
Prof. Tiziana Calamoneri

Network Algorithms

A.y. 2020/21

1 2

§ A computer worm is a standalone
malware (malicious software, used or
programmed by attackers to disrupt
computer operation, gather sensitive
information, or gain access to private
computer systems) that replicates
itself in order to spread to other
computers.

§ Often, it uses a computer network to
spread itself, relying on security
failures on the target computer to
access it.

3

§ Unlike a computer virus, it does not need to attach itself
to an existing program.

§ Worms almost always cause at least some harm to the
network, even if only by consuming bandwidth, whereas
viruses almost always corrupt or modify files on a
targeted computer.

4

§ The actual term "worm"' was first used in John Brunner's
1975 novel, “The Shockwave Rider”. In that novel,
Nichlas Haflinger designs and sets off a data-gathering
worm in an act of revenge against the powerful men who
run a national electronic information web that induces
mass conformity.

§ One of the first worms was created by R. Morris in 1988
and called Internet Worm. It was able to affect between
4000 and 6000 machines, i.e. about the 4-6% of the
computers connected to Internet at that time.

5

Worms usually exploit some sort of security hole in a
piece of software or the operating system.
They often carry payloads that do considerable damage.

A payload is code in the worm designed to do more
than spread the worm: it might delete files on a host
system (e.g., the ExploreZip worm), encrypt files in a
cryptoviral extortion attack, or send documents via e-
mail. A very common payload for worms is to install a
backdoor in the infected computer to allow the
creation of a "zombie" computer under control of the
worm author. 6

A worm tries to replicate itself in different ways:

§ E-mails: it looks for e-mail addresses in the infected
machine; then it spontaneously generates additional e-
mail messages contaning copies of itself.

§ Social engineering techniques in order to induce
people to open attachments containing the worm.

§ Bugs of e-mail clients, in order to auto-execute
themselves, once the message is simply visualized.

7

We can roughly divide the harmful effects caused by a worm
in two types:

§ direct damages, resulting from the execution of the
worm on the victim machine, and

§ indirect damages, arising from the techniques used for
the diffusion.

8

Direct Damages:

§ Simple worms, compound only by the instructions to replicate
themselves, do not create serious direct damage beyond the
waste of computational resources.

§ Often, however, they interfere with the software designed to find
them and to counteract the spread (antivirus and firewall) thus
obstructing the normal operation of the host computer.

§ Very frequently a worm acts as a vehicle for automatic
installation of backdoors or keyloggers, which can then be
exploited by an attacker or another worm.

§ They may also open TCP ports to create networks security holes
for other applications. 9

Undirect Damages:
§ These are the side effects of infection by a worm of a large

number of computers connected to the network.

§ The e-mail messages sent by the worm to replicate increase
the amount of junk e-mail, wasting valuable resources in
terms of bandwidth and attention.

§ The worms that exploit known vulnerabilities of some
software cause desease of such programs, with
consequences such as instability of the operating system
and sometimes forced reboots and shutdowns.

10

§ To simplify, assume that the time of transmission of
information in any given connection in the network is the
same, equal to T.

§ If a worm has successfully infected a number of nodes
such that with a single step of spread all nodes can be
infected, in time T the entire network is infected (“first
propagation step”).

§ To know the set of nodes to start is the first step to protect
your network from attack.

11

§ The real problem is more complex because all the
networks of considerable size have dynamic connections.

§ From the point of view of the manager of the network,
each filter to protect the network against attacks from
worms of the first order slows down the communication
and therefore it is necessary to minimize the number.

§ The computers to be protected are those that could be in
the first set.

12

13

§ Def. Let G=(V,E) be an undirected graph. The vertex cover
is a subset V’ of the nodes of the graph which contains at
least one of the two endpoints of each edge.

§ It is relevant to find the minimum vertex cover, i.e. the set V’
of minimum cardinality.

§ Obs. The minimum vertex cover is not unique:

14

§ Intuitively, every minimum vertex cover represents an
excellent starting point for a worm.

§ The computers to be protected are those that represent the
nodes in the minimum vertex cover of the communication
graph.

§ If the graph has more than one minimum vertex cover, the
computers in the intersection of all the covers need to be
protected.

15

16

§ Def. Given G=(V,E), V’ subset of V is a vertex cover
for G if ∀{a,b}∈E, a∈V’ or b∈V’.

§ Obs. Set V is trivially a vertex cover.

§ Given G=(V,E), the minimum Vertex Cover Problem is
to find a vertex cover for G of minimum cardinality.

§ Obs. There are 2n possible subsets to check.

