensor Networks, once deployed, perform
unattended operation for quite a long period. 

§ During their lifetimes, it is necessary and 
unavoidable to fix software bugs, reconfigure
system parameters, and upgrade the software in 
order to achieve reliable system performance. 

§ Especially for a large Wireless Sensor Networks, 
manually collecting and reconfiguring nodes is
infeasible

data dissemination, i.e. broadcast
3

Broadcast spreads data from a sink node to all nodes
in the network, through wireless communication. 
Data can be a code image of a renewed program, 
system commands, or updated system parameters…
There are three requirements of data dissemination in 
Wireless Sensor Networks: 
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§ Reliability: all the nodes in the network are covered. 
Since data dissemination is the building block of many
services such as reprogramming and parameter distribution, 
even a single node not reached may result in inconsistency
or crash of the whole network. 

§ Energy efficiency: the process must be done with minimal
energy consumed. This is the consequence of limited power
resources. 
The consumed energy consists of read-write and 
transmission. The read-write is inevitable for storing data 
blocks. Transmission activity is the major part of energy
consumption and also the part that can be controlled. 

§ Scalability: the number of nodes and the node density may
vary. The dissemination protocol is scalable if the completion
time of dissemination is linearly increasing with network 
scale. 5

§ As we already know, a wireless ad-hoc network
consists of a set S of (fixed) radio stations joint by
wireless connections.

§ We assume that stations are located on the
Euclidean plane (only partially realistic hp).

§ Nodes have omnidirectional antennas: each
transmission is listened by all the neighborhood
(natural broadcast).

§ …
6

§ Two stations communicate either directly (single-hop) -if
they are sufficiently close- or through intermediate nodes
(multi-hop).

§ A transmission range is assigned to every station: a range
assignment r : S → R determines a directed communi-
cation graph G=(S,E), where edge (i, j) ∈ E iff dist(i, j) ≤ r(i)
(dist(i, j)= euclidean distance between i and j).

§ In other words, (i, j) ∈ E iff j belongs to the disk centered at
i and having radius r(i).
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What does it means

“sufficiently close”?…

§ For reasons connected with energy saving, each station
can dynamically modulate its own transmission power.

§ In fact, the transmission radius of a station depends on
the energy power supplied to the station.
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§ In particular, the power Ps required by a station s to
transmit data to another station t must satisfy:

where α≥1 is the distance-power gradient.

Usually 2≤α≤4 (it depends on the envorinment).

In the empty space α=2.

§ Hence, in order to have a communication from s to t, power
Ps must be proportional to dist(s,t)α.
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€ 

Ps
dist(s,t)α

≥1

The general aim is to save energy as much as possible:

§ In sensor networks:
§ sensors are battery powered and the consumption of

one single battery may imply network failures.
§ main interest: to study the minimisation of the maximum

transmission range associated to each sensor

§ When devices are more powerful than sensors:
§ all the devices depend on some common electricity

generator (e.g., when the deployment of the stations is
made in an ad hoc fashion and the electricity to which
devices are connected is centralised).

§ main interest: to take care of the total energy
consumption 10

§ Stations of an ad hoc network cooperate in order to
provide specific network connectivity properties by
adapting their transmission ranges and, at the same
time, they try to save energy.

§ …
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… According to the required property, different problems are
proposed.

For example, the transmission graph:

§ is required to be strongly connected
the problem is NP-hard and there is a 2-approximate alg. in 2 dim.
[Kirousis, Kranakis, Krizanc, Pelc ’01]; there exists an r>1 s.t. the problem is
not r-approximable.

§ is required to have diameter at most h
Not trivial; approximate results are not known.

§ Given a source node s, is required to include a spanning
tree rooted at s … 12



In this latter case:

§ A Broadcast Range Assignment (for short
Broadcast) is a range assignment that yields a
communication graph G containing a directed
spanning tree rooted at a given source station s.

§ A fundamental problem in the design of ad-hoc
wireless networks is the Minimum-Energy Broadcast
problem (for short Min Broadcast), that consists in
finding a broadcast of minimum overall energy.
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Th. Min Broadcast is not approximable within any constant
factor.

