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THE PROBLEM




WORMS (1)

=A  computer worm is a
standalone malware (=malicious
software, used or programmed
by attackers to disrupt computer
operation, gather sensitive
information, or gain access to
private computer systems) that
replicates itself using a
computer network in order to
spread to other computers,
relying on security failures on
the target computer to access it.

WORMS (2)

= Unlike a computer virus, it does not need to
attach itself to an existing program.

= Worms almost always cause at least some harm
to the network, even if only by consuming
bandwidth, whereas viruses almost always
corrupt or modify files on a targeted computer.




WORMS (3)

«One of the first worms was created by R.
Morris in 1988 and called Internet Worm.

= It was able to affect between 4000 and 6000
machines, i.e. about the 4-6% of the computers
connected to Internet at that time.

WORMS (4)

A worm tries to replicate itself in different ways:

- E-mails: it looks for e-mail addresses in the
infected machine and generates additional e-
mail messages contaning copies of itself.

Social engineering techniques in order to

induce people to open attachments containing

the worm.

Bugs of e-mail clients, in order to auto-

execute themselves, once the message is
simply visualized. (o)



DAMAGES CAUSED BY WORMS (1)

We can roughly divide the harmful effects caused
by a worm in two types:

- direct damages, resulting from the execution
of the worm on the victim machine, and

indirect damages, arising from the techniques
used for the diffusion.

)

DAMAGES CAUSED BY WORMS (2)

Direct Damages:

Worms usually carry payloads that do considerable
damage.

A payload of a worm is designed to do more than
spread the worm; it might:

delete files on a host system (e.g. the ExploreZip worm),
encrypt files in a cryptoviral extortion attack,
send documents via e-mail

install a backdoor in the infected computer to
allow the creation of a "zombie" computer under
control of the worm author. @



DAMAGES CAUSED BY WORMS (3)

Direct Damages (contd):

Simple worms, compound only by the instructions

to replicate themselves, do not create serious

direct damage beyond the waste of computational

resources.

Often, however, they interfere with the software

designed to find them and to counteract the

spread (antivirus and firewall) thus obstructing

the normal operation of the host computer.

©

DAMAGES CAUSED BY WORMS (4)

Direct Damages (contd):

Very frequently a worm acts as a vehicle for

automatic installation of backdoors or keyloggers,

which can then be exploited by an attacker or

another worm.

They may also open TCP ports to create networks

security holes for other applications.

()



DAMAGES CAUSED BY WORMS (5)

Undirect Damages:

These are the side effects of infection by a worm
of a large number of computers connected to the
network.

The e-mail messages sent by the worm to replicate
increase the amount of junk e-mail, wasting
valuable resources in terms of bandwidth and
attention.

The worms that exploit known vulnerabilities of
some software cause desease of such programs,
with consequences such as instability of the
operating system and sometimes forced reboots
and shutdowns. @

WORM PROPAGATION (1)

To simplify, assume that the time of transmission of
information in any given connection in the network
is the same, equal to T.

If a worm has successfully infected a set of nodes C
such that with a single step of spread all nodes can
be infected, in time T, the entire network is
infected (“first propagation step”).

NOTE:

The real problem is more complex because all the
networks of considerable size have dynamic

connections. @



WORM PROPAGATION (2)

Knowing set C is the first step to protect the
network from attack.

- The property that every edge is incident to a

node in C is sufficient (although not necessary)

to be sure to infect the network after the first
step.

From the point of view of the manager of the
network, each f{filter to protect the network

against attacks from worms of the first order
slows down the communication and therefore it

is necessary to minimize the number. @

GRAPH MODEL OF THE y
PROBLEM




THE GRAPH MODEL (1)

Def. Let G=(I/E) be an undirected graph. The
vertex cover is a subset |/" of the nodes of the
graph which contains at least one of the two
endpoints of each edge.

It is relevant to find the minimum vertex cover,
i.e. the set /" of minimum cardinality.

Obs. The minimum vertex cover is not unique:

< /Ny o /N

\,/_‘/ \/_ ./
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THE GRAPH MODEL (2)

Intuitively, every minimum vertex cover represents
an excellent starting point for a worm.

The computers to be protected are those that
represent the nodes in the minimum vertex cover
of the communication graph.

