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SECOND PART:
WIRELESS NETWORKS
2.A. AD HOC NETWORKS

In Wireless Sensor Networks many sensor nodes are deployed
in an area of intrest, which may be physically inaccessible for 
human beings (e.g., for volcano monitoring the environment is
unstable, making it impossible for system administrators to 
maintain the network on site).

They have the following outstanding features:

§ Large Scale: the amount of sensor nodes may be very large 
since the communicating range may be only dozens of meters. 

§ Long Term: once deployed, the system is intended to work for 
a long time. A too short life time results in weak applicability. 

§ Limited Resources: Sensor nodes are powered by battery. 
Hence, the energy is limited. Also data storage and 
computational capacity are limited. 

§ Dynamicity: Wireless Sensor Networks maintain the topology
by themselves. As a result, environmental changes affect the 
network significantly, hence they are dynamic all the time. 
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§ Frequency assignment is necessary in many different
types of wireless networks.

§ Depending on the particular network, the understanding
of frequency assignment varies.

§ For this reason, several "flavors" of frequency
assignment are present in the literature.
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§ Wireless communication between two points is
established with the use of a transmitter and a
receiver.

§ The transmitter generates electrical oscillations at a
radio frequency.

§ The receiver detects these oscillations and transforms
them into sounds or images, IF it is close enough to
capture the signal.

§ When two transmitters use the same frequency, they
may interfere.
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One of the most popular applications of wireless
communication is the establishment of fixed cellular
telecommunication networks.
In contrast to mobile cellular networks, in non-mobile or
fixed systems both the transmitters and the receivers
are located at fixed points in the area of interest.

Fixed cellular networks provide a financially attractive
alternative to the construction of conventional wired
networks.
…
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The introduction of new services, such as data
communication (internet, e-mail) and video-
conferencing cause shortage of capacity in existing
wired networks.
Point-to-point wireless connections can be used as an
alternative to the extension of the capacity of these
wired networks.

In both cases no cable connections have to be
established.
…
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In point-to-point connections, the transmitter and the
receiver have to ’’see’’ each other, which means that
there should be no obstacles in between them.
As a consequence, transmitters and receivers have to
be built at high locations (e.g., at the roof of apartment
and office buildings).

Nevertheless, the signals sent by different transmitters
can interfere. Especially if signals cross each other, the
use of (almost) the same frequencies should be
avoided.
…
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The rapid development of new wireless services (e.g.,
digital cellular phone networks) resulted in a run out of the
most important (and expensive) resource: frequencies in
the radio spectrum.

Like with all scarcely available resources, the cost of
frequency-use provides the need for economic-use of the
available frequencies.

Reuse of frequencies within a wireless communication
network can offer considerable economies.
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However, reuse of frequencies may also lead to a loss of
quality of communication links.

Namely, the use of (almost) the same frequency for
multiple wireless connections can cause an interference
between the signals that is unacceptable.

A solution to the frequency assignment problem balances
the economies of reuse of frequencies and the loss of
quality in the network.

Quantification of the different aspects results in a
mathematical optimization problem.

… 11

In general, Frequency Assignment Problems (FAPs) have
two basic aspects:

1. a set of wireless communication connections must be
assigned some frequencies such that, for every
connection, data transmission between the transmitter
and the receiver is possible. The frequencies should be
selected from a given set that may depend on the
location.

2. The frequencies assigned to two connections may
interfere, resulting in a loss of quality of the signal.

But, what interference is?
12



Two conditions must be fulfilled in order to have
interference of two signals:
a) The two frequencies must be close on the

electromagnetic band (Doppler effects) or (close
to) harmonics of one another.
The latter effect is limited, since the frequency
bands from which we can choose are usually so
small that they do not contain harmonics.

b) The connections must be geographically close to
each other.
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Both aspects are modeled in many different ways in the
literature.

Hence: various models.

They differ in the types of constraints and in the
objectives to be optimized.