Proof. Recall the MinSetCover problem:

given a collection C of subsets of a finite universe set U,
find a subset C’ of C with min cardinality, s.t. each
element in U belongs to at least one element of C’.

Example:

U={1,2,3,4,5} C={{1,2}, {1,2,3}, {3}, {3,4,5}}

C’={{1,2,3},{3,4,5}}
14

Proof (cntd).

Note. MinSetCover is not approximable within c log n for
some constant c>0, where n=|U|.

We will prove that, given an instance x of MinSetCover, it
is possible to construct an instance y of MinBroadcast s.t.
there exists a solution for x of cardinality k iff there exists
a solution for y of cost k+1.

So, if MinBroadcast is approximable within a constant,
then even MinSetCover is.

Contradiction. 15

Proof (cntd).

Reduction:

x=(U,C) instance of MinSetCover with:

U={s1, s2, …, sn} and C={C1, C2, …, Cm}.

We construct y=(G,w,s) of MinBroadcast.

Nodes of G: {s} U {VC} U {VU}

Edges of G:{(s, viC), 1≤i≤m}U{(viC, vjU), 1≤i≤m, s.t. sj in Ci}
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v1C
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vjU s.t. sj is in Ci
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Proof (cntd).

Finally, define w(e)=1 for any edge e.

Let C’ be a solution for x.

A sol. for y assigns 1 to s and to all nodes of VC in C’.

The resulting transmission graph contains a spanning tree
rooted at s because each element in U is contained in at
least one element of C’. The cost of such a solution is
|C’|+1.
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Proof (cntd).

…

Conversely, assume that r is a feasible sol. for y, (w.l.o.g.
r(v) is either 0 or 1 if v is in VC: other values would be
meaningless) and r(v)=0 if v is in VS.

We derive a solution C’ for x selecting all subsets Ci s.t.
r(viC)=1.

It holds that |C’|=cost(r)-1. n
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Note:

We proved that Min Broadcast is not approximable within
a constant factor, but we have dealt with the general
problem.

There are some special cases (e.g. the Euclidean
bidimensional one) that are particularly interesting and
that behave better!

In the following, we restrict to the special case of
Euclidean plane…

19

§ Obs. Collaborating in order to minimize the overall
energy is crucial:

20

S2 S3

S1

¢ S1 needs to communicate with S2
¢ let "=2
¢ Cost of S1 → S2 = dist(S1, S2)2

¢ Cost of S1 → S3 → S2=
dist(S1, S3)2+dist(S3, S2)2

¢ When angle S1S3S2 is obtuse:
dist(S1, S2)2>

dist(S1, S3)2+dist(S3, S2)2



§ In the Euclidean case, a range assignment r can be
represented by the correspondent family
D = {D1, . . . , Dl} of disks, and the overall energy is
defined as:

where ri is the radius of Di.
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€ 

cos t(D) = ri
α

i=1

l

∑

§ Consider the complete and weighted graph G(α) where
the weight of each arc e=(u,v) is dist(u,v)α.

§ The broadcast problem is strictly related with the
minimum spanning tree on G(α), in view of some
important properties…

22

23

The unavoidable set of connections
used to perform a broadcast from s:
• cannot generate a cycle, because
nodes do not need to be informed
twice

tree
• minimizes the overall energy

long arcs waste more energy than
short ones.
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• The energy used by each node u is

(only the longest edge of each
internal node gives its contribution)
€ 

max(u,v )∈T dist(u,v){ }α

¢ Nevertheless, the Minimum Broadcast problem is not the 
same as the Min Spanning Tree problem:

• Leaves waste no energy



§ The Minimum Broadcast problem is NP-hard in its
general version and it is neither approximable within
(1-ε)Δ, where Δ is the maximum degree of T and ε is
an arbitrary constant.

