HEURISTICS (1)

HGHIN ON

 MINIMUMM ENERGY BROHDCAST (("睪))
A PARENTHESIS

SPT (spanning path tree) and MST (min spanning tree) can be different:

Dijkstra algorithm (SPT)
 the same weight

Prim algorithm (MST)

Possibly many trees, all of the same (minimum) weight

In [Wieselthier, Nguyen, Ephremides, 00]: three heuristics all based on the greedy technique:

- SPT (spanning path tree): it runs Dijkstra algorithm to get the minimum path tree, then it directs the edges of the tree from the root to the leaves.
- BAIP (Broadcast Average Incremental Power): it is a modification of the Dijkstra algorithm based on the nodes (i.e. a new node is added to the tree on the basis of its minimum average cost).
- MST (min spanning tree): it runs Prim algorithm to get a MST, then it directs the edges of the tree from the root to the leaves.

HEURISTICS (2)

GREEDY IS NOT RLWHYS GOOD

Greedy is not always good [Wan, Calinescu, Li, Frieder '02]:

- SPT: it runs Dijkstra algorithm to get the minimum path tree, then it directs the edges of the tree from the root to the leaves

(let $\alpha=2$)
- SPT outputs a tree with total energy:

$$
\varepsilon^{2}+n / 2(1-\varepsilon)^{2}
$$

- If the root transmits with radius 1 the energy is 1
- When $\varepsilon \rightarrow 0$ SPT is far $n / 2$ from the optimal solution.

HEURISTICS (3)

GREEDY IS NOT RLWAYS GOOD

- BAIP (Broadcast Average Incremental Power): it is a modification of the Dijkstra algorithm based on the nodes: a new node is added to the tree on the basis of the min average cost=energy increasing/\# of added nodes.
- It has been designed to solve the problems of SPT.

HEURISTICS (5)

GREEDY IS NOT ALWAYS GOOD
o BAIP will let the source to transmit at power $\sqrt{n-\varepsilon}$ to reach all nodes in a single step.

- However, the opt. routing is a path consisting of all nodes from left to right. Its min power is:
$\sum_{i=1}^{n-1}(\sqrt{i}-\sqrt{i-1})^{2}+(\sqrt{n-\varepsilon}-\sqrt{n-1})^{2}<\sum_{i=1}^{n}(\sqrt{i}-\sqrt{i-1})^{2}=$
$\sum_{i=1}^{n}(\sqrt{i}-\sqrt{i-1})^{2} \frac{(\sqrt{i}+\sqrt{i-1})^{2}}{(\sqrt{i}+\sqrt{i-1})^{2}}=\sum_{i=1}^{n} \frac{((\sqrt{i}-\sqrt{i-1})(\sqrt{i}+\sqrt{i-1}))^{2}}{(\sqrt{i}+\sqrt{i-1})^{2}}=$
$=\sum_{i=1}^{n} \frac{(i-(i-1))^{2}}{(\sqrt{i}+\sqrt{i-1})^{2}}=\sum_{i=1}^{n} \frac{1}{(\sqrt{i}+\sqrt{i-1})^{2}}=1+\sum_{i=2}^{n} \frac{1}{(\sqrt{i}+\sqrt{i-1})^{2}} \leq$

HEURISTICS (4)

GREEDY IS NOT ALWHYS GOOD

(let $\alpha=2$):

- The min transmission power of the source to reach k receiving nodes is $\sqrt{ } k^{2}=k$ and thus the average power efficiency is $k / k=1$
- On the other hand, the min transmission power of the source to reach all receiving nodes is $(\sqrt{ } n-\varepsilon)^{2}=n-\varepsilon$ and thus the average power efficiency is $(n-\varepsilon) / n=1-\varepsilon / n \ldots$

HEURISTICS (6)