Here we describe a simplified model.
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In our model:
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Direct Collision
Hidden Collision



This model consider two kinds of interference due to re-use
of the same channel at “close” or “very close” sites:

Direct Collisions: stations positioned in “very close”
locations receive channels at least h apart
Hidden Collisions: channels for stations positioned in

“close” locations are at least k apart
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L(h,k)-Labeling Problem

Interference Graph
§ One node per station
§ One edge between two stations if they may communicate 

(and hence interfere) → very close locations correspond 
to adjacent nodes)

§ Labels interpreted as channels assigned to the nodes. 
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f : node coloring function s.t.
- " u, v Î V |f(u) - f(v)|≥h if (u,v)ÎE
- " u, v Î V |f(u) - f(v)|≥ k if $ w Î V s.t. (u,w) Î E
and (w,v) Î E

Objective: minimizing the bandwidth σh,k

Minimum bandwidth: λh,k

Obs. The condition:
- " u, v Î V |f(u) - f(v)|≥ k if $ w Î V s.t. (u,w) Î E
and (w,v) Î E

is often written as:
- " u, v Î V |f(u) - f(v)|≥ k if dist(u,v)=2

The first one works both when h≥k and when h<k. 
It allows a triangle to be labeled with colors at mutual
distance at least max{h,k}, even if its nodes are at distance 1.
When h≥k the two conditions coincide.

Example: L(1,2)

0

1 2
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Usually, the minimum used color is 0.
So, an L(h,k)-labeling having span σh,k(G) uses σh,k(G)+1
different colors.
This is slightly counter-intuitive, but it is used for historical
reasons.
The problem has been introduced in the ’90s with h=2 and
k=1 in relation with a frequency assignment problem

[Griggs e Yeh ’92, Robertson ‘91]

This problem was already known in combinatorics in the
case h=1 and k=1 (coloring the square of a graph)

[Wegner ‘77]
20



When h=1 and k=1 the problem is equivalent to the classical
vertex coloring (=labeling nodes s.t. adjacent nodes get
different labels using min span) of the square of a graph.

Given a graph G=(V, E), its square G2 is defined as a graph
having node set equal to V, and an edge between u and v is
in G2 iff:
- either (u,v) is in E
- or u and v are connected by a length 2 path in G
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After its definition, the L(h,k)-labeling problem has been
used to model several problems:
• a kind of integer ‘control code’ assignment in packet

radio networks to avoid hidden collisions (L(0,1)-
labeling problem)

• channel assignment in optical cluster-based networks
(L(0,1)- or L(1,1)-labeling depending on the fact that the
clusters can contain one ore more nodes)

• more in general, channel assignment problems, with a
channel defined as a frequency, a time slot, a control
code, etc.
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The L(h,k)-labeling problem has been studied following
many different approaches: graph theory and
combinatorics, simulated annealing, genetic algorithms,
tabu search, neural networks, …

In the following, we will survey some results.
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Example: L(2,1)-labeling of:

λ2,1≤5

0 0

3 5

1

4

λ2,1=5: by contradiction 0/4

0 2

4

!!!
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Lemma: λdh,dk=d λh,k

Proof. Divided into two parts: λdh,dk≥ d λh,k and λdh,dk≤ d λh,k.
1. λdh,dk≥ d λh,k

Let f an L(dh, dk)-labeling. Define f’=f/d.
f’ is an L(h,k)-labeling and λdh,dk/d = σh,k(f’)≥ λh,k.

2. λdh,dk≤ d λh,k

Similarly, let f an L(h,k)-labeling. Define f’=f d.
f’ is an L(dh, dk)-labeling and λdh,dk≤ σdh,dk(f’) = dλh,k. n

It follows that we can restrict to use values of h and k
mutually prime. 25

PROBLEM: What if f’=f/d does not produce integer
values?