If the graph has more than one minimum vertex
cover, the computers in the intersection of all the

covers need to be protected.

©



THE MINIMUM VERTEX
COVER PROBLEM

MINIMUM VERTEX COVER (1)

« Def. Given G=(V,E) |/’ subset of I/ is a vertex
cover for Gif vV {able £, a € /' or b € V.

= Obs. Set |/ is trivially a vertex cover.

« Given G=(V.E) the minimum Vertex Cover
Problem is to find a vertex cover for G of
minimum cardinality.

= Obs. There are 2n possible subsets to check.



MINIMUM VERTEX COVER (2)

=Def. The Decisional version of the Minimum
Vertex Cover Problem (VC) is to answer to the
following question:

given a graph G and an integer value k, is there

a vertex cover for G of cardinality less than or
equal to k?

MINIMUM VERTEX COVER (3)

VC is among the Karp's 21 NP-complete problems
[Karp'72], a set of computational problems which
have been proved to be NP-complete right after
the Cook theorem [71]

(first demonstrations that many natural computational problems
occurring throughout computer science are computationally
intractable; it drove interest in the study of NP-completeness and
the “P versus NP" problem).



MINIMUM VERTEX COVER (4)

= The reduction is directly from 3-SAT or from
MaxClique.

=VC is still NP-complete on cubic graphs [Garey,
Johnson, Stockmeyer '74] and on planar graphs having
degree at most 3 [Garey & Johnson ‘77].

MINIMUM VERTEX COVER (5)

ILP formulation for VC:

= We introduce the following n decision
variables:

for each i=1, 2, .., n, x;=1 if the node i
belongs to V' and x;=0 otherwise.

= Objective: minixi

= subject to constraints:
x,+x; 2LV, j))EE
x, €{0,1},i =1,2,...,n

Note. Solving an ILP is in general NP-complete. ©



MINIMUM VERTEX COVER (6)

Summary:

= As already highlighted, VC is an NP-hard

problem, so only superpolynomial agorithms are
known.

= [t is possible to approximate the solution in
polynomial time.

MINIMUM VERTEX COVER (7)

Summary (contd):

«In the following we will describe two naive
algorithms that seem intuitively good but have,
instead, bad approximation ratios.

= Then, we will describe a O(n+*m) time
approximate algorithm that finds a vertex cover
s.t. |V'[«2|V*], where is an optimal solution.

«Finally, we propose another Z2-approximate
algorithm exploiting the ILP formulation.



MINIMUM VERTEX COVER (8)

Algorithm Greedyl-VC(G)
= \/'=empty set, E'=E
= While (E' is not empty) do

= Select from E' an edge (i,j) and choose one
of its endpoints i

=Add i to V'

~delete from E' all edges having i as an
endpoint

= Return V'

MINIMUM VERTEX COVER (9)

Unfortunately, Greedyl-VC could produce a vertex
cover whose cardinality is very far from optimum:

r nodes

000000 O

r nodes [%J nodes F nod
of deg. 1 of deg. 2 of d

n= r+EFJ < r+rEl' =0O(rlogr)
=1Ll =

Harmonic sum; can be approximated by ln r @



MINIMUM VERTEX COVER (10)

Optimal vertex cover

T

OXOXCNCACRCRONG)
Vertex cover produced by the algorithm

Approximation ratio: ©(log r)
Problem:
the algorithm could prefer small degree nodes
instead of large degree nodes ©

MINIMUM VERTEX COVER (11)

Let us try another approach:
Algorithm Greedy2-VC(G)

= \/'=empty set, E'=E

=« While (E' is not empty) do

= Select a node v having max degree in the
current graph

=Add v to V'
= Delete from E' all the edges having v as an
endpoint

= Return V'

@



MINIMUM VERTEX COVER (12)

This second algorithm may produce this vertex cover...

