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§A computer worm is a 
standalone malware (=malicious 
software, used or programmed 
by attackers to disrupt computer 
operation, gather sensitive 
information, or gain access to 
private computer systems) that 
replicates itself using a 
computer network in order to 
spread to other computers, 
relying on security failures on 
the target computer to access it. 3

§Unlike a computer virus, it does not need to 
attach itself to an existing program. 

§Worms almost always cause at least some harm 
to the network, even if only by consuming 
bandwidth, whereas viruses almost always 
corrupt or modify files on a targeted computer.
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§One of the first worms was created by R. 
Morris in 1988 and called Internet Worm. 

§ It was able to affect between 4000 and 6000 
machines, i.e. about the 4-6% of the computers 
connected to Internet at that time.
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A worm tries to replicate itself in different ways:

§ E-mails: it looks for e-mail addresses in the 
infected machine and generates additional e-
mail messages contaning copies of itself.

§ Social engineering techniques in order to 
induce people to open attachments containing 
the worm.

§ Bugs of e-mail clients, in order to auto-
execute themselves, once the message is 
simply visualized. 6



We can roughly divide the harmful effects caused 
by a worm in two types:

§ direct damages, resulting from the execution 
of the worm on the victim machine, and

§ indirect damages, arising from the techniques 
used for the diffusion.
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Direct Damages: 
Worms usually carry payloads that do considerable 
damage. 
A payload of a worm is designed to do more than 
spread the worm; it might: 
• delete files on a host system (e.g., the ExploreZip worm), 
• encrypt files in a cryptoviral extortion attack, 
• send documents via e-mail
•  install a backdoor in the infected computer to 

allow the creation of a "zombie" computer under 
control of the worm author. 8



Direct Damages (contd): 

§ Simple worms, compound only by the instructions 
to replicate themselves, do not create serious 
direct damage beyond the waste of computational 
resources.

§ Often, however, they interfere with the software 
designed to find them and to counteract the 
spread (antivirus and firewall) thus obstructing 
the normal operation of the host computer.

§ …
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Direct Damages (contd): 

§ …

§ Very frequently a worm acts as a vehicle for 
automatic installation of backdoors or keyloggers, 
which can then be exploited by an attacker or 
another worm. 

§ They may also open TCP ports to create networks 
security holes for other applications.
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Undirect Damages: 
§ These are the side effects of infection by a worm 

of a large number of computers connected to the 
network.

§ The e-mail messages sent by the worm to replicate 
increase the amount of junk e-mail, wasting 
valuable resources in terms of bandwidth and 
attention.

§ The worms that exploit known vulnerabilities of 
some software cause desease of such programs, 
with consequences such as instability of the 
operating system and sometimes forced reboots 
and shutdowns. 11

To simplify, assume that the time of transmission of 
information in any given connection in the network 
is the same, equal to T.
If a worm has successfully infected a set of nodes C 
such that with a single step of spread all nodes can 
be infected, in time T, the entire network is 
infected (“first propagation step”).
NOTE:
The real problem is more complex because all the 
networks of considerable size have dynamic 
connections. 12



§ Knowing set C is the first step to protect the 
network from attack. 

§ The property that every edge is incident to a 
node in C is sufficient (although not necessary) 
to be sure to infect the network after the first 
step.

§ From the point of view of the manager of the 
network, each filter to protect the network 
against attacks from worms of the first order 
slows down the communication and therefore it 
is necessary to minimize the number.
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§ Def. Let G=(V,E) be an undirected graph. The 
vertex cover is a subset V’ of the nodes of the 
graph which contains at least one of the two 
endpoints of each edge.

§ It is relevant to find the minimum vertex cover, 
i.e. the set V’ of minimum cardinality.

§ Obs. The minimum vertex cover is not unique:
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§ Intuitively, every minimum vertex cover represents 
an excellent starting point for a worm. 

§ The computers to be protected are those that 
represent the nodes in the minimum vertex cover 
of the communication graph.

§ If the graph has more than one minimum vertex 
cover, the computers in the intersection of all the 
covers need to be protected.
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§Def. Given G=(V,E), V’ subset of V is a vertex
cover for G if ∀ {a,b}∈ E, a ∈ V’ or b ∈ V’.

§Obs. Set V  is trivially a vertex cover.

§Given G=(V,E), the minimum Vertex Cover 
Problem is to find a vertex cover for G of 
minimum cardinality.