Lemma: Let x, y ≥ 0, d>0 and k in ℤ+.
If|x-y|≥kd, then |x’-y’|≥kd,
where and

It follows we can restrict to use values of h and k integer
and mutually prime.
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€ 

x'= x /d" #d

€ 

y'= y /d" #d

• The case k=0, for any h, is not usually considered in this
context as it coincides with the classical vertex coloring.
• The case h=k is very studied in the literatue as the vertex
coloring of the square of a graph.
• The case h=2k is the most studied L(h,k)-labeling
problem.
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The decisional version of the problem is NP-complete,
even for small values of h and k:
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L(0,1)-labeling of planar graphs
[Bertossi, Bonuccelli ‘95]

L(1,1)-labeling of general, planar, bounded degree and 
e unit-disk graphs

[McCormick ‘83], [Ramanathan, Loyd ‘92], 

[Ramanathan ‘93], [Sen, Huson ‘97]
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Th. The L(2,1)-labeling problem on diam. 2 graphs is NP-
complete [Griggs, Yeh ‘92]

Proof. Consider the following special form of the decisional 
problem:

DL. Instance: G=(V,E) diam. 2 graph
Question: l2,1(G)≤|V|?

IDL. Instance: G=(V,E)

Question: Does exist an f injective s.t.

|f(x)- f(y)|≥2 if (x,y) Î E 

and  its codomain is {0, …, |V|-1}?

it never maps distinct
elements of its

domain to the same
element of its

co-domain

(proof of NP-completeness cntd)
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Finding a solution for IDL means finding a Hamiltonian 
path in GC:

Since f is injiective, f -1 is defined.

Give an order to nodes:
vi= f -1(i), 0≤i≤|V|-1

Observe that, since vi and vi+1 cannot be adjacent in G,
they are adjacent in GC, hence 

v0, v1, …, v|V|-1 is a Hamiltonian path.

(proof of NP-completeness cntd)
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Even the reverse holds:
Given a Hamiltonian path in GC

v0, v1, …, v|V|-1 define f such that f(vi)=i, 0≤i≤|V|-1.

f is trivially injective; furthermore, given an edge {x,y} of G, 
x=vi and y=vj, it must hold:

| f(x)- f(y)|≥2 because x and y are not adjacent in GC.
It follows that the two problems are equivalent.

(proof of NP-completeness cntd)
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The following problem:
HP. Instance: G=(V,E)

Question: Does G have a hamiltonian path?

is NP-complete, so even IDL is NP-complete.

DL is in NP:
We can verify in polynomial time that G has diameter 2, 

whether a labeling f is a feasible L(2,1)-labeling, and 
whether l2,1(G) ≤||f(G)|| ≤|V|.

Instance: G=(V,E) diam. 2 graph
Question: l2,1(G)≤|V|?
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Transformation from IDL to DL to prove that DL is
NP-complete:
Given an instance of IDL G, construct G’:
• V’=V U{x}

• E’=E U {{x,a} for each a in V}

So|V’|=|V|+1 and G’ has diameter 2

(proof of NP-completeness cntd) (proof of NP-completeness cntd)
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We prove that from a solution for DL it is possible to 
deduce a solution for IDL, i.e. there is an injection f s.t.

| f(x)- f(y)|≥2 for every (x,y) Î E iff l2,1(G’)≤|V’|.

• ⇒ If there exists an injection f defined on V that satisfies
the condition above, define g(v)= f(v) for all vÎV and 
g(x)=|V|+1=|V’|.

Easily g is an L(2,1)-labeling for G’ and
l2,1(G’) ≤||g(G’)|| ≤|V’|

(proof of NP-completeness cntd)
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• ⇐ Conversely, suppose that l2,1(G’) ≤|V’|, i.e. there exists a 
feasible L(2,1)-labeling g s.t. ||g(V’)||≤|V’|=|V|+1.

Observe that G’ of diam. 2 implies that g(a)≠g(b) for each a≠b

• Suppose g(x)≠|V|+1 and ≠0. By the property of L(2,1)-
labeling, there is no v in V such that g(v)=g(x)-1 or g(x)+1.
So we need |V|+3 labels for V’ i.e. l2,1(G’)≥|V’|+1: a 
contradiction.

(proof of NP-completeness cntd)
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• So g(x) is either 0 or |V|+1.

• If g(x)=|V|+1 => f(v)= g(v) OK
• If g(x)=0 => f(v)= g(v)-2 OK
In any case, there exists f injective s.t. its codomain is

{0, …, |V|-1}.