§ Nothing is known about the hardness of the geometric
version (i.e. in the Euclidean plane).
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§ An approximation algorithm is based on the computation of 
the MST:

§ compute the MST of the complete graph induced by U,
§ Assign a direction to arcs (from s to the leaves)

§ Assign to each node i a radius equal to the length of the 
longest arc outgoing from i

§ Easy to implement è deep analysis of the approx ratio.
§ [Clementi+al.’01] the first constant approx ratio (about 40) 

§ [Ambüehl ’05] the best (tight) known approx ratio (6)
26
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§ Obs. 1: If the weights are positive, then a MST is in fact a 
minimum-cost subgraph connecting all nodes.

§ Proof: A subgraph containing cycles necessarily has a 
higher total weight. n

§ Obs. 2: There may be several minimum spanning trees of
the same weight having a minimum number of edges.

§ In particular, if all the edge weights of a given graph are the
same, then every spanning tree of that graph is minimum. 28



§ Obs. 3: If each edge has a distinct weight, then there is a 
unique MST.

§ This is true in many realistic situations, where it's unlikely
that any two connections have exactly the same cost

§ Proof: Assume by contradiction that MST T is not unique. 
So, there is another MST with equal weight, say T’.

…
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(proof – cntd)

§ Let e1 be an edge that is in T but not in T’. As T’ is a MST, {e1} U T’
contains a cycle C and there is at least one edge e2 in T’ that is not
in T and lies on C.

§ If the weight of e1 is less than that of e2:
replacing e2 with e1 in T’ yields tree {e1} U T’ \ {e2} which has a 
smaller weight compared to T’.
Contradiction, as we assumed T’ is a MST but it is not.

§ If the weight of e1 is larger than that of e2: 
a similar argument involving tree {e2} U T \ {e1} also leads to a 
contradiction. 

§ We conclude that the assumption that there is a further MST was
false. n 30

§ Obs. 4: For any cycle C in the graph, if the weight of an 
edge e of C is larger than the weights of all other edges of 
C, then this edge cannot belong to an MST.

§ Proof: Assuming the contrary, i.e. that e belongs to an MST 
T1, then deleting e will break T1 into two subtrees with the 
two endpoints of e in different subtrees. The remainder of C
reconnects the subtrees, in particular there is an edge f of C
with endpoints in different subtrees, i.e., it reconnects the 
subtrees into a tree T2 with weight less than that of T1, 
because the weight of f is less than the weight of e. n
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§ Obs. 5: If in a graph there exists a unique edge e with the
minimum weight, then this edge is included in any MST.

§ Proof: If e was not included in the MST, removing any of
the (larger cost) edges in the cycle formed after adding e to
the MST, would yield a spanning tree of smaller weight. n

32



§ Obs. 6: For any cut C in the graph, if there exists a unique
edge e of C with minimum weight in C, then this edge is
included in any MST.

§ Proof: If e was not included in the MST, adding e to the MST
produces a cycle. Removing any of the (larger cost) edges
of the cut in the cycle, would yield a spanning tree of smaller
weight. n

§ By similar arguments, if more than one edge is of minimum
weight across a cut, then each such edge is contained in a
minimum spanning tree.
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Three classical algorithms:

§ Kruskal [‘56]

§ Prim [‘57]

§ Boruvka [’26]

34

§ The three algorithms are all greedy algorithms and based
on the same structure:
§ Given a set of arcs A containing some MST arcs, e is a 

safe arc w.r.t. A if A U {e} contains only MST arcs, too.
§ A=empty set

While A is not a MST
find a safe arc e w.r.t. A
A=A U {e}

35

“difficult” issue

§ A=empty set
while A is not a MST

find a safe arc e w.r.t. A
A=A U {e}

where: 

§ A is acyclic

§ graph GA=(V, A) is a forest whose each connected component 
is either a node or a tree

§ Each safe arc connects different connected components of GA

§ the while loop is run n-1 times
36



§ A=empty set
While GA is not a MST

find a safe arc e w.r.t. A
A=A U {e}

Implementation using:

§ Data structure Union-Find

§ The set of the arcs of GA is sorted w.r.t. their weight

§ Time Complexity: O(m log n) [Johnson ‘75, Cheriton & Tarjan ‘76]

