

THE PROBLEM (1)

•

- As we already know, a wireless ad-hoc network consists of a set S of (fixed) radio stations joint by wireless connections.
- We assume that stations are located on the Euclidean plane (only partially realistic hp).
- Nodes have omnidirectional antennas: each transmission is listened by all the neighborhood (natural broadcast).

THE PROBLEM (2)

What does it means "sufficiently close"?...

- Two stations communicate either directly (single-hop) if they are sufficiently close- or through intermediate nodes (multi-hop).
- A transmission range is assigned to every station: a range assignment $r : S \rightarrow R$ determines a directed communication graph G=(S,E), where edge $(i, j) \in E$ iff dist $(i, j) \leq r(i)$ (dist(i, j)= euclidean distance between i and j).
- In other words, $(i, j) \in E$ iff j belongs to the disk centered at i and having radius r(i).

THE PROBLEM (3)

- For reasons connected with energy saving, each station can dynamically modulate its own transmission power.
- In fact, <u>the transmission radius</u> of a station <u>depends on</u> the energy power supplied to the station.
- The general aim is to save energy as much as possible.

THE PROBLEM (4)

• In particular, the power P_s required by a station s to transmit data to another station t must satisfy:

$$\frac{P_s}{dist(s,t)^{\alpha}} \ge$$

where $\alpha \ge 1$ is the distance-power gradient.

Usually $2 \le \alpha \le 4$ (it depends on the envorinment).

In the empty space $\alpha = 2$.

• Hence, in order to have a communication from s to t, power P_s must be proportional to $dist(s,t)^{\alpha}$.

5

THE PROBLEM (5)

 <u>Stations</u> of an *ad hoc* network <u>cooperate</u> in order <u>to</u> provide specific network connectivity properties by adapting their transmission ranges and, at the same time, they <u>try to save energy</u>.

• • • •

THE PROBLEM (6)

• ... According to the required property, different problems are proposed.

• For example:

- The transmission graph is required to be <u>strongly</u> <u>connected</u>. In such a case, the problem is NP-hard and there is a 2-approximate alg. in 2 dim. [Kirousis, Kranakis, Krizanc, Pelc '01]; there exists an r > l s.t. the problem is not *r*-approximable.
- The transmission graph is required to have <u>diameter at</u> <u>most h</u>. Not trivial approximate results are not known.
- Given a source node *s*, the transmission graph is required to include a spanning tree rooted at *s*. ...

THE PROBLEM (7)

In this latter case:

- A Broadcast Range Assignment (for short *Broadcast*) is a range assignment that yields a communication graph *G* containing a directed spanning tree rooted at a given source station *s*.
- A fundamental problem in the design of *ad-hoc* wireless networks is the Minimum-Energy Broadcast problem (for short *Min Broadcast*), that consists in finding a broadcast of minimum *overall energy*.

THE PROBLEM (8)

Th. Min Broadcast is not approximable within any constant factor.

Proof. Recall the *MinSetCover* problem:

given a collection C of subsets of a finite set S, find a subset C' of C with min cardinality, s.t. each element in S belongs to at least one element of C'.

Example:

$$\begin{split} S = & \{1, 2, 3, 4, 5\} \qquad C = & \{\{1, 2\}, \{1, 2, 3\}, \{3\}, \{3, 4, 5\}\} \\ C' = & \{\{1, 2, 3\}, \{3, 4, 5\}\} \end{split}$$

9

THE PROBLEM (9)

Proof (cntd).

Note. *MinSetCover* is not approximable within $c \log n$ for some constant c>0, where n=|S|.

- Given an instance x of *MinSetCover*, it is possible to construct an instance y of *MinBroadcast* s.t. there exists a solution for x of cardinality k iff there exists a solution for y of cost k+1.
- So, if *MinBroadcast* is approximable within a constant, then even *MinSetCover* is.

Contradiction.