..but even this, starting from the nodes to the right

So, the approximation ratio does not change!@

MINIMUM VERTEX COVER (13)

A better algorithm:

Algorithm 2-Approx1-VC(G)

= \/'=empty set

=E'=E

= While (E' is not empty) do
=select from E' an edge (i,j)

= Add to V' both i and j

= Delete from E' all the edges having either i
or j as an endpoint

= Return V'
Time complexity: O(n+m) ©



Algorithm (G)
= \V’=empty set

MINIMUM VERTEX e
COVER (14) N RE—

= select from E’ an edge (i,j)
= AddtoV’bothiandj

= delete from E’ all the edges with
eitherior j as an endpoint

= ReturnV’

MINIMUM VERTEX COVER (15)

Th. Let V* be a minimum vertex cover. The set V'
returned by 2-Approx1-VC is a vertex cover such that
|\V'[<2] V.

Proof. By construction, V' is a vertex cover.

Let A be the set of the edges selected from FE'.
For each edge (i,j) in A, i and j are added to V' so:

[\V'|=2|Al
Moreover, all the edges having either i or j as an
endpoint are deleted from E’, so edges in A cannot be
incident and must be covered by any optimal solution,

ie. AV
Putting together: |\/'|=2Al<2]\V]. m ©



MINIMUM VERTEX COVER (16)

An example where the upper bound is reached:

o—0 ®
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optimal solution:

§ AN

MINIMUM VERTEX COVER (17)

An algorithm based on the ILP formulation:
Algorithm 2-Approx2-VC(G)
= \/'=empty set

=Relax the ILP formulation by eliminating the
constraint that x; must be integer.

= Invoke a polynom. time LP solver to get a solution
X1, o, Xp

= For i=1 to n do
=if x; > %2 then
=add to V' node 1

= Return V'
Time complexity: O(n+m) ©



MINIMUM VERTEX COVER (18)

Th. The node set V' returned by 2-ApproxZ2-VC is a
vertex cover.

Proof. We know from our constraints that for each
edge (i,j), x;*x; = 1. Therefore, at least one of x; or
x; 2 /2 and so at least one of the nodes i,j from
the edge (i,j) must belong to V' u

)

MINIMUM VERTEX COVER (19)

Th. Let V* be a minimum vertex cover. The vertex cover
\/" returned by Z2-Approx2-VC is such that:
V| < 2|V

Proof. Let Z'=x;*..*x, the "cost” of the optimal solution.
(This is the sum of real numbers and not the size of
any set.)

Since Xi, .., X, is optimal for the LP, Z* < V7.

Let x';, .., X', the int. solution obtained from xq, .., x,.
Of course, x'; < 2x; for each i=1, .., n, so

V' |=x"1# ot X'y € 2(Xq* ot x,)=22% < 2|VF. o

©



MINIMUM VERTEX COVER (20)

=Even if these two latter algorithms are very easy,
it is impossible to do much better, indeed:

= VC is not approximable in less than 1.1666 [H&stad '97]
and then in less than 1.3606 [Dinur & Safra 05

= The best known approximation ratios are:

loglog |V |
2 - W [Monien& Speckenmeyer '85]
2 _k)lglo—lg‘l‘lll [Bar-Yehuda, Even '85]
0g
Inln [V | .
_ 1-0d [Halperin ‘00]
i e

[Karakostas ‘04]

2-0 !
\9oglVl

PROPERTIES OF THE MIN
VERTEX COVER (1)

Def. An independent set of G=(V,E) is a set of nodes
of V, no two of which are adjacent.

Th. A set of nodes V' is a vertex cover if and only
if its complement V-V is an independent set.



PROPERTIES OF THE MIN
VERTEX COVER (2)

Proof.
VC =>V-V' IS
=By contradiction. If in V- there exist two

adjacent nodes, then the corresponding edge is not
covered. A contradiction.

V-V' IS => VC

=By contradiction. If there exists an edge e that is
not covered by any node in V', the nodes incident
to e are adjacent in V-V'. A contradiction. u

)

PROPERTIES OF THE MIN
VERTEX COVER (3)

= Cor. The number of nodes of a graph is equal
to the size of its min vertex cover plus the
size of a maximum independent set [Gallai '59].

= Nevertheless, these two problems are not
equivalent, from an approximation point of
view: IS cannot be approximated by any
constant [Hastad '99].



PROPERTIES OF THE MIN
VERTEX COVER (4)

Def. A matching of G=(V,E) is a subset M of E
without common nodes.

Th. Let M be a matching of G and C a vertex
cover for G. Then |M|<|C].

Proof. C is a vertex cover, so it must cover all
edges in M.

