
Prof. Tiziana Calamoneri

Network Algorithms

A.y. 2019/20

1

THE MINIMUM ENERGY
BROADCAST PROBLEM
I.E.
THE MINIMUM SPANNING TREE
PROBLEM

2

§ As we already know, a wireless ad-hoc network
consists of a set S of (fixed) radio stations joint by
wireless connections.

§ We assume that stations are located on the
Euclidean plane (only partially realistic hp).

§ Nodes have omnidirectional antennas: each
transmission is listened by all the neighborhood
(natural broadcast).

§ …

3

§ Two stations communicate either directly (single-hop) -
if they are sufficiently close- or through intermediate
nodes (multi-hop).

§ A transmission range is assigned to every station: a range
assignment r : S → R determines a directed
communication graph G=(S,E), where edge (i, j) � E iff
dist(i, j) ≤ r(i) (dist(i, j)= euclidean distance between i
and j).

§ In other words, (i, j)� E iff j belongs to the disk centered
at i and having radius r(i).

4

What does it means
“sufficiently
close”?…

§ For reasons connected with energy saving, each station
can dynamically modulate its own transmission power.

§ In fact, the transmission radius of a station depends on
the energy power supplied to the station.

§ The general aim is to save energy as much as possible.

5

§ In particular, the power Ps required by a station s to
transmit data to another station t must satisfy:

where α≥1 is the distance-power gradient.

Usually 2≤α≤4 (it depends on the envorinment).

In the empty space α=2.

§ Hence, in order to have a communication from s to t,
power Ps must be proportional to dist(s,t)α.

6

€

Ps
dist(s,t)α

≥1

§ Stations of an ad hoc network cooperate in order to
provide specific network connectivity properties by
adapting their transmission ranges and, at the same
time, they try to save energy.

§ …

7

§ … According to the required property, different problems
are proposed.

§ For example:
§ The transmission graph is required to be strongly

connected. In such a case, the problem is NP-hard and
there is a 2-approximate alg. in 2 dim. [Kirousis, Kranakis,
Krizanc, Pelc ’01]; there exists an r>1 s.t. the problem is not r-
approximable.

§ The transmission graph is required to have diameter at
most h. Not trivial approximate results are not known.

§ Given a source node s, the transmission graph is required
to include a spanning tree rooted at s. …

8

In this latter case:

§ A Broadcast Range Assignment (for short
Broadcast) is a range assignment that yields a
communication graph G containing a directed
spanning tree rooted at a given source station s.

§ A fundamental problem in the design of ad-hoc
wireless networks is the Minimum-Energy Broadcast
problem (for short Min Broadcast), that consists in
finding a broadcast of minimum overall energy.

9

Th. Min Broadcast is not approximable within any constant
factor.

Proof. Recall the MinSetCover problem:

given a collection C of subsets of a finite set S, find a
subset C’ of C with min cardinality, s.t. each element in
S belongs to at least one element of C’.

Example:

S={1,2,3,4,5} C={{1,2}, {1,2,3}, {3}, {3,4,5}}

C’={{1,2,3},{3,4,5}}

10

Proof (cntd).

Note. MinSetCover is not approximable within c log n for
some constant c>0, where n=|S|.

Given an instance x of MinSetCover, it is possible to
construct an instance y of MinBroadcast s.t. there exists
a solution for x of cardinality k iff there exists a solution
for y of cost k+1.

So, if MinBroadcast is approximable within a constant,
then even MinSetCover is.

Contradiction.

11

Proof (cntd). Reduction:

x=(S,C) instance of MinSetCover with:

S={s1, s2, …, sn} and C={C1, C2, …, Cm}.

We construct y=(G,w,s) of MinBroadcast.

Nodes of G: {s} U {VC} U {VS}

Edges of G:{(s, vi
C), 1≤i≤m}U{(vi

C, vj
S), 1≤i≤m, s.t. sj in Ci}

12

s

v1
C

vi
C

vm
C

VC

vj
S s.t. sj is in Ci

VS

Proof (cntd).

Finally, define w(e)=1 for any edge e.

Let C’ be a solution for x.

A sol. for y assigns 1 to s and to all nodes of VC in C’.

The resulting transmission graph contains a spanning
tree rooted at s because each element in S is contained
in at least one element of C’. The cost of such a solution
is |C’|+1.

13

Proof (cntd).