The NP-compleness of DL follows. n



Literature in different directions:

n Lower and upper bounds for  lh,k

n Limitation to special graph classes:

• Exact labelings
• Approximate labelings

37

§ l2,1 ³ D+1

38

0
1
…

D-1
D+1

n lh,k ³ (D-1)k+h
for h ³ k

= (D-1)1+2

Incidence graph of a projective plane p(n) of order n, 
G=(UÈV, E) s.t.

- |U|=|V|=n2+n+1

- uÎU corresonds to a point Pu of p(n)

- vÎV corresonds to a line lv of p(n)

- E={(u,v) s.t. PuÎ lv }

n $ G s.t. l2,1(G) ³ D2- D [Griggs, Yeh ‘92]
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- G is regular and D=n+1

- For each pair of nodes in U (or in V), their distance is 2,
- " u,vÎU (ÎV), |Adj(u) Ç Adj(v)|=1

Þ l2,1(G) ³ |U|-1=|V|-1=D2- D

40



Greedy Algorithm:
Given a graph G with nodes v1, v2, …, vn, 

label its nodes in order assigning to vi the smallest color 
not conflicting with the labels of its neighborhood (dist. 1 
and 2)

41

§ Th. l2,1(G) £ D2+2D [Griggs, Yeh ‘92]

§ Proof.

42

In order to label this… ®

…we eliminate at most 3 colors
for each one of these…               ®

…and at most one color for 
each one of these…        ®

We can label all the graph with at most 1+3D+(D-1)D colors.

Conjecture: l2,1(G) £ D2 [Griggs, Yeh ‘92]

This upper bound is tight: some graphs with degree Δ,
diameter 2 and Δ2+1 nodes have l at leats Δ2.

0

32

14

3

75

91

0

28

46
43

Conjecture: l2,1(G) £ D2 [Griggs, Yeh ‘92]

n l2,1(G) £ D2+2D-4 [Jonas ‘93]

n l2,1(G) £ D2+D [Chang, Kuo ‘96]

n l2,1(G) £ D2+D-1 [Kral, Skrekovski ‘03]

n l2,1(G) £ D2+D-2 [Goncalves ‘05]

n l2,1(G) £ D2 for sufficiently large values of D
[Havet, Reed and Sereni ‘08]
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n l2,1(Kn)=2(n-1)

n All nodes are pairwise 
adjacent

0

4

2

6

2(n-1)

46

n l2,1(K1,t)=t+1

Proof.
n l2,1(K1,t)≤t+1 easy
n l2,1(K1,t)≥t+1 

by contradiction:
If the center of the star is 

labeled with a color 
different from 0 and 
from t+1…

0

4

2

1

3…

t-1

t+1
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n l2,1(Tn)=Δ+1 or Δ+2

Proof.
n l2,1(Tn) ≥ Δ+1 because Tn contains a K1,Δ

n l2,1(Tn) ≤ Δ+2 

first-fit (greedy) labeling:
Order the nodes of Tn: Tn-1=Tn- {vn} where vn is a leaf. In 

general Ti = Ti+1-{vi+1}

Label v1 with 0.

Label vi with the first available color. 

(proof: either l2,1(Tn)=Δ+1 orΔ+2 – cntd)

…
vi+1

vj vj parent of vi+1

necessarily j ≤ i+1 (the nodes that are closer to 
the leaves have larger indices)

vj has at most Δ-1 further adjacent nodes.

At most 3 colors are forbidden due to vj

At most Δ-1 colors are forbidden due to the nodes that
are adjacent to vj

If we have at least (Δ-1)+3+1 colors, we are always able
to label vi+1 i.e. l2,1(Tn) ≤ Δ+2. n
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Assume we have already labeled all nodes from v1 to vi and 
we are going to label vi+1:



• This proof has been proposed by Griggs e Yeh [’92], who
have also conjectured that it is NP-complete to decide
whether the correct value is Δ+1 or Δ+2.

• Chang e Kuo [’96] have disproved this conjecture by
providing a polynomial algorithm based on the dynamic
programming technique and having time complexity
O(Δ4.5 n).

