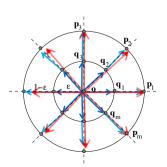


### HEURISTICS (2)

**GREEDY IS NOT ALWAYS GOOD** 

Greedy is not always good [Wan, Calinescu, Li, Frieder '02]:

 SPT: it runs Dijkstra algorithm to get the minimum path tree, then it directs the edges of the tree from the root to the leaves



 $(let\alpha=2)$ 

- o SPT outputs a tree with total energy:
  - $\varepsilon^2 + n/2(1-\varepsilon)^2$
- If the root transmits with radius1 the energy is 1
- When ε→0 SPT is far n/2 from the optimal solution.

### HEURISTICS (1)

In [Wieselthier, Nguyen, Ephremides, 00]: three heuristics all based on the greedy technique:

- SPT (spanning path tree): it runs Dijkstra algorithm to get the minimum path tree, then it directs the edges of the tree from the root to the leaves.
- BAIP (Broadcast Average Incremental Power): it is a modification of the Dijkstra algorithm based on the nodes (i.e. a new node is added to the tree on the basis of its minimum average cost).
- MST (min spanning tree): it runs Prim algorithm to get a MST, then it directs the edges of the tree from the root to the leaves.



### HEURISTICS (3)

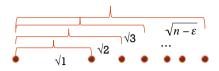
GREEDY IS NOT ALWAYS GOOD

- BAIP (Broadcast Average Incremental Power): it is a modification of the Dijkstra algorithm based on the nodes: a new node is added to the tree on the basis of the min average cost=energy increasing/# of added nodes.
- It has been designed to solve the problems of SPT.



### HEURISTICS (4)

GREEDY IS NOT ALWAYS GOOD



(let  $\alpha$ =2):

- $\circ$  The min transmission power of the source to reach kreceiving nodes is  $\sqrt{k^2}=k$  and thus the average power efficiency is k/k=1
- o On the other hand, the min transmission power of the receiving reach all nodes  $(\sqrt{n-\varepsilon})^2 = n-\varepsilon$  and thus the average power efficiency is (n- $\varepsilon$ )/n=1- $\varepsilon$ /n...



(computation of the performance ratio of BAIP - cntd)

$$\leq 1 + \sum_{i=2}^{n} \frac{1}{i + (i-1) + 2\sqrt{i}\sqrt{i-1}} \leq 1 + \sum_{i=2}^{n} \frac{1}{2i - 1 + 2(i-1)} \leq 1 + \sum_{i=2}^{n} \frac{1}{2i - 1 + 2(i-1)} = 1 + \sum_{i=2}^{n} \frac{1}{4i - 3} \leq 1 + \sum_{i=2}^{n} \frac{1}{4(i-1)} \leq 1 + \sum_{i=2}^{n} \frac{1}{4($$

Substituting i=j+1:

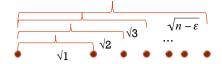
$$\leq 1 + \sum_{j=1}^{n-1} \frac{1}{4j} \leq 1 + \frac{1}{4} \sum_{j=1}^{n-1} \frac{1}{j} \leq 1 + \frac{1}{4} (\ln(n-1) + 1) = \frac{\ln(n-1) + 5}{4}$$

Thus the approx ratio of BAIP is at least:

$$\frac{n-\varepsilon}{\frac{\ln(n-1)+5}{4}} \to (\varepsilon \to 0) \frac{4n}{\ln(n-1)+5} = \frac{4n}{\ln n} + o(1)$$

### HEURISTICS (5)

**GREEDY IS NOT ALWAYS GOOD** 



- o BAIP will let the source to transmit at power  $\sqrt{n-\varepsilon}$  to reach all nodes in a single step.
- o However, the opt. routing is a path consisting of all nodes from left to right. Its min power is:

$$\sum_{i=1}^{n-1} (\sqrt{i} - \sqrt{i-1})^2 + (\sqrt{n-\varepsilon} - \sqrt{n-1})^2 < \sum_{i=1}^{n} (\sqrt{i} - \sqrt{i-1})^2 =$$