37

Among those
connecting two

different connected
components in GA, 

choose the one with 
minimum weight
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§ A=empty set
While GA is not a MST

find a safe arc e w.r.t. A
A=A U {e}

Implementation using:

§ Nodes in a min-priority queue w.r.t. key(v)=min weight of an
arc connecting v to a node of the main connected
component; ∞ if it does not exist

§ Priority queue = heap è Complexity: O(m log n)

§ Priority queue = Fibonacci heap è Complexity: O(m+n log n)

[Ahuja, Magnanti & Orlin ‘93] 39

Among those
connecting the 
main connected

component with an 
isolated node, 

choose the one
with minimum 

weight

40

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6



41

(purpose: an efficient electrical coverage of Moravia)

Hypothesis: each arc has a
distinct weight

� A=empty set
While A is not a MST

for each connected component Ci of GA

find a safe arc ei w.r.t. Ci

A=A U {ei}
Trick: handle many arcs (exactly log of the # of connected

components) during the same loop

Impossible to introduce cycles, thanks to the hipothesis!
Complexity: O(m log n)

Among those
connecting Ci to 

another component, 
the one with 

minimum weight

42
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BORUVKA ALGORITHM (1) 

(purpose: an efficient electrical  
                   coverage of Moravia) 
Hipothesis: each arc has a  
distinct weight 

!  A=empty set 
 While A is not a MST 

 for each connected component Ci of GA 

  find a safe arc ei w.r.t. Ci 

  A=A U {ei} 
Trick: handle many arcs (exactly log of the # of connected 

components) during the same loop 
Impossible to introduce cycles, thanks to the hipothesis! 
Complexity: O(m log n) 

Among those 
connecting Ci to 

another 
component, the 

one with minimum 
weight 
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BORUVKA ALGORITHM (2) 
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OTHER ALGORITHMS (1) 

!  [Friedman & Willard ‘94] Linear time algorithm, but it 
assumes the edges are already sorted w.r.t. their 
weight. Not used in practice, as the asymptotic 
notation hides a huge constant. 

!  [Matsui ’95] Linear time algorithm for planar graphs 
(possible lesson) 
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OTHER ALGORITHMS (2) 

!  [Frederickson ‘85, Eppstein ‘94] Given a graph and its 
MST, it is even interesting to find a new MST 
after that the original graph has been slightly 
modified. It can be performed in average time 
O(log n) 

! Only O(n+m) time is necessary to verify whether 
a given spanning tree is minimum. 

40 
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§ [Friedman & Willard ‘94] Linear time algorithm, but it
assumes the edges are already sorted w.r.t. their
weight. Not used in practice, as the asymptotic
notation hides a huge constant.

§ [Matsui ’95] Linear time algorithm for planar graphs
(possible lesson)
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§ [Frederickson ‘85, Eppstein ‘94] Given a graph and its MST,
it is even interesting to find a new MST after that the

original graph has been slightly modified. It can be
performed in average time O(log n)

§ Only O(n+m) time is necessary to verify whether a
given spanning tree is minimum.

44
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In [Wieselthier, Nguyen, Ephremides, 00]: three heuristics all based
on the greedy technique:

§ SPT (spanning path tree): it runs Dijkstra algorithm to get
the minimum path tree, then it directs the edges of the
tree from the root to the leaves.

§ BAIP (Broadcast Average Incremental Power): it is a
modification of the Dijkstra algorithm based on the nodes
(i.e. a new node is added to the tree on the basis of its
minimum average cost).

§ MST (min spanning tree): it runs Prim algorithm to get a
MST, then it directs the edges of the tree from the root to
the leaves. 46

SPT (spanning path tree) and MST (min spanning tree)
can be different:
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Prim algorithm (MST)
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22Possibly many
trees, not all of the
same weight
(e.g., add the upper
edge of weight 1)

Possibly many
trees, all of the
same (minimum)
weight

Greedy is not always good [Wan, Calinescu, Li, Frieder ‘02]:

§ SPT: it runs Dijkstra algorithm to get the minimum path tree,
then it directs the edges of the tree from the root to the
leaves

48

(let α=2)
¢ SPT outputs a tree with total

energy:
ε2+n/2(1-ε)2

¢ If the root transmits with radius
1 the energy is 1

¢ When εà0 SPT is far n/2 from
the optimal solution.

p1q1

q2

p3

q3

p2

pm

qm

1−ε ε o



§ BAIP (Broadcast Average Incremental Power): it is a
modification of the Dijkstra algorithm based on the nodes:
a new node is added to the tree on the basis of the min
average cost = energy increasing / # of added nodes.