10

THE PROBLEM (10)

Proof (cntd). Reduction:

 $x=(S,C) \text{ instance of } \underline{MinSetCover with:}$ $S=\{s_1, s_2, \dots, s_n\} \text{ and } C=\{C_1, C_2, \dots, C_m\}.$ We construct y=(G, w, s) of $\underline{MinBroadcast}.$ Nodes of $G: \{s\} \ U \ \{V_C\} \ U \ \{V_S\}$ Edges of $G: \{(s, v_i^C), 1 \le i \le m\} U\{(v_i^C, v_j^S), 1 \le i \le m, s.t. s_j \text{ in } C_i\}$ $v_i^C \qquad v_j^S \text{ s.t. } s_j \text{ is in } C_i$ $v_j^C \qquad V_S$

THE PROBLEM (11)

Proof (cntd).

Finally, define w(e)=l for any edge e.

Let C' be a solution for x.

A sol. for y assigns l to s and to all nodes of V_C in C'.

The resulting transmission graph contains a spanning tree rooted at *s* because each element in *S* is contained in at least one element of *C*'. The cost of such a solution is |C'|+1.

THE PROBLEM (12)

Proof (cntd).

•••

Conversely, assume that r is a feasible sol. for y, (w.l.o.g. r(v) is either 0 or 1 if v is in V_C : other values would be meaningless) and r(v)=0 if v is in V_S .

We derive a solution C' for x selecting all subsets C_i s.t. $r(v_i^C)=1$.

It holds that |C'| = cost(r) - 1.

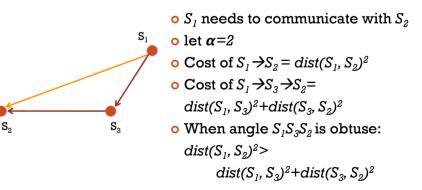
THE PROBLEM (13)

Note:

- We proved that *Min Broadcast* is not approximable within a constant factor, but we have dealt with the general problem.
- There are some special cases (e.g. the <u>Euclidean</u> <u>bidimensional</u> one) that are particularly interesting and that behave better!
- In the following, we restrict to the special case of Euclidean plane...

THE PROBLEM (14)

• Collaborating in order to minimize the overall energy is crucial:



13

THE PROBLEM (15)

• In the Euclidean case, a range assignment r can be represented by the correspondent family $D = \{D_1, \ldots, D_l\}$ of disks, and the overall energy is defined as:

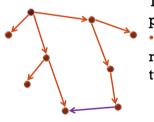
$$\cos t(D) = \sum_{i=1}^{l} r_i^{\alpha}$$

where r_i is the radius of D_i .

THE PROBLEM (16)

- Consider the complete and weighted graph $G^{(\alpha)}$ where the weight of each arc e=(u,v) is $dist(u,v)^{\alpha}$.
- The broadcast problem is strictly related with the minimum spanning tree on $G^{(\alpha)}$, in view of some important properties...

THE PROBLEM (17)



The set of connections used to perform a broadcast from s: • cannot generate a cycle, because nodes do not need to be informed twice

• minimizes the overall energy

long arcs waste more energy than short ones.

THE PROBLEM (18)

• Nevertheless, the Minimum Broadcast problem is not the same as the Min Spanning Tree problem:

• The energy used by each node u is $\max_{(u,v)\in T} \{dist(u,v)\}^{\alpha}$

(i.e. not all the arcs appear with their contribution)

Leaves waste no energy

THE PROBLEM (19)

- The Minimum Broadcast problem is NP-hard in its general version and it is neither approximable within $(1-\varepsilon)\Delta$, where Δ is the maximum degree of T and ε is an arbitrary constant.
- Nothing is known about the hardness of the geometric version (i.e. on the Euclidean plane).

THE MINIMUM SPANNING

TREE PROBLEM (RECUP)

THE PROBLEM (20)

- An approx algorithm is based on the computation of the MST:
 - compute the MST of the complete graph induced by S,
 - Assign a direction to arcs (from s to the leaves)
 - Assign to each node *i* a radius equal to the length of the longest arc outgoing from *i*
- Easy to implement \rightarrow deep analysis of the approx ratio.
- [Clementi+al.'01] the first constant approx ratio (about 40)
- [Ambüehl '05] the best (tight) known approx ratio (6)

22

MINIMUM SPANNING TREE (1)

- Obs. 1: If the weights are *positive*, then a MST is in fact a minimum-cost subgraph connecting all nodes.
- Proof: A subgraph containing cycles necessarily has a higher total weight.
- Obs. 2: There may be several minimum spanning trees of the same weight having a minimum number of edges.
- In particular, if all the edge weights of a given graph are the same, then every spanning tree of that graph is minimum.