…

Conversely, assume that r is a feasible sol. for y, (w.l.o.g.
r(v) is either 0 or 1 if v is in VC: other values would be
meaningless) and r(v)=0 if v is in VS.

We derive a solution C’ for x selecting all subsets Ci s.t.
r(vi

C)=1.

It holds that |C’|=cost(r)-1. n

14

Note:

We proved that Min Broadcast is not approximable
within a constant factor, but we have dealt with the
general problem.

There are some special cases (e.g. the Euclidean
bidimensional one) that are particularly interesting
and that behave better!

In the following, we restrict to the special case of
Euclidean plane…

15

§ Collaborating in order to minimize the overall energy
is crucial:

16

S2 S3

S1

¢ S1 needs to communicate with S2

¢ let !=2
¢ Cost of S1àS2 = dist(S1, S2)2

¢ Cost of S1àS3àS2=
dist(S1, S3)2+dist(S3, S2)2

¢ When angle S1S3S2 is obtuse:
dist(S1, S2)2>

dist(S1, S3)2+dist(S3, S2)2

§ In the Euclidean case, a range assignment r can be
represented by the correspondent family
D = {D1, . . . , Dl} of disks, and the overall energy is
defined as:

where ri is the radius of Di.

17

€

cos t(D) = ri
α

i=1

l

∑

§ Consider the complete and weighted graph G(α)

where the weight of each arc e=(u,v) is dist(u,v)".

§ The broadcast problem is strictly related with the
minimum spanning tree on G("), in view of some
important properties…

18

19

The set of connections used to
perform a broadcast from s:
• cannot generate a cycle, because
nodes do not need to be informed
twice

tree
•minimizes the overall energy

long arcs waste more energy than
short ones.

20

• The energy used by each node
u is

(i.e. not all the arcs appear with
their contribution)
€

max(u,v)∈T dist(u,v){ }α

¢ Nevertheless, the Minimum Broadcast problem is not
the same as the Min Spanning Tree problem:

• Leaves waste no energy

§ The Minimum Broadcast problem is NP-hard in its
general version and it is neither approximable within
(1-ε)Δ, where Δ is the maximum degree of T and ε is an
arbitrary constant.

§ Nothing is known about the hardness of the geometric
version (i.e. on the Euclidean plane).

21

§ An approx algorithm is based on the computation of the
MST:
§ compute the MST of the complete graph induced by S,
§ Assign a direction to arcs (from s to the leaves)
§ Assign to each node i a radius equal to the length of

the longest arc outgoing from i

§ Easy to implement è deep analysis of the approx ratio.
§ [Clementi+al.’01] the first constant approx ratio (about 40)
§ [Ambüehl ’05] the best (tight) known approx ratio (6)

22

23

§ Obs. 1: If the weights are positive, then a MST is in fact a
minimum-cost subgraph connecting all nodes.

§ Proof: A subgraph containing cycles necessarily has a
higher total weight. n

§ Obs. 2: There may be several minimum spanning trees of
the same weight having a minimum number of edges.

§ In particular, if all the edge weights of a given graph are
the same, then every spanning tree of that graph is
minimum.

24

§ Obs. 3: If each edge has a distinct weight, then there is a
unique MST.

§ This is true in many realistic situations, where it's unlikely
that any two connections have exactly the same cost

§ Proof: Assume by contradiction that MST T is not unique.
So, there is another MST with equal weight, say T’.

…

25

(proof – cntd)

§ Let e1 be an edge that is in T but not in T’. As T’ is a MST, {e1} U T’ contains a cycle C and there is at least one edge e2 in T’
that is not in T and lies on C.

§ If the weight of e1 is less than that of e2:
replacing e2 with e1 in T’ yields tree {e1} U T’ \ {e2} which
has a smaller weight compared to T’.
Contradiction, as we assumed T’ is a MST but it is not.

§ If the weight of e1 is larger than that of e2:
a similar argument involving tree {e2} U T \ {e1} also leads to
a contradiction.

§ We conclude that the assumption that there is a further MST
was false. n 26

§ Obs. 4: For any cycle C in the graph, if the weight of an
edge e of C is larger than the weights of all other edges of
C, then this edge cannot belong to an MST.

