SECOND PART:
WIRELESS NETWORKS
2.A. FIXED NETWORKS

FIXED WIRELESS NETWORKS (1)

The introduction of new services, such as data
communication (internet, e-mail) and video-
conferencing cause shortage of capacity in
existing wired networks.

A (fixed) wireless network is a collection of

wireless devices (positioned e.g., on buildings or
towers) forming a network with radio or other

wireless connections and without the aid of any
established infrastructure or centralized control.

It is an alternative to the extension of the
capacity of wired networks.
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FIXED WIRELESS NETWORKS (2)

The advantages of fixed wireless include the
ability to connect with users in remote areas
without the need for laying new cables.

In rural areas, where wired infrastructure is not
yet available, fixed-wireless broadband can be a
viable option for Internet access.

FIXED WIRELESS NETWORKS (3)

One of the most popular applications of
wireless communication is the establishment
of fixed cellular telecommunication networks.

In contrast to mobile cellular networks, here
the transmitters and the receivers are located
at fixed points in the area of interest.

Fixed cellular networks provide a financially
attractive alternative to the construction of
conventional wired networks.



FIXED WIRELESS NETWORKS (4)

Fixed wireless services typically use directional

radio antennas on each end of the signal.

Fixed wireless devices usually derive their
electrical power from the public utility mains,

unlike mobile wireless or portable wireless devices,
which tend to be battery powered.
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THE PROBLEM

THE PROBLEM (1)

Frequency assignment is necessary in many
different types of wireless networks.

Depending on the particular network, the
understanding of frequency assignment varies.

For this reason, several "flavors" of frequency
assignment are present in the literature.



THE PROBLEM (2)

Wireless communication between two points is
established with the use of a transmitter and a
receiver.

The transmitter generates electrical oscillations
at a radio frequency.

THE PROBLEM (3)

Issue 1.

The receiver detects these oscillations and
transforms them into sounds or images, only if
it is close enough to capture the signal.

In point-to-point connections, the transmitter
and the receiver have to ''see” each other,
which means that there should be no obstacles
in between them.

As a consequence, transmitters and receivers

have to be built at high locations (e.g., at the
roof of apartment and office buildings). @



THE PROBLEM (4)

Issue 2.

The signals sent by different transmitters can

interfere. Especially if signals cross each other,

the use of (almost) the same frequencies
should be avoided.

Reuse of frequencies may lead to a loss of

quality of communication links and can be

applied only for far enough transmitters.

THE PROBLEM (5)

Issue 3.

The rapid development of new wireless services
resulted in a run out of the most important (and
expensive) resource: frequencies in the radio
spectrum.

Like with all scarcely available resources, the

(high) cost of frequencies implies the need for
economize the use of the available frequencies.

Reuse of frequencies can offer considerable
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economies.



THE PROBLEM (6)

A solution to the frequency assignment problem

balances the economies of reuse of frequencies

and the loss of quality in the network.

Quantification of the different aspects results

in a mathematical optimization problem.

THE PROBLEM (7)

In general, Frequency Assignment Problems (FAPs)
have two basic aspects:

AIM: a set of wireless communication connections
must be assigned some  frequencies. The
frequencies should be selected from a given set
that may depend on the location.

CONSTRAINT: The frequencies assigned to two
connections may interfere, resulting in a loss of
quality of the signal.

But, what interference is? @



THE PROBLEM (8)

Two conditions to have interference of two
signals:

1.

The two frequencies must be close on the
electromagnetic band (Doppler effects) or
(close to) harmonics of one another.

The latter effect is limited, since the
frequency bands from which we can
choose are usually so small that they do
not contain harmonics.

The connections must be geographically
close to each other.

THE PROBLEM (9)

Both aspects are modeled in many different

ways in the literature.

Hence: various models.

They differ in the types of constraints and in

the objectives to be optimized.

Here we describe a simplified model.



A PARENTHESIS ON THE
MODERN TECHNOLOGY (1)

In fact, this model is very simplified compared to
the technology currently used, which is an
evolution of the frequency assignment:

MIMO (Multiple Input, Multiple Output):
This technology, already present in LTE (4G), uses

multiple transmitting and receiving antennas to
improve network speed and capacity

A PARENTHESIS ON THE
MODERN TECHNOLOGY (2)

Beamforming:

In 5G, it allows antennas to direct the signal
directly to mobile devices. This reduces signal
dispersion and interference, optimizing the

connection for multiple users simultaneously.

