
Prof. Tiziana Calamoneri

Network Algorithms

A.y. 2020/21

1 2

§ All the datapath and control structures of a digital device can be

represented as boolean functions, which can take a disjunctive

normal form (DNF) on the variables and their complements:

y=C1∨ C2∨…∨ Cm

where Ci=li1∧…∧liki and lij is choosen among n boolean

variables.

§ These boolean functions must be converted into logic networks

in the most economical way.

§ …

3

§ …

§ What qualifies as the “most economical way” varies, depending

on whether the network is built using discrete gates, a

programmable logic device with a fixed complement of gates

available, or a fully-customized integrated circuit. But in all

cases, minimization yields a network with as a small number of

gates as possible, and with each gate as simple as possible.

4

To appreciate the importance of minimization, consider as an
example the following function:

y=(a’∧b’∧c)∨(a’∧b∧c’)∨(a∧b’∧c’)∨(a∧b’∧c)∨(a∧b∧c’) ∨(a∧b∧c)

which can be easily translated in circuit as follows:

5

Note: lij’
means
not lij

§ But there is another circuit that produces at y exactly
the same result if you put the same pattern of values
into the corresponding inputs.

§ Yet, this second network uses far fewer gates, and the
gates it uses are simpler (have smaller fan-ins) than
the gates of the first network.

6

§Clearly, the minimized circuit is less expensive to build
than the unminimized version.

§ Although it is not true in this case, it is often the case
that minimized networks will be faster (have fewer
propagation delays) than unminimized networks.

7

Problem: We are given a particular Boolean function of n
variables, which for each of the 2n possible input vectors
describes whether the desired output is 0 or 1.

We seek the simplest circuit that exactly implements this
function.

Example: y=(a∧b’)∨(a∧c)∨(b’∧c’)∨(a’∧c)∨(a∧b) ∨(b∧c)

8

abc 1st 2nd 3rd 4th 5th 6th

000 1

001 1

010

011 1 1

100 1 1

101 1 1

110 1

111 1 1 1

Note:
• Rows indicate inputs;
• Columns indicate clauses;
• 1 means that the clause is

true for that input;
• 0s are omitted.

We could build one and term for each input vector and
then or them all together, but we might save considerably
by factoring out common subsets of variables.

Given a set of feasible and terms, each of which covers a
subset of the vectors we need, we seek to or together the
smallest number of terms that realize the function.

9

y=(a∧b’)∨(a∧c)∨(a’∧c’)∨ (a’∧c)∨(a∧b) ∨(b∧c)
abc 1st 2nd 3rd 4th 5th 6th

000 1

001 1

010

011 1 1

100 1 1

101 1 1

110 1

111 1 1 1

Note: orange columns can
be ignored without

affecting the realization of
the function

This is exactly the set cover problem:

Set Cover Problem:

Given a set of subsets S={S1, …, Sn} of the universal set U
such that

what is the smallest subset J of {1, ..n} such that

?

10

abc 1st 2nd 3rd 4th 5th 6th

000 1

001 1

010 1

011 1 1

100 1

101 1 1

110 1

111 1 1 1

Si =U
i∈J

Si =U
i=1..m

Incidence matrix of the set of subsets

000 001 010 011

100 101 110 111

000 001 010 011

100 101 110 111

11

§ Let xi be a boolean variable associated with each
subset Si.

§ xi is 1 if Si is in the solution, and 0 otherwise.

§ The following ILP encodes the Set Cover Problem:

s.t.

In other words, every element of U is present in at least
one of the chosen subsets, and their number must be
minimized.

12

min xi
i=1

n

∑
xi ≥1∀e∈U

i:e∈Si

∑

xi ∈ 0,1}{

§ Vertex cover can be seen as a special case of set cover,
namely:
§ Instance of VC: G=(V,E)
§ Instance of SC: the universe is the set of edges E and the subsets

are: for each node v, Sv ={ej : v is adjacent to edge ej}.
§ Solving SC implies solving VC hence:

Th. The Set Cover Problem is NP-hard.
§Note that this collection of sets has the property that each
universe element appears in exactly two sets.

§ This leads to what is called the f-frequency set cover
problem where each element occurs in at most f sets.

§ Vertex cover is essentially the 2-frequency set cover
problem. 13

The set cover problem has many applications. Here two are:

§ There are n files S1, …, Sn, and there are m requests for
information. Each unit of information is stored in at least one
file. Find a subset of the files of minimum cardinality such
that searching these will retrieve all the requested
information.

§ An airline has m flights x1, …, xm. These flights can be
combined into “flight legs” S1, …, Sn such that the same crew
can service all the flights in leg Sj. Find the minimum number
of crews required to service all flights. Note that the number
of flight legs may be much larger than the number of crews.

14

A simple approximation algorithm is the greedy
algorithm, whose performance is O(log |U|).
Algorithm Greedy

Input: family S={S1,…, Sn} of the universal set U

Output: J subset of {1,…,n} s.t.

X = U /*currently uncovered elements
J=empty set
While X is not empty do
choose a subset Sj in S such that |Sj X| is max
X=X\Sj
J=J {j}

15

Si =U
i∈J

Th.The performance ratio of Algorithm Greedy is O(ln |U|).
Sketch of proof. The proof is based on the key point that the
greedy chosen set Sj is such that:

This obs. is a consequence of the greedy choice, and the def.
of optimal solution: Jopt covers all elements of U, and hence
also the elements of X. By averaging among the sets in Jopt,
the one which covers the max number of points of X must
cover at least |X|/|Jopt|.
Since the greedy alg. chooses among all the sets the one with
the max new coverage, this coverage must be at least as
much as claimed. 16

| Sj∩X |≥ | X |
| Jopt |

(proof of the performance ratio of Alg Greedy – cntd)

Let the indices of the sets picked by the greedy alg. in
the order they were picked be j1,…, jg.