• Many authors have proposed many other algorithms
aiming at improving the time complexity.

• Finally, Hasunama, Ishi, Ono, Uno [’08] have proposed a
linear algorithm. 49 50

n l2,1(P2)=2

n l2,1(P3)=3

n l2,1(P4)=3

n l2,1(Pn)=4 if n³5

From the results for stars

4 2 0 3 1 To prove that l2,1(P5)≤4: 

1 3 0 2

P5 includes a P4 so l2,1(P5)≥3.
By contradiction l2,1(P5)=3

0 2 0 !!!3

If n≥5 the result follows from the previous one and 
from the result for trees.

51

n l2,1(Cn)=4

If n≤4: case by case: 4 2 0

If n≥5: Cn contains Pn so l2,1(Cn) ≥4.
It also holds l2,1(Cn) ≤4:

3 cases: …

41 3 0

1. n=0 (mod 3)

(proof: l2,1(Cn)=4 – cntd)

0 2 4 0 2 4

2. n=1 (mod 3) 0 2 4 0 3 1 4

3. n=2 (mod 3) 0 2 4 0 2 4 1 3

52
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feasible both for the hexagonal and for the squared
tiling; for the triangular tiling we can color H with the
sequence 0; 1; 4; 3; 2; 5 plus 0 in the middle, where f1 ¼
"2; f2 ¼ "2 and f3 ¼ 2: &

Theorem 2.3. For any degree D regular tiling of the plane
and h ¼ 0; 1; 2; it holds lh;1 ¼ Dþ 2h " 2:

Proof. Lemmas 2.1 and 2.2 prove the assertion. &

We remark that our bound on the number of colors
has the same elegant appearance as the following
general lemma:

Lemma 2.4 (Bertossi and Bonuccelli [1], Griggs and Yeh
[12], Yeh [18]). For any graph G; the following lower
bound holds: lh;1XDþ h" 1:

For these networks, a channel can be assigned to any
node in constant time, provided that relative positions
of the node in the network is locally known. As an
example, we will show only the function relative to the
hexagonal tiling, in order not to make tedious the
reading. Analogous functions can be derived for the
other tilings.

Let us consider the hexagonal tiling as in Fig. 3. The
general node of coordinates ði; jÞ must be labeled with
color:

0 if either i ¼ 0 mod 3 and j ¼ Ii=3mþ 0 mod 4 or
i ¼ 1 mod 3 and j ¼ Ii=3mþ 2 mod 4;

1 if either i ¼ 0 mod 3 and j ¼ Ii=3mþ 1 mod 4 or
i ¼ 2 mod 3 and j ¼ Ii=3mþ 0;

2 if either i ¼ 1 mod 3 and j ¼ Ii=3mþ 3 mod 4 or
i ¼ 2 mod 3 and j ¼ Ii=3mþ 1 mod 4;

3 if either i ¼ 0 mod 3 and j ¼ Ii=3mþ 2 mod 4 or
i ¼ 1 mod 3 and j ¼ Ii=3mþ 3þ 0 mod 4;

4 if either i ¼ 0 mod 3 and j ¼ Ii=3mþ 3 mod 4 or
i ¼ 2 mod 3 and j ¼ Ii=3mþ 2 mod 4;

5 if either i ¼ 1 mod 3 and j ¼ Ii=3mþ 1 mod 4 or
i ¼ 2 mod 3 and j ¼ Ii=3mþ 3 mod 4:

3. Preliminary results

In this section we introduce some notations and two
lemmas which the algorithm presented in the next
section is based on.

A graph G is called planar if it can be represented on a
plane by distinct points for nodes and simple curves for
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Def. A graph is said to be 
outerplanar if it can be 
represented as a plane 
graph so that each node 
lies on the border of the 
external face
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A graph G is called planar if it can be represented on a plane by distinct points
for nodes and simple curves for edges in such a way that any two such curves do not
meet anywhere other than at their endpoints. The representation of G on the plane,
according to the mentioned conditions, is called an embedding. A graph is outerplanar
if it can be embedded in the plane so that every node lies on the boundary of the outer
face. It follows that, once the first node has been chosen, clockwise order induces a
total order on the nodes of the graph.