NOMA (Non-Orthogonal Multiple Access):
In 5@, it allows multiple users to share the same

frequency, but assigns each a different power level

based on their distance from the base station. This
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increases network efficiency and capacity.



THE GRAPH MODEL
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THE MODEL (1)

Interference Graph

= One node per station

= One edge between two stations if they may
communicate (and hence interfere)

= Labels interpreted as channels assigned to the

nodes. +

Hidden

Collision Direct

= Collision



THE MODEL (2)

This model consider two kinds of interference due
to re-use of the same channel at “close” or ‘very
close” sites:

Direct Collisions: stations positioned in ‘very
close” locations receive channels at least h apart

Hidden  Collisions:  channels for  stations
positioned in “close” locations are at least k apart

L 4

L(h,k)-Labeling Problem

L(A,k)-LABELING (1)

Def. Given a graph G=(V,E), an L(hk)-labeling is a

node coloring function f s.t.

-VYu v eV, |t(u - f(v)] 2h if (uv)eE

-VYuvelV|f(u-£fv) 2kif 3w eV s.t. (uw) € E
and (w,v) € E

Objective: minimizing the bandwidth oy
Minimum bandwidth: A,y



L(A,k)-LABELING (2)

Obs. The condition:

-VYuvelV|flu-fv)zkif 3w eV st (uw) e E

and (w,v) € E
is often written as:
-V u v eV, |tlu) - £f(v) 2 kif dist(u,v)=2

When h < k, only the first one allows a triangle to be

labeled with colors at mutual distance at least
max{h,k}, even if its nodes are at distance 1.
When h > k the two conditions coincide.

O

@)
Example: L(1,2) 1‘2 2A4

L(A,k)-LABELING (3)

Usually, the minimum used color is O.

So, an L(hk)-labeling having span o,,(G) uses
o, (G)*1 different colors (slightly counter-
intuitive, but it is used for historical reasons).

The problem has been introduced in the '‘90s with
h=2 and k=1 1in relation with a frequency
assignment problem [Griggs e Yeh ‘92, Robertson '91]

It was already known in combinatorics in the
case h=1 and k=1 (coloring the square of a graph)
[Wegner '77]



A PARENTHESIS ON THE L(Z1)-LABELING

When h=1 and k=1 the problem is equivalent to the
classical vertex coloring (=labeling nodes s.t.

adjacent nodes get different labels using min
span) of the square of a graph.

Given a graph G=(V, E), its square G2 is the graph
having node set equal to V, and an edge between
u and v is in G2 iff:
- either (u,v) is in E
- or u and v are connected by a length 2 path in G

L(A,k)-LABELING (4)

After its definition, the L(hk)-labeling problem

has been used to model several problems:

* a kind of integer ‘control code’ assignment in
packet radio networks to avoid hidden
collisions (L(O,1)-labeling problem)

¢ channel assignment in optical cluster-based
networks (L(O,1)- or L(1,1)-labeling depending
on the fact that the clusters can contain one
ore more nodes)

* more in general, channel assignment problems,
with a channel defined as a frequency, a time
slot, a control code, etc.

©
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L(A,k)-LABELING (5)

The L(hk)-labeling problem has been studied
following many different approaches: graph
theory and combinatorics, simulated annealing,
genetic  algorithms, tabu search, neural
networks, ..

In the following, we will survey some results.

L(A,k)-LABELING (6)

: L(2,1)-labeling of:

}\211S5

A\;1=5: by contradiction /4!!!



L(A,k)-LABELING (7)

Lemma: Aghax=d Ank

Proof. Divided into 1: Ay, gr2d Anx and  2: Agy gesd Ay ke
L Adhak2 d Ak

Let £ an L(dh, dk)-labeling. Define f'=f/d.

f' is an L(hk)-labeling and Ay, g /d = 0, (F) 2 Ay

2. Adh,dks d Ah,k
Similarly, let f an L(hk)-labeling. Define f'=f d.

f' is an L(dh, dk)—labellng and Adh,dksodhldk(f’)= d-Ah,k-
|

So, we can restrict to use values of h and k mutually

prime. @

L(A,k)-LABELING (8)

PROBLEM: What if  f=f/d does not produce
integer values?