17

§ Def. The Decisional version of the Minimum Vertex Cover
Problem (VC) is to answer to the following question:

given a graph G and an integer value k, is there a vertex
cover for G of cardinality less than or equal to k?

§ VC is among the Karp's 21 NP-complete problems
[Karp’72] - a set of computational problems which have
been proved to be NP-complete right after the Cook
theorem [‘71] (first demonstrations that many natural computational
problems occurring throughout computer science are computationally
intractable; it drove interest in the study of NP-completeness and the “P
versus NP” problem). 18

§ reduction directly from 3-SAT or from MaxClique.

§ VC is still NP-complete on cubic graphs [Garey, Johnson,
Stockmeyer ‘74] and on planar graphs having degree at
most 3 [Garey & Johnson ‘77].

19

ILP formulation for VC:
§ We introduce the following n decision variables:

for each i=1, 2, …, n, xi=1 if the node i belongs to V’
and xi=0 otherwise.

§ Objective:

§ subject to constraints:

Note. Solving an ILP is in general NP-complete.
20

€

min xi
i=1

n

∑

€

xi + x j ≥1,∀(i, j)∈ E
xi ∈{0,1},i =1,2,...,n

Summary:
§ As already highlighted, VC is an NP-hard problem, so only

superpolynomial agorithms are known.
§ It is possible to approximate the solution in polynomial

time.
§ In the following we will describe two naive algorithms that

seem intuitively good but have, instead, bad
approximation ratios.

§ Then, we will describe a O(n+m) time approximate
algorithm that finds a vertex cover V’ s.t. |V’|≤ 2|V*|, where
V* is an optimal solution.

§ Finally, we propose another 2-approximate algorithm
exploiting the ILP formulation. 21

Algorithm Greedy1-VC(G)

§ V’=empty set,E’=E

§While (E’ is not empty) do
§ Select from E’ an edge (i,j) and choose one of its
endpoints i

§ Add i to V’

§ delete from E’ all edges having i as an endpoint

§ Return V’

22

Unfortunately, Greedy1-VC could produce a vertex
cover whose cardinality is very far from optimum:

23

r nodes

r nodes
of deg. 1

nodes
of deg. 2

r
2
!

"!
#

$# … nodes
of deg. i

r
i
!

"!
#

$#

n = r + r
i
!

"!
#

$#i=1

r

∑ ≤ r + r 1
i
=Θ(r logr)

i=1

r

∑

Harmonic sum; can be approximated by ln r

nodes
of deg. r

r
r
!

"!
#

$#…

24

Vertex cover produced by the algorithm

Optimal vertex cover

Approximation ratio: Θ(log r)
Problem:
the algorithm could prefer small degree nodes instead of large
degree nodes

Let us try another approach:
Algorithm Greedy2-VC(G)

§ V’=empty set,E’=E

§While (E’ is not empty) do
§ Select a node v having max degree in the current
graph

§ Add v to V’
§Delete from E’ all the edges having v as an
endpoint

§ Return V’
25 26

…but even this, starting from the nodes to the right

This second algorithm may produce this vertex cover…

So, the approximation ratio does not change!

A better algorithm:
Algorithm 2-Approx1-VC(G)

§ V’=empty set

§ E’=E

§While (E’ is not empty) do
§ select from E’ an edge (i,j)
§ Add to V’ both i and j
§Delete from E’ all the edges having either i or j as
an endpoint

§ Return V’

Time complexity: O(n+m) 27

Algorithm 2-Approx-VC(G)

§ V’=empty set

§ E’=E

§ While (E’ is not empty) do
§ select from E’ an edge (i,j)
§ Add to V’ both i and j
§ delete from E’ all the edges
with either i or j as an
endpoint

§ Return V’

28

Th. Let V* be a minimum vertex cover. The set V’ returned
by 2-Approx1-VC is a vertex cover such that |V’|≤2|V*|.

Proof. By construction, V’ is a vertex cover.

Let A be the set of the edges selected from E’.
For each edge (i,j) in A, i and j are added to V’ so:

|V’|=2|A|.
Moreover, all the edges having either i or j as an endpoint
are deleted from E’, so edges in A cannot be incident and
must be covered by any optimal solution, i.e. |A|≤|V*|.

Putting together: |V’|=2|A|≤2|V*|. ◼
29 30

(optimal solution:)

An example where the upper bound is reached:

An algorithm based on the ILP formulation:
Algorithm 2-Approx2-VC(G)

§ V’=empty set

§ Relax the ILP formulation by eliminating the constraint that
ximust be integer.

§ Invoke a polynomial time LP solver to get a solution x1,…, xn
§ For i=1 to n do

§ If xi≥½ then
§ Add to V’ node i

§ Return V’

Time complexity: O(n+m) 31

Th. The node set V’ returned by 2-Approx2-VC is a vertex
cover.