In the following, we assume that the graphs we handle are loopless, simple and
connected.

3.1 Ordered Breadth First Search

Consider an embedding of an outerplanar graph G, choose a node r and induce the
total order on the nodes clockwise. Now, compute a Breadth First Search starting
from node r in such a way that nodes coming first in the ordering are visited first. In
the following we will call Ordered Breadth First Search (OBFS) such a computation
and Ordered Breadth First Tree (OBFT) the (unique) resulting tree (for an example,
see Fig. 4.b). The left to right direction on each layer l of the OBFT induces a
numbering of the nodes: we will call vl,i a node lying on layer l that occupies the i-th
position in the left to right ordering on the layer (see Fig. 4.c).
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Figure 4: An outerplanar graph and its OBFT.

Before characterizing OBFTs for outerplanar graphs, we have to recall the prop-
erties of a general Breadth First Tree.

Fact 3.1 Let T = (V, E′) be a Breadth First Tree for a general graph G = (V, E); for
each non tree edge (vl,h, vl′,k), l′ ≥ l, it holds:



§ l2,1(G) ≤ 2Δ+4 because G has treewidth 2

§ Jonas [’93]: l2,1(G) ≤ 2Δ+2

§ Bodlaender et al. [’04]: l2,1(G) ≤ Δ+8 but they conjecture that 
l2,1(G) ≤ Δ+2 

☞ possible students’ lesson

§ C.& Petreschi [’04] Δ+1 ≤ l2,1(G) ≤ Δ+2 and they conjecture 
that this algorithm gives the optimum value 

☞ possible students’ lesson
57
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o An oriented L(2,1)-labeling of a directed graph G is a
function assigning colors from 0, … ,l to the nodes of
G so that nodes at distance 2 in the graph take
different colors and adjacent nodes take colors at
distance 2.

o Oriented L(2,1)-labeling problem
minimizing l

o Note. The minimum value of l can be very different
from the value of the same parameter in the undirected
case. Example: trees… 59

oReminder: In undirected trees, D+1 ≤ l ≤ D+2, and the
exact value is linearly decidible

[Chang & Kuo ‘96, Hasunama et al. 2008]

o In directed trees, l ≤ 4 [Chang & Liaw ’03]
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With the aim of making the model more realistic:

§ An L(h1, …, hk)-labeling of a graph G is a function
assigning integer values to the nodes of the graph such
that:

|l(u)-l(v)|≥hi if u and v are at distance i in the graph, 1≤i≤k.

§ L(h1, …, hk)-labeling problem: minimizing l

§ Particularly interesting: L(2,1,1) and L(δ, 1, …, 1).

§ Even these special cases are NP-hard on general graphs,
so special classes of graphs are handled. 61

If the topology has a backbone, where the transmitting
power is higher wrt the rest of the network:

§ A Backbone coloring of a graph G wrt a graph H is a
function assigning integer values to the nodes of the
graph such that:

|l(u)-l(v)|≥2 if (u,v) is an edge of H and

|l(u)-l(v)|≥1 if (u,v) is an edge og G-H.

§ Backbone coloring problem:

minimizing l 62

In practice, each transmitting station is able to handle
more than one channel, so a set of channels is
assigned to it.

§ Given two set of integer values I and J, we define:

dist(I,J)=min{|i-j|: i in I and j in J }

Example:

I={0,1,2}; J={4,5,6}; dist{I,J}=2. 63

§ An n-multiple L(h,k)-labeling of a graph G is a function
assigning n integer values to each node of the graph so
that:

dist(l(u),l(v)) ≥ h if (u,v) is an edge of G and

dist(l(u),l(v)) ≥ k if u and v are at dist. 2 in G.

§ n-multiple L(h,k)-labeling problem:

minimizing l, given n.
64



In the special case in which the network is a GSM:

§ The network is a cellular network with hexagonal cells.

§ Each cell has its own station connecting the fixed
network devices with the mobile devices that are at
moment inside the cell.