: Let x, y2 O, d>0 and k in Z~
If|x-)i=kd, then |[x-y’|2kd,
where x'=|x/d|d  and Y'=|y/dld



L(A,k)-LABELING (9)

« The case k=0, for any h, 1is not wusually
considered in this context as it coincides with
the classical vertex coloring.

* The case h=k is very studied in the literatue as
the vertex coloring of the square of a graph.

« The case h=2k is the most studied L(hk)-
labeling problem.
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NP-COMPLETENESS RESULTS (1)

The decisional version of the problem is NP-
complete, even for small values of h and k:

L(O,1)-labeling of planar graphs
[Bertossi, Bonuccelli '95]
L(1,1)-labeling of general, planar, bounded

degree and unit-disk graphs
[McCormick '83], [Ramanathan, Loyd '92],
[Ramanathan '93], [Sen, Huson '97]



NP-COMPLETENESS RESULTS (2)

Th. The L(2,1)-labeling problem on diam. 2 graphs is
NP-complete [Griggs, Yeh '92]

Before proving this theorem, recall that to prove the
NP-completeness of a decisional problem P we have
to:
prove it is in P
find another decisional problem Prpc that is known
to be NP-complete such that there exists a
polynomial reduction from Pypc to P

©

A PARENTHESIS ON POLYN. REDUCTIONS

Polynomial reduction from Pypc to P:

polynomial time conversion that transforms:
any instance of Pypc into an instance of P
any 'yes" solution of Pypc into a “yes” solution of P
any "no” solution of Pypc into a "no” solution of P (that
is: any "yes" solution of P into a "yes" solution of any
‘yes" solution of Pypc into a “yes” solution of P)

I(Pnpc) — 1(P)
superpolynomial\ \polynomial?

SOI(PNpc) - SO].(P)



NP-COMPLETENESS RESULTS (3)

Th. The L(2,1)-labeling problem on diam. 2 graphs is
NP-complete [Griggs, Yeh '92]
Proof. Consider the following special form of the

decisional problem: it never maps
distinct elements

DL. Instance: G=(V,E) diam. 2 graph [Ssiasiesielely EilaREe

. the same element
. ?
Question: 1211(G)s|V|. of its

IDL. Instance: G=(V,E) co-domain
Question: Does exist an 7 injective s.t.

| A(x)- Ay)l=2 if (x,y) € E
and its codomain is {O, .., |V|-1}?

)

NP-COMPLETENESS RESULTS (4)

(proof of NP-completeness cntd)

Finding a solution for IDL means finding a
Hamiltonian path in G&:

Since 7 is injiective, 7 1 is defined.
Give an order to nodes:
vi= £ “1(i), O<i<|V|-1

Observe that, since v; and v;,; cannot be adjacent
in G, they are adjacent in G, hence

Vo, V1, =, V-1 1s @ Hamiltonian path.

©



NP-COMPLETENESS RESULTS (5)

(proof of NP-completeness cntd)

Even the reverse holds:
Given a Hamiltonian path in G€
Vo, V1, -, V1 define 7 such that 7(v;)=i, O<ig|V|-1.

is trivially injective; furthermore, given an edge
{x,y} of G, x=v; and y=v;, it must hold:

| A(x)- 7(y)|l=2 because x and y are not adjacent in GC.

It follows that the two problems are equivalent.

)

NP-COMPLETENESS RESULTS (6)

(proof of NP-completeness cntd)

The following problem:
HP. Instance: G=(V,E)
Question: Does G have a hamiltonian path?

is NP-complete, so even IDL is NP-complete.

Instance: G=(V,E) diam. 2 graph

Question: A,,(G)s|V/|?

is in NP:

We can verify in polynomial time whether a
labeling 7 is a feasible L(2,1)-labeling for G, and
whether A-,(G) smax(7(v)) s/VI. ©



NP-COMPLETENESS RESULTS (7)

(proof of NP-completeness cntd)

Reduction from IDL to DL to prove that DL is
NP-complete:

Given an instance of IDL G, construct G*
V'=V U{x}

-E'=E U {{x,a} for each a in V}

So|lV'|z|V|[+1 and G' has diameter 2.