§Obs. There are 2n possible subsets to check.
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§Def. The Decisional version of the Minimum 
Vertex Cover Problem (VC) is to answer to the 
following question:
 given a graph G and an integer value k, is there 
a vertex cover for G of cardinality less than or 
equal to k?
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VC is among the Karp's 21 NP-complete problems
[Karp’72], a set of computational problems which
have been proved to be NP-complete right after
the Cook theorem [‘71]

(first demonstrations that many natural computational problems
occurring throughout computer science are computationally
intractable; it drove interest in the study of NP-completeness and
the “P versus NP” problem).
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§ The reduction is directly from 3-SAT or from 
MaxClique.

§VC is still NP-complete on cubic graphs [Garey, 

Johnson, Stockmeyer ‘74] and on planar graphs having 
degree at most 3 [Garey & Johnson ‘77].

21

ILP formulation for VC:
§We introduce the following n decision 
variables:

 for each i=1, 2, …, n,  xi=1 if the node i 
belongs to V’ and xi=0 otherwise.

§Objective:

§ subject to constraints:

Note. Solving an ILP is in general NP-complete. 22
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Summary:

§As already highlighted, VC is an NP-hard 
problem, so only superpolynomial agorithms are 
known.

§ It is possible to approximate the solution in 
polynomial time.
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Summary (contd):

§ In the following we will describe two naive 
algorithms that seem intuitively good but have, 
instead, bad approximation ratios.

§ Then, we will describe a O(n+m) time 
approximate algorithm that finds a vertex cover 
V’ s.t. |V’|≤2|V*|, where V* is an optimal solution.

§ Finally, we propose another 2-approximate 
algorithm exploiting the ILP formulation.
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Algorithm Greedy1-VC(G)

§V’=empty set, E’=E

§While (E’ is not empty) do
§ Select from E’ an edge (i,j) and choose one 
of its endpoints i

§Add i to V’
§ delete from E’ all edges having i as an 
endpoint

§ Return V’
25

Unfortunately, Greedy1-VC could produce a vertex 
cover whose cardinality is very far from optimum:
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Vertex cover produced by the algorithm

Optimal vertex cover

Approximation ratio: Θ(log r)
Problem: 
the algorithm could prefer small degree nodes 
instead of large degree nodes

Let us try another approach:
Algorithm Greedy2-VC(G)
§V’=empty set, E’=E
§While (E’ is not empty) do

§ Select a node v having max degree in the 
current graph

§Add v to V’
§Delete from E’ all the edges having v as an 
endpoint

§ Return V’
28
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…but even this, starting from the nodes to the right

This second algorithm may produce this vertex cover…

So, the approximation ratio does not change!

A better algorithm:
Algorithm 2-Approx1-VC(G)
§V’=empty set
§ E’=E
§While (E’ is not empty) do

§ select from E’ an edge (i,j)
§Add to V’ both i and j
§Delete from E’ all the edges having either i 
or j as an endpoint

§ Return V’
Time complexity: O(n+m) 30



Algorithm 2-Approx-VC(G)

§ V’=empty set

§ E’=E

§ While (E’ is not empty) do
§ select from E’ an edge (i,j)
§ Add to V’ both i and j
§ delete from E’ all the edges with 

either i or j as an endpoint

§ Return V’
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Th. Let V* be a minimum vertex cover. The set V’ 
returned by 2-Approx1-VC is a vertex cover such that  
|V’|≤2|V*|.

Proof. By construction, V’ is a vertex cover.

 Let A be the set of the edges selected from E’.
For each edge (i,j) in A, i and j are added to V’ so:

 |V’|=2|A|.
Moreover, all the edges having either i or j as an 
endpoint are deleted from E’, so edges in A cannot be 
incident and must be covered by any optimal solution, 
i.e. |A|≤|V*|.

 Putting together: |V’|=2|A|≤2|V*|.           ◼ 32
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optimal solution:

An example where the upper bound is reached:

An algorithm based on the ILP formulation:
Algorithm 2-Approx2-VC(G)
§V’=empty set
§ Relax the ILP formulation by eliminating the 
constraint that xi must be integer. 

§ Invoke a polynom. time LP solver to get a solution 
x1, …, xn

§ For i=1 to n do
§ if xi ≥ ½ then

§ add to V’ node i
§ Return V’
     Time complexity: O(n+m) 34



Th. The node set V’ returned by 2-Approx2-VC is a 
vertex cover.