MINIMUM SPANNING TREE (2)

...

- Obs. 3: If each edge has a distinct weight, then there is a unique MST.
- This is true in many realistic situations, where it's unlikely that any two connections have *exactly* the same cost
- Proof: Assume by contradiction that MST *T* is not unique. So, there is another MST with equal weight, say *T*'.

MINIMUM SPANNING TREE (4)

- Obs. 4: For any cycle C in the graph, if the weight of an edge e of C is larger than the weights of all other edges of C, then this edge cannot belong to an MST.
- Proof: Assuming the contrary, i.e. that e belongs to an MST T_1 , then deleting e will break T_1 into two subtrees with the two endpoints of e in different subtrees. The remainder of C reconnects the subtrees, in particular there is an edge f of C with endpoints in different subtrees, i.e., it reconnects the subtrees into a tree T_2 with weight less than that of T_1 , because the weight of f is less than the weight of e.

MINIMUM SPANNING TREE (3)

(proof-cntd)

- Let e_1 be an edge that is in T but not in T'. As T' is a MST, $\{e_1\}$ U T' contains a cycle C and there is at least one edge e_2 in T' that is not in T and lies on C.
- If the weight of e₁ is less than that of e₂: replacing e₂ with e₁ in T' yields tree {e₁} U T' \ {e₂} which has a smaller weight compared to T'.
 Contradiction, as we assumed T' is a MST but it is not.
- If the weight of e_1 is larger than that of e_2 : a similar argument involving tree $\{e_2\}$ $UT \setminus \{e_1\}$ also leads to a contradiction.
- We conclude that the assumption that there is a further MST was false.

MINIMUM SPANNING TREE (5)

- Obs. 5: If the edge of a graph with the minimum cost *e* is unique, then this edge is included in any MST.
- Proof: If e was not included in the MST, removing any of the (larger cost) edges in the cycle formed after adding e to the MST, would yield a spanning tree of smaller weight.

25

MINIMUM SPANNING TREE (6)

- Obs. 6: For any cut C in the graph, if the weight of an edge e of C is strictly smaller than the weights of all other edges of C, then this edge belongs to all MSTs of the graph.
- Proof: If e was not included in the MST, adding e to the MST produces a cycle. Removing any of the (larger cost) edges of the cut in the cycle, would yield a spanning tree of smaller weight.
- By similar arguments, if more than one edge is of minimum weight across a cut, then each such edge is contained in a minimum spanning tree.

MINIMUM SPANNING TREE (7)

Three classical algorithms:

- Kruskal ['56]
- Prim ['57]
- Boruvka ['26]

MINIMUM SPANNING TREE (8)

- The three algorithms are all greedy algorithms and based on the same structure:
 - Given a set of arcs A containing some MST arcs, e is a safe arc w.r.t. A if A U {e} contains only MST arcs, too.
 - A=empty set
 - While A is not a MST

find a safe arc e w.r.t. A

A=AUe

"difficult" issue

MINIMUM SPANNING TREE (9)

A=empty set
 while A is not a MST
 find a safe arc e w.r.t. A
 A=A U e

where:

• A is acyclic

- graph G_A=(V,A) is a forest whose each connected component is either a node or a tree
- Each safe arc connects different connected components of $G_{\bar{A}}$
- the while loop is run *n*-1 times

29

32)

KRUSKAL ALGORITHM (1)

 A=empty set
 While G_A is not a MST find a safe arc e w.r.t. A A=A U {e}

Implementation using:

- Data structure Union-Find
- The set of the arcs of G_A is sorted w.r.t. their weight
- Time Complexity: O(m log n)