§ It has been designed to solve the problems of SPT.

49 50

(let α=2):
¢ The min transmission power of the source to reach k

receiving nodes is √k2 = k and thus the average power
efficiency is k / k = 1

¢ On the other hand, the min transmission power of the
source to reach all receiving nodes is
(√n-ε)2 = n-ε and thus the average power efficiency is
(n-ε)/n=1 - ε/n…

√1
√2

√3 …

€ 

n −ε

51

¢ BAIP will let the source to transmit at power
√n-ε to reach all nodes in a single step.

¢ However, the opt. routing is a path consisting of all nodes
from left to right. Its min power is:

√1
√2

√3 …

€ 

n −ε

€ 

( i − i −1)2 + ( n −ε − n −1)2
i=1

n−1

∑ < ( i − i −1)2 =
i=1

n

∑

€ 

( i − i −1)2 ( i + i −1)2

( i + i −1)2i=1

n

∑ =
(( i − i −1)( i + i −1))2

( i + i −1)2i=1

n

∑ =
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=
(i − (i −1))2

( i + i −1)2i=1

n

∑ =
1

( i + i −1)2i=1

n

∑ =1+
1

( i + i −1)2i=2

n

∑ ≤
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(computation of the performance ratio of BAIP – cntd)
√1

√2
√3 …
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n −ε

≤1+ 1
2i−1+ 2(i−1)

=1+ 1
4i−3i=2

n

∑ ≤1+ 1
4(i−1)i=2

n

∑ ≤
i=2

n

∑

Substituting i=j+1:

Thus the approx ratio of BAIP is at least:
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n −ε
ln(n −1) + 5

4

→(ε →0) 4n
ln(n −1) + 5

=
4n
lnn

+ o(1)
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MST: it runs Prim algorithm to get a MST, then it directs the
edges of the tree from the root to the leaves

53

¢ Path op1…p6 is the unique
MST, and its total energy is 6.

¢ On the other hand, the opt.
routing is the star centered at o,
whose energy is (1+ε)α.

¢ The approx. ratio converges to
6, as ε goes to 0.
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1

1

1
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1+ε
1+ε

1+ε

1+ε

1+ε
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¢ We have just shown a lower bound on the approximation
ratio of MST.

¢ This ratio is a constant and an upper bound is 12.

¢ The proof involves complicated geometric arguments…
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¢ Obs. The proof in [Wan, Calinescu, Li, Frieder ‘02] contains a small
flaw that can be solved, arriving to an approximation ratio
of 12,15 [Klasing, Navarra, Papadopoulos, Perennes ’04]

¢ Indipendently, an approximation ratio of 20 has been
stated in [Clementi, Crescenzi, Penna, Rossi, Vocca ‘01]

¢ Approx. ratio improved to 7,6 [Flammini, Klasing, Navarra, Perennes ‘04]

¢ Approx. ratio improved to 6,33 [Navarra ‘05]

¢ Optimal bound 6 [Ambüehl ’05]