Proof. We know from our constraints that for each 
edge (i,j), xi+xj ≥ 1. Therefore, at least one of xi or 
xj ≥ ½ and so at least one of the nodes i,j from 
the edge (i,j)  must belong to V’.           ◼
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Th. Let V* be a minimum vertex cover. The vertex cover 
V’ returned by 2-Approx2-VC is such that:

  |V’| ≤ 2|V*|.
Proof. Let Z*=x1+…+xn the “cost” of the optimal solution. 
(This is the sum of real numbers and not the size of 
any set.)

 Since x1, …, xn is optimal for the LP, Z* ≤ |V*|.
 Let x’1, …, x’n the int. solution obtained from x1, …, xn.
 Of course, x’i ≤ 2xi  for each i=1, …, n,  so
 |V’|=x’1+ …+ x’n ≤ 2(x1+ …+ xn)=2Z* ≤ 2|V*|.        ◼
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§ Even if these two latter algorithms are very easy, 
it is impossible to do much better, indeed:

§VC is not approximable in less than 1.1666 [Håstad ‘97] 

and then in less than 1.3606 [Dinur & Safra ‘05] 

§ The best known approximation ratios are:

             [Monien& Speckenmeyer ‘85]

              [Bar-Yehuda, Even ’85] 

            [Halperin ‘00]

                                      [Karakostas ‘04]
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Def. An independent set of G=(V,E) is a set of nodes 
of V, no two of which are adjacent.

Th. A set of nodes V’ is a vertex cover if and only 
if its complement V-V’ is an independent set.
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Proof. 
V’ VC =>V-V’ IS

§ By contradiction. If in V-V’ there exist two 
adjacent nodes, then the corresponding edge is not 
covered. A contradiction.

V-V’ IS => V’ VC

§ By contradiction. If there exists an edge e that is 
not covered by any node in V’, the nodes incident 
to e are adjacent in V-V’. A contradiction.      ◼ 
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§Cor. The number of nodes of a graph is equal 
to the size of its min vertex cover plus the 
size of a maximum independent set [Gallai ’59].

§Nevertheless, these two problems are not 
equivalent, from an approximation point of 
view: IS cannot be approximated by any 
constant [Håstad ‘99].
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Def. A matching of G=(V,E) is a subset M of E 
without common nodes.

Th. Let M be a matching of G and C a vertex 
cover for G. Then |M|≤|C|.

Proof. C is a vertex cover, so it must cover all 
edges in M. 

 From the other side, by definition of matching, 
for each edge in M, at least one of its 
endpoints must be in C. 

 So |M|≤|C|.          ◼ 
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Cor. Let M be a matching of G and C a vertex 
cover for G. If |M|=|C| then M is a maximum 
matching and C is a minimum vertex cover.

It is polynomial to compute a max matching.
Could we think to solve the min vertex cover 
passing through the max matching problem?
No, because:
Fact: The reverse of the previous corollary is false.
Anyway, an algorithm based on this property has 
been proposed: … 42
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Algorithm New-Approx-VC(G) [Gavril ‘79]

¢ Compute a max matching M
¢ V’= empty set
¢ For each e in M

 Insert in V’  both the endpoints of e
¢ Return V’

Time complexity:
It depends on the computation of the max 
matching: 
O(n4)       [Edmonds ’65]

O(m√n)    [Micali & Vazirani ’80]
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Algorithm New-Approx-VC(G) [Gavril ‘79]
¢ Compute a maximum     matching M
¢ V’= empty set
¢ For each e in M

 Insert in V’ both the endpoints of e

¢ Return V’
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Th. The set V’ returned by New-Approx-VC is a 
vertex cover for G such that |V’ |≤2 |V* |.

Proof. V’ is a vertex cover indeed any (u,v) in G is:
-either in M and hence both its endpoints are in V’
-or is in E\M, and at least one of its endpoint is in 
V’ (otherwise it could be added to M, that is maximum).

By construction |V’|=2|M|.
Notice that each (u,v)∈M must have at least one of 
its endpoints in any min. vertex cover: |M|≤|V*| 

Putting together: |V’ |=2 |M|≤2 |V* |.             ◼45

If G is bipartite, a stronger relation holds 
between min vertex cover and max matching, so 
deducing that:
   VC is polynomially solvable on bipartite graphs.