For t=1, …, g let Xt be the set X just before the set Jjt
was picked.
So, for example, X1=U.
Define Xg+1=empty set.
The following simple recurrency holds:

|Xt+1|=|Xt|-|Sjt Xt|.

17

(proof of the performance ratio of Alg Greedy – cntd)

Join together

|Xt+1|=|Xt|-|Sjt Xt| and to get:

|Xt+1|≤|Xt|-|Xt|/|Jopt|=|Xt|(1-1/|Jopt|).
Enrolling the recurrence:

|Xt+1|≤|Xt|(1-1/|Jopt|) ≤|Xt-1|(1-1/|Jopt|)2 ≤ …
≤|Xt-(t-1)|(1-1/|Jopt|)t=|X1|(1-1/|Jopt|)t=
=|U|(1-1/|Jopt|)t

18

 | Sj∩Xt |≥
| Xt |
| Jopt |

(proof of the performance ratio of Alg Greedy – cntd)

|Xt+1|≤|U|(1-1/|Jopt|)t

Since Xg is not empty: |Jgreedy|-1=g-1≤|Jopt| ln |U|.
n 19

| Xt+1 |
|U |

≤ 1− 1
| Jopt |

#

$
%%

&

'
((

t

⇒
|U |
| Xt+1 |

≥
| Jopt |
| Jopt |−1

#

$
%%

&

'
((

t

⇒ ln |U |
| Xt+1 |

≥ t ln 1+ 1
| Jopt |−1

#

$
%%

&

'
((≈

t
| Jopt |

⇒ t ≤| Jopt | ln
|U |
| Xt+1 |

∀t =1,...,g

This result is the best we can do, indeed:

If we call n=|U|, Set Cover cannot be approximated within:
§ a factor of ½ log n [Lund & Yannakakis ‘94]

§ a factor of (1-o(1))ln n [Feige ‘98]

(unless NP has quasi-polynomial time algs)
§ a factor of c log n [Raz & Safra ‘97]

§ a similar result with a higher value of c
[Alon, Moshkovitz & Safra ‘06]

(unless P does not coincides with NP – weaker hypothesis).

20

Another approximation algorithm is based on a
relaxation of the ILP formulation.

Let F the max frequency of an element, i.e. the max
number of subsets an element appears in.

Algorithm LP
Input: family S={S1,…, Sn} of the universal set U
Output: J subset of {1,…,n} s.t.

Solve the LP formultion and let x’1,…, x’n be a solution
for i=1 to n do
if x’i≥1/F
then xi=1
else xi=0

21

Th. Alg LP works correctly and its approximation ratio is
F.
Proof. Let us remind the LP formulation:

s.t.

In every constraint, there are at most F variables to be
summed, so at least one of them must have value ≥1/F.
So, the whole universe U is covered.

Since xi=1 if x’i≥1/F and 0 otherwise, it holds that
x’i≥xi/F from which: |Jopt|≥ ≥1/F|J|. n

22

min xi
i=1

n

∑ xi ≥1∀e∈U
i:e∈Si

∑

x 'i ≥
1
F

xi
i=1

n

∑
i=1

n

∑

The same approximation ratio can be achieved by
extending one of the algorithms designed for the vertex
cover problem:

Algorithm SetCover
Input: family S={S1,…, Sn} of the universal set U
Output: J subset of {1,…,n} s.t.

X = U /*currently uncovered elements
J=empty set
While X is not empty do
pick an element e of X not covered by J
add to J the indices of all sets Si containing e
eliminate from X all element covered by the found sets

23

Si =U
i∈J

Th. Alg. SetCover works correctly and its
approximation ratio is F.

Proof. It is a generalization of the proof for the Vertex
Cover.

24

§ Besides Vertex Cover, that is a special case of Set
Cover, many other problems are related with Set
Cover.

§ An instance of Set Cover can be viewed as an arbitrary
bipartite graph, with sets represented by nodes on the
left, the universe represented by nodes on the right,
and edges representing the inclusion of elements in
sets.

§ The task is to find a minimum cardinality subset of left-
nodes which covers all of the right-nodes.

25

Example:

U={1,2,3,4,5,6}

S={{4}, {1,3}, {1,2,5},{2,4},{1,3,6},{3,5},{5},{2,6}}

26

{4}
{1,3}

{1,2,5}
{2,4}

{1,3,6}
{3,5}
{5}

{2,6}

1
2
3
4
5
6

Hitting set problem:

Given a bipartite graph, the objective is to cover the left-
nodes using a minimum subset of the right nodes.
Converting from Set Cover to the Hitting Set is therefore
achieved by interchanging the two sets of vertices.

27

{4}
{1,3}

{1,2,5}
{2,4}

{1,3,6}
{3,5}
{5}

{2,6}

1
2
3
4
5
6

{4}
{1,3}
{1,2,5}
{2,4}

{1,3,6}
{3,5}
{5}
{2,6}

1
2
3
4
5
6

Edge Cover problem:

Given a graph, an edge cover is a set of edges such that
every node is incident to at least one edge of the set.

The minimum edge cover problem is the problem of
finding an edge cover of minimum size.

§ Edge Cover is a special case of Set Cover, where:

§U=V and S=E

28

Set Packing problem:

Given a universe U and a family S of subsets of U, a
packing is a subfamily J of sets such that all sets in J are
pairwise disjoint.

In the set packing problem, the input is a pair (U,S), and
the task is to find a set packing that uses the most sets.

§ Set Packing is the dual problem of Set Cover.

29

Exact Cover problem:

Exact Cover problem is to choose a Set Cover with no
element included in more than one covering set.

30