Proof. We know from our constraints that for each edge
(i,j), xi+xj ≥ 1. Therefore, at least one of xi or xj ≥ ½ and so
at least one of the nodes i,j from the edge (i,j) must
belong to V’. ◼

32

Th. Let V* be a minimum vertex cover. The vertex cover V’
returned by 2-Approx2-VC is such that:
|V’| ≤ 2|V*|.

Proof. Let Z*=x1+…+xn the “cost” of the optimal solution.
(This is the sum of real numbers and not the size of any
set.)
Since x1, …, xn is optimal for the LP, Z* ≤ |V*|.
Let x’1, …, x’n the binary solution obtained from x1, …, xn.
Of course, x’i ≤ 2xi for each i=1, …, n, so
|V’|=x’1+ …+ x’n ≤ 2(x1+ …+ xn)=2Z* ≤ 2|V*|. ◼

33

§ Even if these two latter algorithms are very easy, it is
impossible to do much better, indeed:

§ VC is not approximable in less than 1.1666 [Håstad ‘97] and
then in less than 1.3606 [Dinur & Safra ‘05]

§ The best known approximation ratios are:

[Monien& Speckenmeyer ‘85]

[Bar-Yehuda, Even ’85]

[Halperin ‘00]

[Karakostas ‘04]
34

€

2 −
loglog |V |
2log |V |

€

2 − lnln |V |
ln |V |

(1− o(1))

€

2 −
loglog |V |
log |V |

2−Θ 1
log |V |

#

$
%%

&

'
((

Def. An independent set of G=(V,E) is a set of nodes of V, no
two of which are adjacent.

Th. A set of nodes V’ is a vertex cover if and only if its
complement V-V’ is an independent set.

Proof.
V’ VC =>V-V’ IS

§ By contradiction. If in V-V’ there exist two adjacent nodes,
then the corresponding edge is not covered. A contradiction.

V-V’ IS => V’ VC
§ By contradiction. If there exists an edge e that is not covered

by any node in V’, the nodes incident to e are adjacent in V-
V’. A contradiction. ◼

35

§ Cor. The number of nodes of a graph is equal to the
size of its min vertex cover plus the size of a
maximum independent set [Gallai ’59]

§ Nevertheless, these two problems are not equivalent,
from an approximation point of view: IS cannot be
approximated by any constant [Håstad ‘99].

36

Def. A matching of G=(V,E) is a subset M of E without
common nodes.

Th. Let M be a matching of G and C a vertex cover for G.
Then|M|≤|C|.

Proof. C is a vertex cover, so it must cover all edges in M.
From the other side, by definition of matching, for each
edge in M, at least one of its endpoints must be in C.
So |M|≤|C|. ◼

37

Cor. Let M be a matching of G and C a vertex cover for G.
If|M|=|C| then M is a maximum matching and C is a
minimum vertex cover.

It is polynomial to compute a max matching.

Could we think to solve the min vertex cover passing
through the max matching problem?

No, because:
Fact: The reverse of the previous corollary is false.
Anyway, an algorithm based on this property has been

proposed: … 38

39

Algorithm New-Approx-VC(G) [Gavril ‘79]
¢ Compute a max matchingM
¢ V’= empty set
¢ For each e inM

Insert inV’ both the endpoints of e
¢ Return V’

Time complexity:
It depends on the computation of the max matching:
O(n4) [Edmonds ’65]
O(m√n) [Micali & Vazirani ’80]

40

Algorithm New-Approx-VC(G)
[Gavril ‘79]

¢ Compute a maximum
matchingM

¢ V’= empty set
¢ For each e inM

Insert in V’ both the
endpoints of e

¢ Return V’

40

Th. The set V’ returned by New-Approx-VC is a vertex cover
for G such that |V’|≤2|V*|.

Proof. V’ is a vertex cover indeed an edge (u,v) in G is:

- either in M and hence both its endpoints are in V’

- or is in E\M, and at least one of its endpoint is in V’,
otherwise it could be added to M, that is maximum.

By construction |V’|=2|M|.

Notice that each (u,v)∈M must have at least one of its
endpoints in any min. vertex cover: |M|≤|V*|

Putting together the two relations: |V’|=2|M|≤2|V*|. ◼
41

If G is bipartite, a stronger relation holds between min vertex
cover and max matching, so deducing that:

VC is polynomially solvable on bipartite graphs.

In particular, the previous algorithm can be modified in order
to produce an optimal solution (time complexity: at least
O(m√n) – it depends on the computation of the maximum
matching).