©

NP-COMPLETENESS RESULTS (8)

(proof of NP-completeness cntd)

We prove that from a solution for DL it is
possible to deduce a solution for IDL, i.e. there
1s an injection I s.t.

|7(x)- £(y)|l22 for every (x,y) € E iff A,.(G")<|V’].

- = If there exists an injection 7 defined on V

that satisfies the condition above, define g(v)=
(v) for all veV and g(x)=|V[+1=|V’|.

Easily g is an L(2,1)-labeling for G' and
1-AG") <max(g(v")) V| ©



NP-COMPLETENESS RESULTS (9)

(proof of NP-completeness cntd)

- & Conversely, suppose that 1,:(G") <|V'|, i.e. there

exists a feasible L(2,1)-labeling g s.t.
max(g(v'))<|V'|=[V]+1.

Observe that G' of diam. 2 implies that g(a)#g(b)
for each a#b

- Suppose g(x)#|V|[+1 and #0. By the property of
L(2,1)-labeling, there is no v in V such that
g(v)=g(x)-1 or g(x)+1. So we need |V|+3 labels for
V' ie. 41(G')2|V'|+1: a contradiction. ©

NP-COMPLETENESS RESULTS (10)

(proof of NP-completeness cntd)

-So g(x) is either O or |V|+1.
If g(x)=|V|+1 => A(v)= g(v) =
If g(x)=0 => A(v)= g(v)-2 =

In any case, there exists 7 injective s.t. its
codomain is {0, .., |[V|-1}.

The NP-compleness of DL follows.



Literature in different directions:

m Lower and upper bounds for 4,

m Limitation to special graph classes:

Exact labelings
Approximate labelings

LOWER BOUNDS (1)

@)
Ay 2A+] = (A=1)142 1
A+1
B Ay 2 (A-1)k+h =
for h > k



UPPER

BOUNDS (1)

Greedy Algorithm:

Given a graph G with nodes vy, vy, .., vy,

label its nodes in order assigning to v; the
smallest color not conflicting with the labels of
its neighborhood (dist. 1 and 2)

V, V,

UPPER

BOUNDS (2)

« Th. X5;(G) < A2+24 [Griggs, Yeh '92]

» Proof. In order to label

this... »

..we eliminate at most 3 colors
for each one of these..
%

..and at most one color
for each one of these..
%

We can label all the graph with at most
1+3A+(A-1)A colors. @



UPPER BOUNDS (3)

Conjecture: A, ,(G) < 42 [Griggs, Yeh '92]

This upper bound is tight: some graphs with
degree A, diameter 2 and A%+1 nodes have A at
leats A2

UPPER BOUNDS (4)

Conjecture: %, ,(G) < A? [Griges ) entsz]
B A 4(G) < A%+2A-4 [Jonas '93]
B A 4(G) € A%+A [Chang, Kuo '96]
B L 1(G) < A%+A-1 [Kral, Skrekovski ‘03]
B L (G) < A2+A-2 [Goncalves '05]
m 7¥2,1(G) < A? for sufficiently large values of A

[Havet, Reed and Sereni '08]

©



EXACT RESULTS: CLIQUES A,

m 21(Ky)=2(n-1)
m All nodes are pairwise
adjacent

EXACT RESULTS: STARS X,

B hoa(Kpp)=t+1
Proof.

m o 1(Kpp)st+l easy
w1 (Kpp)2tel <ED
by contradiction: <2Q\\}f\<//}:>
If the center of the star

t+ >
is labeled with a color <:> {:D
between O and t..




EXACT RESULTS: TREES 7, (1)

B a(TL)=0+1 or A+2

Proof.

® %.(T,) > A+1 because T, contains a Ky,

(T < A2
First-Fit (qgreedy) labeling:
Order the nodes of T, T,1=T,- {vy} where v, is

a leaf. In general T; = Ti-{ 14l

Label v; with O

Label v; with the first available color.

©

EXACT RESULTS: TREES 7, (2)

(proof: either A, (T,)=A+1 orA+2 - cntd)

Assume we have already labeled all nodes from 1,

to 1; and we are going to label v.q:

* vy parent of v

* necessarily j < i+l (the nodes that are
closer to the leaves have larger indices)

* ; has at most A-1 further adjacent
nodes.