¢ For realistic instances, experiments suggest that the tight
approximation ratio is not 6 but 4 [Flammini, Navarra, Perennes ‘06]
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The 3-dimensional space better models practical environments: 
• in real life scenarios, radio stations are distributed over a 3-

dimensional Euclidean space. 
• the extension to the 3-dimensional case of the assumption

that transmissions are propagated uniformly in a spherical
shape naturally comes from the 2- dimensional although it is
not realistic: in general, in real world scenarios, the 
propagation is not uniform but a common core (not
necessarily connected) covering a sphere:

fixed infrastructure for routing purposes. If we con-
sider sensor networks, sensors are also battery pow-
ered and the consumption of one single battery may
imply network failures. In such a setting, it is of
main interest to study the minimisation of the max-
imum transmission range associated to each sensor
(see for instance [3,4]). Conversely, when consider-
ing more powerful devices than sensors, the aim
could be to take care of the total energy consump-
tion since all the devices may depend on some com-
mon electricity generator. This comes out mainly
when the deployment of the stations is made in an
ad hoc fashion and the electricity to which devices
are connected is centralised. Thus, a naturally aris-
ing issue in this setting is that of supporting the
broadcast with minimum total energy consumption.
This problem, called Minimum Energy Broadcast
Routing (MEBR), is well-known in the literature
and it has been extensively studied (see [5–13]). In
general, it is NP-hard, while if a = 1 or the consid-
ered dimension d = 1, then it is solvable in polyno-
mial time [5,6]. Indeed, most of the studies
concern the 2-dimensional Euclidean space with
a = 2. Several papers progressively reduced the esti-
mate of the approximation ratio of the fundamental
Minimum Spanning Tree (MST) heuristic from 40
to 6 [7–13]. In [9] it was proven that for any consid-
ered dimension d > 1, the critical case to study is
when a = d since any result holding in this case
can be easily extended to any a 0 > a. Note that for
a < d the approximation ratios cannot be bounded
by any function of a and d [7]. The MST and other
heuristics have been presented in [2,14] also for the
multicasting variation of the problem. As already
noted, the performance of the MST heuristic has
been investigated by several authors and in the 2-
dimensional Euclidean space, for a = 2, the per-
formed approximation ratio is 6 [8], and it is opti-
mal [13]. Such a value coincides with the so-called
2-dimensional kissing number. In general, the d-
dimensional kissing number was proven to be a low-
er bound for the approximation ratio of the MST
heuristic for any dimension d > 1 and power a P d
[7]. More precisely, the d-dimensional kissing num-
ber is the maximum number of d-spheres (or hyper-
spheres) of a given radius r that can simultaneously
touch a d-sphere of the same radius r in the d-
dimensional Euclidean space [15]. The 3-dimen-
sional kissing number is 12 (see Fig. 1) but the best
known approximation ratio of the MST heuristic so
far is 26 [9]. The reduction of the gap between the
upper and the lower bound for the approximation

ratio of the MST heuristic in the 3-dimensional case
is of main theoretical and practical interest.

In this paper we investigate more carefully this 3-
dimensional case. Note that the 3-dimensional space
better models practical environments since, in real
life scenarios, radio stations are distributed over a
3-dimensional Euclidean space. The assumption
that transmissions are propagated uniformly in a
spherical shape instead of a planar circle, as it was
for the 2-dimensional case, might result somehow
too optimistic. On the other hand, the uniform
assumption comes straightforward from the 2-
dimensional case and its extension to the 3-dimen-
sional case is rather natural considering also that
our is one of the first approaches modelling such
kind of environment (see also [16] or [17] in the case
of sensor networks). In general, in real world sce-
narios, the propagation is not uniform but a com-
mon core covering a sphere as in Fig. 2 can be

Fig. 1. The kissing number in the 2- and 3-dimensional case. It is
given by 6 circles and 12 spheres, respectively, simultaneously
touching a central one.

z
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real
shape

x
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w
common

Fig. 2. The area containing nodes x, y, z and w represents the
transmission range of a node x under the Quasi Unit Disk Graph
model. Nodes y, w and z can receive messages sent from x, v
cannot. It is worth noting also the fact that the range may be
composed of disconnected surfaces. The dotted circle represents
the spherical core of the range.
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The mismatching between real world 
scenarios and the uniform assumption
might be overcome then by considering
higher values for the constant a. 
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• the approximation ratio of 6 for the MST heuristic in the 2-
dimensional Euclidean space for a=2 coincides with the 
2-dimensional kissing number. 