§ Mobile phones connect to the GSM network trying to
communicate with the station associated to the cell
where they lie. 65

In a GSM network, the cells need to use different
frequences, in order not to interfere.

§ Coloring map problem: given a plane map, the problem
consists in coloring each region in such a way that
adjacent regions take different colors and that the min
number of colors is used.

§ Four Color Theorem: It is always possible to color a
map using at most 4 colors.

66

§ It follows that 4 different frequencies are sufficient for an 
arbitrary GSM network:

67

§ In fact, more sophisticated variations of this problem
lead to 7 colors -> L(h,k)-labeling again

68

More in detail…



§ In wireless communication networks of the 1st and 2nd
generation, the concept of cellular channel allocation
and spatial frequency reuse were the key ideas that
have driven the initial success of mobile telephony.

§ For example, a seven color labeling of a hexagonal grid
was on the basis of the AMPS (American Mobile Phone
System).

§ The same scheme existed for GSM.

§ …
69

§ In the 3rd generation of mobile systems, the
introduction of CDMA (Code Division Multiple Access)
has enabled the reuse of the whole frequency band in
each cell: instead of dividing the signal space in time or
frequency, a code of pseudorandom sequence is used
to differentiate the signal from each transmitter.

§ In this context, the labeling schemes were of much
reduced importance.

§ …
70

§ The 4th generation mobile standards mainly use
Orthogonal Frequency Division Multiple Access schemes.

§ These schemes divide the signal space in time slots and
orthogonal frequencies.

§ At the middle of a cell, all slots of time and frequencies are
allocated to users. At the edge of a cell, only part of the
band is used and a three color scheme is used.

§ Even this model can be reduced to a labeling scheme. For
further details:

[Archetti, Bianchessi, Hertz, Colombet, Gagnon ’13] 71

§ Given a map, it can be naturally considered as a planar 
graph G.

§ Given G, let G* its dual graph:
§ Put a node of G* in each region of G
§ Connect two nodes of G* iff the corresponding regions

(faces) are adjacent (i.e. share an edge in G)

§ A vertex coloring of G* corresponds to a map coloring of G.

72



§ In fact, cartographers have always known that 4 colors
were enough for each kind of map, but in 1852 Francis
Guthrie wondered whether this fact could be proved.

§ After more than 100 years, and many (wrong)
announcements, Appel and Haken proved the 4 Color
Theorem in 1976.

§ The complete proof is computer assisted because it
exhaustively examines more than 1700 configurations.

§ More recently, Robertson, Sanders, Seymour, and Thomas
wrote a new proof, needing to examine “only” 633
configurations. 73

There are some interesting results for other numbers of 
colors:

§ 2-coloring. 
Polynomially solvable:
§ Assign a color to a region. 
§ Assign the other color to its neighbor regions. 
§ Assign the first color to its neighbor regions.

§ Continue until the regions have been all colored or there
is a color conflict. In this latter case the map is not 2-
colorable. 74

§ 3-coloring 
§ NP-hard, hence no algorithms to decide whether a map

is 3-colorable or not.
§ Method: exhaustively try all the color combinations for

the regions.

§ Inapplicable: for N regions, there are 3N possibilities. (if
N=48 the combinations are about 8x1022)

§ …

75

§ 3-coloring (cntd) 
§ There are some techniques in order to simplify the map

before coloring it (for example, if a region has only 2
neighbor regions, it can be eliminated from the map:
when it is re-inserted, it will be colored with the third color)
but the worst case time complexity is the same.

76



§ 4-coloring 
§ The proof of the 4 color theorem is constructive, and so

it shows how to find a feasible coloring, but the number
of cases is too high to be useful in practice.

§ There are some transformations, similar to those used
for the 3-coloring, but they do not eliminate the need of
exhaustively try all the possibilities.

77

§ 5-coloring 

§ It is relatively easy to color a map using 5 colors. There
is an algorithm that first simplifies the map eliminating all
the regions and then re-insert them assigning the correct
color.

78

We conclude with a puzzle:
Try to 4-color these 2 maps…

79

In 1975 Martin Gardner claimed
he could prove that this map was
not 4-colorable (April fool)

Solutions

80