At most 3 colors are forbidden due to Vi

At most A-1 colors are forbidden due to the

nodes that are adjacent to v

So, if we have at least (A-1)+3+1 colors, we are
always able to label v, i.e. Ao 1(T,) < A+2. ©

Vi

Vi1



EXACT RESULTS: TREES 7, (3)

- This proof has been proposed by Griggs e Yeh [92],

who have also conjectured that it is NP-complete
to decide whether the correct value is A+l or A+2.

Chang e Kuo [96] have disproved this conjecture by
providing a polynomial algorithm based on the
dynamic programming technique and having time
complexity O(A4> n).

Many authors have proposed many other
algorithms aiming at improving the time
complexity.

Finally, Hasunama, Ishi, Ono, and Uno [og
proposed a linear algorithm. @

EXACT RESULTS: PATHS A,

= Aq(Py)=2 -1
= 7¥2,1(P3):3 g

" Ay (PY=3 00060
s A(P,)=4 if n>5

@—@—(©—G@—@ To prove that A,;(Ps)<4:

From the results for stars

Ps includes a P4 so A, 1(Ps)23. 3 0 2 01
By contradiction 4,:(Ps)=3 O—O)—O—O—O

If n>5 the result follows from the previous

one and from the result for trees. @




EXACT RESULTS: CYCLES C, (1)

m 21(CL)=4

If n<4: case by case: Q%

006G

If n>5: C, contains P, so &,:(C,) 24.
It also holds A,:(C,) <4:

3 cases: ..

EXACT RESULTS: CYCLES C,(2)

proof: 2,,(C,)=4 - cntd

1. n=0 (mod 3) @Q@ (02—

2. n=1 (mod 3) (o240 @ @ 4

3. n=2 (mod 3) @O—@—@- 000 Q@G



EXACT RESULTS: GRIDS (1)
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EXACT RESULTS: GRIDS (2)
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EXACT RESULTS: GRIDS (3)

APPROXIMATE RESULTS:
OUTERPLANAR GRAPHS(1)

Def. A graph is said to 1
be outerplanar if it
can be represented as

a plane graph so that
each node lies on the
border of the external
face
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APPROXIMATE RESULTS:
OUTERPLANAR GRAPHS(2)

=%, 1(G) < 20+4 because G has treewidth 2
= Jonas 931 X,,(G) < 2A4+2

= Bodlaender et al. [o4]: 1,,(G) < A+8 but they conjecture
that A, ,(G) < A+2

Iz~ possible students’ lesson

« C. & Petreschi o4 A+1 < A, ,(G) < A+2 and they conjecture
that this algorithm gives the optimum value

Iz~ possible students’ lesson

©

VARIATIONS OF
THE PROBLEM




VARIATIONS OF THE PROBLEM (1)

ORIENTED L{2,1)-LABELING

o An oriented L(2,1)-labeling of a directed
graph G is a function assigning colors from O,
... to the nodes of G so that nodes at
distance 2 in the graph take different colors
and adjacent nodes take colors at distance 2.

o Oriented L(2,1)-labeling problem
minimizing A

o Note. The minimum value of A can be very
different from the value of the same

parameter in the undirected case. Example:
trees..

VARIATIONS OF THE PROBLEM (2)

ORIENTED L{2,1)-LABELING

oReminder: In undirected trees, A+1 <A < A+2, and
the exact value is linearly decidable

[Chang & Kuo '96, Hasunama et al. 2008]

oIn directed trees, A<4 [Chang &OLiaw ‘03]
@ o\
NN\
© 0
44800
@
O
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VARIATIONS OF THE PROBLEM (3)

L(hy ..., h)-LABELING

With the aim of making the model more realistic:

= An L(hy, ..., hy)-labeling of G is a function assigning
integer values to the nodes of the graph such that:

[L(u)-1(v)|zh; if u and v are at distance I in the
graph, l<i<k.

«L(hy, ..., h)-labeling problem: minimizing A
= Particularly interesting: L(2,1,1) and L(6, 1, ..., 1).