42

König’s Th. [’31] (Egervàry [‘31]): In any bipartite graph, the
number of edges in a maximum matching equals the
number of vertices in a minimum vertex cover.

Proof 1. (the most common) exploits the th. by P. Hall on
the maximum matchings in bipartite graphs (to be studied
later).

43

König’s Th. [’31] (Egervàry [‘31]): In any bipartite graph, the number of
edges in a maximum matching equals the number of vertices in a
minimum vertex cover.

Proof 2. Suppose that G=(X U Y, E) is bipartite. Let M be a
matching for G.

By contradiction, |M| and |C| are different, so –in order to
conclude the proof- we must show that:
- either M is not a max matching
- or C is not a min vertex cover and there exists a cover of

size |M|.
44

Proof 2 König’s Th, (cont.)

Case 1. If M is a perfect matching, every
edge is incident to exactly one node
on either side, so any partition of G is
a vertex cover of size |M| and we are
done.

Case 2. Otherwise:
There are some nodes out of M.
Partition the nodes of G into subsets Si:
§ Let S0 consist of all nodes unmatched

by M (in any side of the partition).

45

(red nodes form a min VC)

46

¢ Assume S2j has already been
defined for some j ≥ 0. Let S2j+1 be
the set of nodes that are adjacent to
nodes in S2j via some edge in E\M
and have not been included in any
previous set.

¢ …

(red nodes form a min VC)

S1

Proof 2 of the König’s th. (cont.)

§ Each node v in S2j+1 must be adjacent to another node u
via an edge in M (otherwise v is unmatched by M and
would have been placed in S0); if u has not been included
yet in a set, insert u in S2j+2.

47

a b c d e f g

1 2 3 4 5 6 7

g 1

6 c d

e 3 5

2 4 f

a b 7

Proof 2 of the König’s th. (cont.)

§ If there are no nodes adjacent to S2j, arbitrarily pick an
unused node and continue in S2j+1.

48

a b c d e f g

1 2 3 4 5 6 7

g 1

6 c d

e 3 5

2 4 f

a b 7

Proof 2 of the König’s th. (cont.)

§ Each node in Si has an edge to a
node in Si−1 => a path can be
formed from a given node, going
up one level at a time, ending
either at an unmatched node at
level S0, or at some level S2j+1
containing a single (matched)
node.

§ This path is alternating (i.e. it
alternates edges of M and edges
of E\M).

49

Proof 2 of the König’s th. (cont.)

§ If there exists an edge (u,v) in M
between two nodes on the same odd
level S2j+1, the two alternating paths
from u and v are connected by a
unique alternating path passing
through (u,v).

§ These two paths cannot have any
repeated nodes since G is bipartite, so
u e v are in different partitions and the
edges in M in the two paths are in
different parity levels.

§ It follows that the resulting path is
augmenting => M is not maximum. 50

X X

Proof 2 of the König’s th. (cont.)

§ Analogously, if there exists an
edge (u,v) not in M connecting two
nodes on the same even level S2j,
with similar reasonings we get an
augmenting path => M is not
maximum.

51

Proof 2 of the König’s th. (cont.)

Thus, if M is maximum:
§ Each edge in M has a single endpoint in

an odd level set S2j+1

§ Each edge not in M has at least one
endpoint in an odd level set S2j+1

§ The union of the odd level sets forms a
vertex cover V’ of size |M|

§ Since no smaller set of nodes could
cover M, it must be a minimum vertex
cover, i.e.|V’|=|M|. ◼

52

Some mobile defenders lie on the nodes of a graph to
defend it against an infinite sequence of attacks on its
edges.

A defender on an incident node moves across the attacked
edge to defend it; other defenders may also move to
neighboring nodes.

53

eternal vertex cover:

§ at most one defender is located at each node;

§ a defender can protect the node where it is located and
can move to a neighboring node to defend an attack there

§ the sequence of attacks is infinitely long and requires the
configuration of defenders induce a vertex cover before
and after each attack has been defended.

54

Let #(G) be the cardinality of a min VC and #∞(G) the
cardinality of a min eternal VC.

Trivially, #(G) ≤#∞(G) (otherwise the attacker immediately
wins)

Theorem. For any n ≥ 3, #∞(Cn) = #(Cn) = ⎡n/2⎤.
Proof.

55

Theorem. Let G be a connected. Then:

#(G) ≤ #∞(G) ≤ 2# (G).

Theorem. For any n ≥ 1, #∞(Pn) = n-1.

Sketch of proof. By contradiction, if two nodes are outside
the EVC, it is possible to design an attack strategy that
move them until they become endpoints of the same edge
and the attacker wins.

Some students’ lessons are available on this topic
56