§ Proof: Assuming the contrary, i.e. that e belongs to an MST
T1, then deleting e will break T1 into two subtrees with the
two endpoints of e in different subtrees. The remainder of
C reconnects the subtrees, in particular there is an edge f
of C with endpoints in different subtrees, i.e., it reconnects
the subtrees into a tree T2 with weight less than that of T1,
because the weight of f is less than the weight of e. n

27

§ Obs. 5: If the edge of a graph with the minimum cost e is
unique, then this edge is included in any MST.

§ Proof: If e was not included in the MST, removing any of
the (larger cost) edges in the cycle formed after adding e
to the MST, would yield a spanning tree of smaller weight.

n

28

§ Obs. 6: For any cut C in the graph, if the weight of an edge
e of C is strictly smaller than the weights of all other edges
of C, then this edge belongs to all MSTs of the graph.

§ Proof: If e was not included in the MST, adding e to the
MST produces a cycle. Removing any of the (larger cost)
edges of the cut in the cycle, would yield a spanning tree
of smaller weight. n

§ By similar arguments, if more than one edge is of
minimum weight across a cut, then each such edge is
contained in a minimum spanning tree.

29

Three classical algorithms:

§ Kruskal [‘56]

§ Prim [‘57]

§ Boruvka [’26]

30

§ The three algorithms are all greedy algorithms and based
on the same structure:
§ Given a set of arcs A containing some MST arcs, e is a

safe arc w.r.t. A if A U {e} contains only MST arcs, too.
§ A=empty set

While A is not a MST
find a safe arc e w.r.t. A
A=A U e

31

“difficult” issue

§ A=empty set
while A is not a MST

find a safe arc e w.r.t. A
A=A U e

where:

§ A is acyclic

§ graph GA=(V, A) is a forest whose each connected
component is either a node or a tree

§ Each safe arc connects different connected components
of GA

§ the while loop is run n-1 times
32

§ A=empty set
While GA is not a MST

find a safe arc e w.r.t. A
A=A U {e}

Implementation using:

§ Data structure Union-Find

§ The set of the arcs of GA is sorted w.r.t. their weight

§ Time Complexity: O(m log n)

[Johnson ‘75, Cheriton & Tarjan ‘76]

33

Among those
connecting two

different connected
components in GA,

choose the one with
minimum weight

34

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

§ A=empty set
While GA is not a MST

find a safe arc e w.r.t. A
A=A U {e}

Implementation using:

§ Nodes in a min-priority queue w.r.t. key(v)=min weight of
an arc connecting v to a node of the main connected
component;∞ if it does not exist

§ If the priority queue is a heap è Complexity: O(m log n)

§ If the priority queue is a Fibonacci heap

è Complexity: O(m+n log n)

[Ahuja, Magnanti & Orlin ‘93]
35

Among those
connecting the

main connected
component with an

isolated node,
choose the one
with minimum

weight

36

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

37

(purpose: an efficient electrical
coverage of Moravia)

Hypothesis: each arc has a
distinct weight

� A=empty set
While A is not a MST

for each connected component Ci of GA

find a safe arc ei w.r.t. Ci

A=A U {ei}
Trick: handle many arcs (exactly log of the # of connected

components) during the same loop
Impossible to introduce cycles, thanks to the hipothesis!
Complexity: O(m log n)

Among those
connecting Ci to

another
component, the

one with minimum
weight

38

37

BORUVKA ALGORITHM (1)

(purpose: an efficient electrical
 coverage of Moravia)
Hipothesis: each arc has a
distinct weight

!  A=empty set
 While A is not a MST

 for each connected component Ci of GA

 find a safe arc ei w.r.t. Ci

 A=A U {ei}
Trick: handle many arcs (exactly log of the # of connected

components) during the same loop
Impossible to introduce cycles, thanks to the hipothesis!
Complexity: O(m log n)

Among those
connecting Ci to

another
component, the

one with minimum
weight

38

BORUVKA ALGORITHM (2)

3

8

11

12 5
9

14
10

2

7

1 13

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

3

8

11

12 5
9

14
10

2

7

1 13

4
6

3

8

11

12 5
9

14
10

2

7

1 13

4
6

OTHER ALGORITHMS (1)

!  [Friedman & Willard ‘94] Linear time algorithm, but it
assumes the edges are already sorted w.r.t. their
weight. Not used in practice, as the asymptotic
notation hides a huge constant.

!  [Matsui ’95] Linear time algorithm for planar graphs
(possible lesson)

39

OTHER ALGORITHMS (2)

!  [Frederickson ‘85, Eppstein ‘94] Given a graph and its
MST, it is even interesting to find a new MST
after that the original graph has been slightly
modified. It can be performed in average time
O(log n)

! Only O(n+m) time is necessary to verify whether
a given spanning tree is minimum.