[Johnson '75, Cheriton & Tarjan '76]

While G_A is not a MST find a safe arc e w.r.t. A $A=A U \{e\}$ Among those connecting the main connected component with an isolated node, choose the one with minimum weight

Among those

connecting two

different connected components in G_{a} ,

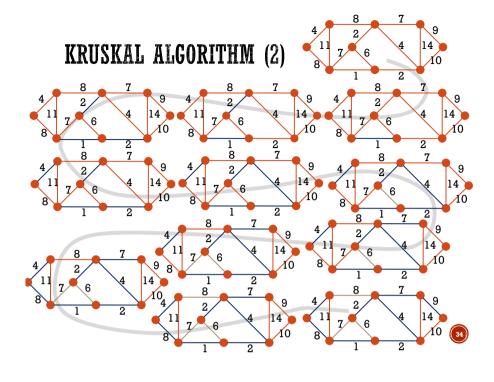
choose the one with

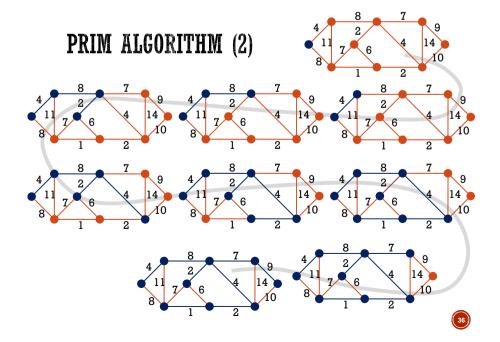
minimum weight

Implementation using:

- Nodes in a min-priority queue w.r.t. key(v)=min weight of an arc connecting v to a node of the main connected component; ∞ if it does not exist
- If the priority queue is a heap \rightarrow Complexity: $O(m \log n)$
- If the priority queue is a Fibonacci heap

→ Complexity: $O(m+n \log n)$





BORUVKA ALGORITHM (1)

(purpose: an efficient electrical coverage of Moravia) Hypothesis: each arc has a distinct weight • A=empty set

> While A is not a MST for each connected component C_i of G_A find a safe arc e_i w.r.t. C_i $A=A \ U \{e_i\}$

Trick: handle many arcs (exactly log of the # of connected components) during the same loop
Impossible to introduce cycles, thanks to the hipothesis!
Complexity: O(m log n)

Among those connecting C_i to

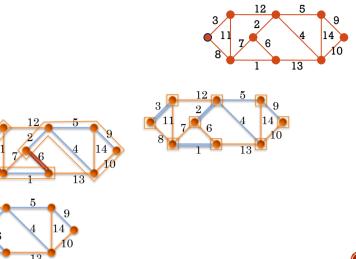
another component, the one with minimum

weight

OTHER ALGORITHMS (1)

- [Friedman & Willard '94] Linear time algorithm, but it assumes the edges are already sorted w.r.t. their weight. Not used in practice, as the asymptotic notation hides a huge constant.
- [Matsui '95] Linear time algorithm for planar graphs (possible lesson)

BORUVKA ALGORITHM (2)



OTHER ALGORITHMS (2)

- [Frederickson '85, Eppstein '94] Given a graph and its MST, it is even interesting to find a new MST after that the original graph has been slightly modified. It can be performed in average time $O(\log n)$
- Only *O*(*n*+*m*) time is necessary to verify whether a given spanning tree is minimum.

ANOTHER APPLICATION (1)

- A telecommunication company wants to lay cable to a new neighborhood.
- It is constrained to bury the cable only along certain paths (e.g. along roads).
- Model as a (not geometrical) graph:
 - nodes: represent points
 - edges: represent those paths
 - (edge) weight: cost of adding cable on that path.

41)

ANOTHER APPLICATION (2)

Note 1. Some of those paths might be more expensive, because they are longer, or require the cable to be buried deeper

Note 2. There is no requirement for edge lengths to obey normal rules of geometry such as the triangle inequality.

• A minimum spanning tree for that graph would be a subset of those paths that has no cycles but still connects to every house with the lowest total cost, thus would represent the least expensive path for laying the cable.