Even these special cases are NP-hard on general
graphs, so special classes of graphs are handled. @

VARIATIONS OF THE PROBLEM (4)

BACKBCONE COLORING

If the topology has a backbone where the
transmitting power is higher than the rest of
the network:

= A Backbone coloring of a graph G wrt a graph
H is a function assigning integer values to the
nodes of the graph such that:

[(v)-1(v)|22 if (v, v) is an edge of H and
IW(w)-1(v)|21 if (y,v) is an edge og G-H.
= Backbone coloring problem:

minimizing A @



VARIATIONS OF THE PROBLEM (5)

a-MULTIPLE L(A,k)-LABELING

In practice, each transmitting station is able to
handle more than one channel, so a set of
channels is assigned to it.

Given two sets of integer values, I and J, we
define:

dist(I,J)=minf{li-j: i in I and j in J }
Example:

1-{0,1,2}; J={4,5,6}; dist{I,]}=2.

VARIATIONS OF THE PROBLEM (6)

n-MULTIPLE L(A,k)-LABELING

An n-multiple L(hk)-labeling of a graph G is a
function assigning n integer values to each node
of the graph so that:

dist(l(u),l(v)) 2 h if (u,v) is an edge of G
and

dist(1(u),l(v)) = k if u and v are at dist. 2 in G.

n-multiple L(h,k)-labeling problem:
minimizing A, given n. @



VARIATIONS OF THE PROBLEM (7)

Some Master theses are available on variations of
the vertex coloring and L(hk)-labeling problems
of special classes of graphs.

A PARENTHESIS ON THE
4 COLOR PROBLEM (1)

= Given a map, it can be naturally considered as a
planar graph G.
= Given G, let G” its dual graph:
= Put a node of G"in each region of G

= Connect two nodes of G iff the corresponding
regions (faces) are adjacent (i.e. share an edge
in Q)

= A vertex coloring of G* corresponds to a map

coloring of G.
©



A PARENTHESIS ON THE
4 COLOR PROBLEM (2)

=In fact, cartographers have always known that 4
colors were enough for each kind of map, but in
1852, Francis Guthrie wondered whether this fact

could be proved.

- After more than 100 years and many (wrong)
announcements, Appel and Haken proved the 4
Color Theorem in 1976.

©

A PARENTHESIS ON THE
4 COLOR PROBLEM (3)

= The complete proof is computer-assisted because
it exhaustively examines more than 1700
configurations.

= More recently, Robertson, Sanders, Seymour, and
Thomas wrote a new proof, needing to examine
‘only” 633 configurations.



A PARENTHESIS ON THE
4 COLOR PROBLEM (4)

There are some interesting results for other numbers
of colors:

= 2-coloring.
Polynomially solvable:
= Assign a color to a region.
= Assign the other color to its neighboring regions.
= Assign the first color to its neighboring regions.

= Continue until the regions have been all colored
or there is a color conflict. In this latter case, the
map is not 2-colorable. ()

A PARENTHESIS ON THE
4 COLOR PROBLEM (5)

= 3-coloring
= NP-hard, hence no algorithms to decide whether
a map is 3-colorable or not.

= Method:  exhaustively try all the color
combinations for the regions.

= Inapplicable: for N regions, there are 3N
possibilities. (if N=48 the combinations are
about 8 x 102%?)

L @



A PARENTHESIS ON THE
4 COLOR PROBLEM (6)

= 3-coloring (cntd)
=« There are some techniques in order to simplify
the map before coloring it (for example, if a
region has only 2 neighbor regions, it can be
eliminated from the map: when it is re-inserted,
it will be colored with the third color) but the
worst case time complexity is the same.

()

A PARENTHESIS ON THE
4 COLOR PROBLEM (7)

= 4-coloring
= The proof of the 4 color theorem is
constructive, and so it shows how to find a
feasible coloring, but the number of cases is
too high to be useful in practice.

= There are some transformations similar to those
used for the 3-coloring, but they do not
eliminate the need to exhaustively try all the

©

possibilities.



A PARENTHESIS ON THE
4 COLOR PROBLEM (8)

= 5-coloring
= It is relatively easy to color a map using 5
colors. There is an algorithm that first
simplifies the map, eliminating all the regions
and then re-inserts them, assigning the correct

color.

©

A PARENTHESIS ON THE
4 COLOR PROBLEM (9)

We conclude with a puzzle: I

Try to 4-color these 2 maps.. C T 1

In 1975 Martin Gardner claimed he could prove
that this map was not 4-colorable (April fool) @



A PARENTHESIS ON THE 4
COLOR PROBLEM (9)

Solutions