40

37

BORUVKA ALGORITHM (1)

(purpose: an efficient electrical
 coverage of Moravia)
Hipothesis: each arc has a
distinct weight

!  A=empty set
 While A is not a MST

 for each connected component Ci of GA

 find a safe arc ei w.r.t. Ci

 A=A U {ei}
Trick: handle many arcs (exactly log of the # of connected

components) during the same loop
Impossible to introduce cycles, thanks to the hipothesis!
Complexity: O(m log n)

Among those
connecting Ci to

another
component, the

one with minimum
weight

38

BORUVKA ALGORITHM (2)

3

8

11

12 5
9

14
10

2

7

1 13

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

3

8

11

12 5
9

14
10

2

7

1 13

4
6

3

8

11

12 5
9

14
10

2

7

1 13

4
6

OTHER ALGORITHMS (1)

!  [Friedman & Willard ‘94] Linear time algorithm, but it
assumes the edges are already sorted w.r.t. their
weight. Not used in practice, as the asymptotic
notation hides a huge constant.

!  [Matsui ’95] Linear time algorithm for planar graphs
(possible lesson)

39

OTHER ALGORITHMS (2)

!  [Frederickson ‘85, Eppstein ‘94] Given a graph and its
MST, it is even interesting to find a new MST
after that the original graph has been slightly
modified. It can be performed in average time
O(log n)

! Only O(n+m) time is necessary to verify whether
a given spanning tree is minimum.

40

37

BORUVKA ALGORITHM (1)

(purpose: an efficient electrical
 coverage of Moravia)
Hipothesis: each arc has a
distinct weight

!  A=empty set
 While A is not a MST

 for each connected component Ci of GA

 find a safe arc ei w.r.t. Ci

 A=A U {ei}
Trick: handle many arcs (exactly log of the # of connected

components) during the same loop
Impossible to introduce cycles, thanks to the hipothesis!
Complexity: O(m log n)

Among those
connecting Ci to

another
component, the

one with minimum
weight

38

BORUVKA ALGORITHM (2)

3

8

11

12 5
9

14
10

2

7

1 13

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

3

8

11

12 5
9

14
10

2

7

1 13

4
6

3

8

11

12 5
9

14
10

2

7

1 13

4
6

OTHER ALGORITHMS (1)

!  [Friedman & Willard ‘94] Linear time algorithm, but it
assumes the edges are already sorted w.r.t. their
weight. Not used in practice, as the asymptotic
notation hides a huge constant.

!  [Matsui ’95] Linear time algorithm for planar graphs
(possible lesson)

39

OTHER ALGORITHMS (2)

!  [Frederickson ‘85, Eppstein ‘94] Given a graph and its
MST, it is even interesting to find a new MST
after that the original graph has been slightly
modified. It can be performed in average time
O(log n)

! Only O(n+m) time is necessary to verify whether
a given spanning tree is minimum.

40

3

8

11

12 5
9

14
10

2

7

1 13

4
6

§ [Friedman & Willard ‘94] Linear time algorithm, but it
assumes the edges are already sorted w.r.t. their
weight. Not used in practice, as the asymptotic
notation hides a huge constant.

§ [Matsui ’95] Linear time algorithm for planar graphs
(possible lesson)

39

§ [Frederickson ‘85, Eppstein ‘94] Given a graph and its MST,
it is even interesting to find a new MST after that
the original graph has been slightly modified. It
can be performed in average time O(log n)

§ Only O(n+m) time is necessary to verify whether a
given spanning tree is minimum.

40

§ A telecommunication company wants to lay cable to a
new neighborhood.

§ It is constrained to bury the cable only along certain
paths (e.g. along roads).

§ Model as a (not geometrical) graph:
§ nodes: represent points
§ edges: represent those paths
§ (edge) weight: cost of adding cable on that path.

41

Note 1. Some of those paths might be more
expensive, because they are longer, or require the
cable to be buried deeper
Note 2. There is no requirement for edge lengths to
obey normal rules of geometry such as the triangle
inequality.

§ A minimum spanning tree for that graph would be a
subset of those paths that has no cycles but still
connects to every house with the lowest total cost,
thus would represent the least expensive path for
laying the cable.

42