GREEDY IS NOT HLWHYS GOOD

(computation of the performance ratio of BAIP - cntd)

$$
\begin{aligned}
& \leq 1+\sum_{i=2}^{n} \frac{1}{i+(i-1)+2 \sqrt{i} \sqrt{i-1})} \leq 1+\sum_{i=2}^{n} \frac{1}{2 i-1+2(i-1)} \leq \\
& \leq 1+\sum_{i=2}^{n} \frac{1}{2 i-1+2(i-1)}=1+\sum_{i=2}^{n} \frac{1}{4 i-3} \leq 1+\sum_{i=2}^{n} \frac{1}{4(i-1)} \leq
\end{aligned}
$$

Substituting $i=j+1$:

$$
\leq 1+\sum_{j=1}^{n-1} \frac{1}{4 j} \leq 1+\frac{1}{4} \sum_{j=1}^{n-1} \frac{1}{j} \leq 1+\frac{1}{4}(\ln (n-1)+1)=\frac{\ln (n-1)+5}{4}
$$

Thus the approx ratio of BAIP is at least:

$$
\frac{n-\varepsilon}{\frac{\ln (n-1)+5}{4}} \rightarrow(\varepsilon \rightarrow 0) \frac{4 n}{\ln (n-1)+5}=\frac{4 n}{\ln n}+o(1)
$$

HEURISTICS (7)

GREEDY IS NOT ALWAYS GOOD
MST: it runs Prim algorithm to get a MST, then it directs the edges of the tree from the root to the leaves

- Path $o p_{1} \ldots p_{6}$ is the unique MST, and its total energy is 6 .
- On the other hand, the opt. routing is the star centered at o, whose energy is $(l+\varepsilon)^{\alpha}$.
- The approx. ratio converges to 6 , as ε goes to 0 .

HEURISTICS (9)

- Any pair of edges do not cross each other

The blue edge is necessarily shorter than at least one of the two crossing edges

HEURISTICS (8)

- We have just shown a lower bound on the approximation ratio of MST.
- This ratio is a constant and an upper bound is 12 .
- The proof involves complicated geometric arguments, and therefore we only sketch some of them:
o ...(not this year: directly go to page 56)

HEURISTICS (10)

(properties of the geometric MST - cntd)

- The angles between any two edges incident to a common node is at least $\pi / 3$

The blue edge is necessarily shorter than at least one of the two orange edges

HEURISTICS (11)

(properties of the geometric MST - cntd)

- The lune determined by each edge does not contain any other nodes.

The lune through points p_{1} and p_{2} is the intersection of the two open disks of radius $\operatorname{dist}\left(p_{1}, p_{2}\right)$ centered at p_{1} and p_{2}, respectively, hence an internal node would create a cycle

HEURISTICS (13)

- Obs. The proof in [Wan, Calinescu, Li, Frieder '02] contains a small flaw that can be solved, arriving to an approximation ratio of 12,15 [Klasing, Navarra, Papadopoulos, Perennes '04]
- Indipendently, an approximation ratio of 20 has been stated in [Clementi, Crescenzi, Penna, Rossi, Vocca '01]
- Approx. ratio improved to 7,6 [Flammini, Klasing, Navarra, Perennes ‘04]
- Approx. ratio improved to 6,33 [Navarra '05]
- Optimal bound 6 [Ambüehl '05]

HEURISTICS (12)

(properties of the geometric MST - cntd)

- Let $p_{1} p_{2}$ be any edge. Then the two endpoints of any other edge are either both outside the open disk $D\left(p_{1}\right.$, $\operatorname{dist}\left(p_{1}, p_{2}\right)$) or both outside the open disk $D\left(p_{2}, \operatorname{dist}\left(p_{1}\right.\right.$, p_{2})

The red edges are added before than the blue edge because they are shorter. The blue edge would create a cycle.

HEURISTICS (14)

- For realistic instances, experiments suggest that the tight approximation ratio is not 6 but 4 [Flammini, Navarra, Perennes '06] -> possible lesson