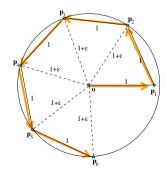
$$\sum_{i=1}^{n} (\sqrt{i} - \sqrt{i-1})^2 \frac{(\sqrt{i} + \sqrt{i-1})^2}{(\sqrt{i} + \sqrt{i-1})^2} = \sum_{i=1}^{n} \frac{((\sqrt{i} - \sqrt{i-1})(\sqrt{i} + \sqrt{i-1}))^2}{(\sqrt{i} + \sqrt{i-1})^2} =$$

$$= \sum_{i=1}^{n} \frac{(i-(i-1))^2}{(\sqrt{i}+\sqrt{i-1})^2} = \sum_{i=1}^{n} \frac{1}{(\sqrt{i}+\sqrt{i-1})^2} = 1 + \sum_{i=2}^{n} \frac{1}{(\sqrt{i}+\sqrt{i-1})^2} \le$$

# HEURISTICS (7)

GREEDY IS NOT ALWAYS GOOD

MST: it runs Prim algorithm to get a MST, then it directs the edges of the tree from the root to the leaves



- Path  $op_1...p_6$  is the unique MST, and its total energy is 6.
- o On the other hand, the opt. routing is the star centered at o, whose energy is  $(1+\epsilon)^{\alpha}$ .
- o The approx. ratio converges to 6, as  $\epsilon$  goes to 0.



# HEURISTICS (8)

- We have just shown a lower bound on the approximation ratio of MST.
- o This ratio is a constant and an upper bound is 12.
- The proof involves complicated geometric arguments, and therefore we only sketch some of them:
  - o ...(not this year: directly go to page 55)

### 50

# **HEURISTICS** (10)

(properties of the geometric MST - cntd)

o The angles between any two edges incident to a common node is at least  $\pi/3$ 



The blue edge is necessarily shorter than at least one of the two orange edges

# HEURISTICS (9)

o Any pair of edges do not cross each other

The blue edge is necessarily shorter than at least one of the two crossing edges

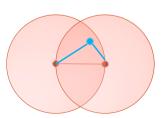


# HEURISTICS (11)

(properties of the geometric MST - cntd)

• The *lune* determined by each edge does not contain any other nodes.

The lune through points  $p_1$  and  $p_2$  is the intersection of the two open disks of radius  $dist(p_1,p_2)$  centered at  $p_1$  and  $p_2$ , respectively, hence an internal node would create a cycle





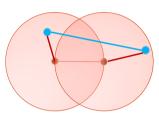


# HEURISTICS (12)

(properties of the geometric MST - cntd)

o Let  $p_1p_2$  be any edge. Then the two endpoints of any other edge are either both outside the open disk  $D(p_1, dist(p_1, p_2))$  or both outside the open disk  $D(p_2, dist(p_1, p_2))$ 

The red edges are added before than the blue edge because they are shorter. The blue edge would create a cycle.



# HEURISTICS (14)

o For realistic instances, experiments suggest that the tight approximation ratio is not 6 but 4 [Flammini, Navarra, Perennes '06] -> possible lesson

# HEURISTICS (13)

- Obs. The proof in [Wan, Calinescu, Li, Frieder '02] contains a small flaw that can be solved, arriving to an approximation ratio of 12,15 [Klasing, Navarra, Papadopoulos, Perennes '04]
- o Indipendently, an approximation ratio of 20 has been stated in [Clementi, Crescenzi, Penna, Rossi, Vocca '01]
- Approx. ratio improved to 7,6 [Flammini, Klasing, Navarra, Perennes '04]
- o Approx. ratio improved to 6,33 [Navarra '05]
- o Optimal bound 6 [Ambüehl '05]