fixed infrastructure for routing purposes. If we con-
sider sensor networks, sensors are also battery pow-
ered and the consumption of one single battery may
imply network failures. In such a setting, it is of
main interest to study the minimisation of the max-
imum transmission range associated to each sensor
(see for instance [3,4]). Conversely, when consider-
ing more powerful devices than sensors, the aim
could be to take care of the total energy consump-
tion since all the devices may depend on some com-
mon electricity generator. This comes out mainly
when the deployment of the stations is made in an
ad hoc fashion and the electricity to which devices
are connected is centralised. Thus, a naturally aris-
ing issue in this setting is that of supporting the
broadcast with minimum total energy consumption.
This problem, called Minimum Energy Broadcast
Routing (MEBR), is well-known in the literature
and it has been extensively studied (see [5–13]). In
general, it is NP-hard, while if a = 1 or the consid-
ered dimension d = 1, then it is solvable in polyno-
mial time [5,6]. Indeed, most of the studies
concern the 2-dimensional Euclidean space with
a = 2. Several papers progressively reduced the esti-
mate of the approximation ratio of the fundamental
Minimum Spanning Tree (MST) heuristic from 40
to 6 [7–13]. In [9] it was proven that for any consid-
ered dimension d > 1, the critical case to study is
when a = d since any result holding in this case
can be easily extended to any a 0 > a. Note that for
a < d the approximation ratios cannot be bounded
by any function of a and d [7]. The MST and other
heuristics have been presented in [2,14] also for the
multicasting variation of the problem. As already
noted, the performance of the MST heuristic has
been investigated by several authors and in the 2-
dimensional Euclidean space, for a = 2, the per-
formed approximation ratio is 6 [8], and it is opti-
mal [13]. Such a value coincides with the so-called
2-dimensional kissing number. In general, the d-
dimensional kissing number was proven to be a low-
er bound for the approximation ratio of the MST
heuristic for any dimension d > 1 and power a P d
[7]. More precisely, the d-dimensional kissing num-
ber is the maximum number of d-spheres (or hyper-
spheres) of a given radius r that can simultaneously
touch a d-sphere of the same radius r in the d-
dimensional Euclidean space [15]. The 3-dimen-
sional kissing number is 12 (see Fig. 1) but the best
known approximation ratio of the MST heuristic so
far is 26 [9]. The reduction of the gap between the
upper and the lower bound for the approximation

ratio of the MST heuristic in the 3-dimensional case
is of main theoretical and practical interest.

In this paper we investigate more carefully this 3-
dimensional case. Note that the 3-dimensional space
better models practical environments since, in real
life scenarios, radio stations are distributed over a
3-dimensional Euclidean space. The assumption
that transmissions are propagated uniformly in a
spherical shape instead of a planar circle, as it was
for the 2-dimensional case, might result somehow
too optimistic. On the other hand, the uniform
assumption comes straightforward from the 2-
dimensional case and its extension to the 3-dimen-
sional case is rather natural considering also that
our is one of the first approaches modelling such
kind of environment (see also [16] or [17] in the case
of sensor networks). In general, in real world sce-
narios, the propagation is not uniform but a com-
mon core covering a sphere as in Fig. 2 can be

Fig. 1. The kissing number in the 2- and 3-dimensional case. It is
given by 6 circles and 12 spheres, respectively, simultaneously
touching a central one.
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Fig. 2. The area containing nodes x, y, z and w represents the
transmission range of a node x under the Quasi Unit Disk Graph
model. Nodes y, w and z can receive messages sent from x, v
cannot. It is worth noting also the fact that the range may be
composed of disconnected surfaces. The dotted circle represents
the spherical core of the range.
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• the d-dimensional kissing number
is the maximum number of d-
spheres of a given radius r that
can simultaneously touch a d-
sphere of the same radius r in the 
d-dimensional Euclidean space
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• In general, the d-dimensional kissing number was proven
to be a lower bound for the approximation ratio of the 
MST heuristic for any dimension d > 1 and power a ≥d

• The 3-dimensional kissing number is 12, but the best 
known approximation ratio of the MST heuristic so far is
18,8 [Navarra ‘08]

☞ student lesson