In particular, the previous algorithm can be 
modified in order to produce an optimal solution 
(time complexity: at least O(m√n) – it depends on 
the computation of the maximum matching).
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König’s Th. [’31] (Egevàry [‘31]): In any bipartite 
graph, the number of edges in a maximum 
matching equals the number of vertices in a 
minimum vertex cover.

Proof. Omitted…
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Brain connectivity networks [Candemir & Akram ‘23]

The human brain contains a highly complex 
network structure consisting of billions of 
neurons and the synaptic connections these 
neurons form with each other.

Brain connectivity refers to the intricate network 
of structural and functional connections 
between different regions of the brain.
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Structural connectivity plays a fundamental role 
in understanding the anatomical organization 
with physical connections of the brain, especially 
between the neighboring regions. 

Functional connectivity points out the relations 
and interactions of distinct regions in the 
human brain.
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Studying brain connectivity is crucial for 
understanding how different brain regions work 
together to support various cognitive processes, 
(perception, attention, memory…) 

It provides insights into the functional 
integration of brain regions, the formation of 
specialized networks, and the underlying 
mechanisms of brain function. 

Moreover, disruptions in brain connectivity are 
related with neurological and psychiatric 
disorders. 50



Brain connectivity networks can be analyzed using 
graph theory.

Brain connectivity networks can be represented as 
graphs, where:

§  brain regions are nodes, 

§ the connections between them are edges. 

By studying the graph parameters of brain 
connectivity networks, researchers can gain 
insights into the underlying architecture and 
dynamics of the human brain. 51

In the context of brain connectivity networks, the 
min vertex cover problem can be used to identify 
a minimal set of brain regions that can 
adequately represent the entire network, allowing 
for efficient analysis, feature selection, and the 
identification of biomarkers associated with 
neurological disorders. 

The changes of the min vertex cover can indicate 
the functional connectivity changes of the brain 
in healthy aging.
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Dynamic network security / fault-tolerance model: 
Given a network, deploy a min set of guards at 
the nodes, so that if there is an attack (or fault) 
on a single link at any time, a guard is available 
at the end of the link, and move across the link 
to defend (or repair) the attack (or fault). 
Simultaneously, the remaining guards reconfigure 
themselves, possibly by repositioning on an 
adjacent node, so that any later attack (or fault) 
can also be protected. Thus, the model guarantees 
protection against single link attacks/failures ad-
infinitum. 
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Eternal vertex cover (EVC): 

§ the network is modeled as a graph;

§ at most one defender is located at each node; 

§ an attacker can attack edges;

§ a defender protects all the edges incident to the 
nodes where gards are located; a guard must move 
along the attacked edge to defend it;

§ all the other guards can move traversing a single 
edge.
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Given the subset of nodes with guards on them at 
a certain instant, if it is not a vertex cover, then 
the attacker can target any of the uncovered 
edges to win the game. 

Therefore, the defender must always “reconfigure” 
one vertex cover into another in response to any 
attack.

So, if #(G) is the cardinality of a min VC and 
#∞(G) the cardinality of a min eternal VC: 

#(G) ≤ #∞(G)
55

Theorem. Let G be a connected graph and let V’ be 
a vertex cover inducing a connected subgraph. 
Then #∞(G) ≤ |V’|+1.

Sketch of Proof. 
§ Select d in V\V’. 

§ Put a shadow guard s on d

§ P=path from d to the attacked 
edge with gards on each node

§ The shadow guard is on another node

§ Repeat… 56



Corollary. Let G be a connected graph and let V’ 
be a vertex cover inducing a subgraph. with k 
connected components. Then #∞(G) ≤ |V’|+k. 

Since V’ can induce at most |V’| connected 
components, #∞(G) ≤ 2|V’|. 

It follows that:

#∞(G) ≤ 2# (G)
57

Theorem. Let G be a connected graph. Then:

    #(G) ≤ #∞(G) ≤ 2# (G).

Theorem. For any n ≥ 3, #∞(Cn) = #(Cn) = ⎡n/2⎤.
Proof.
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Theorem. For any n ≥ 1, #∞(Pn) = n-1.

Sketch of proof. By contradiction, if two nodes 
are outside the EVC, it is possible to design an 
attack strategy that move them until they become 
endpoints of the same edge and the attacker wins.

 

☞ Some students’ lessons and master theses are 
available on this topic
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