From the other side, by definition of matching,
for each edge in M, at least one of its
endpoints must be in C.

So |Ml<|C]. _

©

PROPERTIES OF THE MIN
VERTEX COVER (5)

Cor. Let M be a matching of G and C a vertex
cover for G. If |M|Z|C] then M is a maximum
matching and C is a minimum vertex cover.

It is polynomial to compute a max matching.

Could we think to solve the min vertex cover
passing through the max matching problem?

No, because:
Fact: The reverse of the previous corollary is false.

Anyway, an algorithm based on this property has
been proposed: ... ()



PROPERTIES OF THE MIN
VERTEX COVER (6)

Algorithm New-Approx-VC(G) [Gavril ‘79]
o Compute a max matching M
o V'= empty set
o For each e in M
Insert in V' both the endpoints of e
o Return V°

Time complexity:

It depends on the computation of the max

matching:
O(n4) [Edmonds '65]
O(m\/n) [Micali & Vazirani '80] @

PROPERTIES OF THE MIN
VERTEX COVER (7)

Algorithm New-Approx-VC(G) [Gavril ‘79]
o Compute amaximum matching M
o V’=empty set

o ForeacheinM

Insertin V’ both the endpoints of e
o ReturnV'’

/Nx
N7 < o




PROPERTIES OF THE MIN
VERTEX COVER (8)

Th. The set returned by New-Approx-VC is a
vertex cover for G such that |V’ [¢2 |[V* |.

Proof. is a vertex cover indeed any (u,v) in G is:
-either in M and hence both its endpoints are in

-or is in E\M, and at least one of its endpoint is in

(otherwise it could be added to M, that is maximum).
By construction [V'|=2|M].

Notice that each (u,v)EM must have at least one of
its endpoints in any min. vertex cover: |M|<|\V*|

Putting together: |V’ |=2 [M[<2 [V* |. @

PROPERTIES OF THE MIN
VERTEX COVER (9)

If G 1is bipartite, a stronger relation holds

between min vertex cover and max matching, so
deducing that:

VC is polynomially solvable on bipartite graphs.

In particular, the previous algorithm can be
modified in order to produce an optimal solution
(time complexity: at least O(mvn) - it depends on
the computation of the maximum matching).

©



PROPERTIES OF THE MIN
VERTEX COVER (10)

Kénig's Th. ['31] (Egevary ['31]): In any bipartite
graph, the number of edges in a maximum
matching equals the number of vertices in a
minimum vertex cover.

Proof. Omitted...

ANOTHER APPLICATION (1)

Brain connectivity networks [Candemir & Akram ‘23]

The human brain contains a highly complex
network structure consisting of billions of
neurons and the synaptic connections these
neurons form with each other.

Brain connectivity refers to the intricate network
of  structural and functional connections
between different regions of the brain.

©



ANOTHER APPLICATION (2)

Structural connectivity plays a fundamental role

in understanding the anatomical organization
with physical connections of the brain, especially
between the neighboring regions.

Functional connectivity points out the relations

and interactions of distinct regions in the
human brain.

©

ANOTHER APPLICATION (3)

Studying brain connectivity is crucial for
understanding how different brain regions work
together to support various cognitive processes,
(perception, attention, memory...)

It provides insights into the functional
integration of brain regions, the formation of
specialized networks, and the underlying
mechanisms of brain function.

Moreover, disruptions in brain connectivity are
related with neurological and psychiatric

disorders. @



ANOTHER APPLICATION (4)

Brain connectivity networks can be analyzed using
graph theory.

Brain connectivity networks can be represented as

graphs, where:

= brain regions are nodes,
= the connections between them are edges.

By studying the graph parameters of brain
connectivity networks, researchers can gain
insights into the wunderlying architecture and
dynamics of the human brain. @

ANOTHER APPLICATION (5)

In the context of brain connectivity networks, the
min vertex cover problem can be used to identify
a minimal set of brain regions that can
adequately represent the entire network, allowing
for efficient analysis, feature selection, and the
identification of biomarkers associated with
neurological disorders.

The changes of the min vertex cover can indicate
the functional connectivity changes of the brain
in healthy aging.

()



A RELATED PROBLEM: EVC (1)

Dynamic network security / fault-tolerance model:
Given a network, deploy a min set of guards at
the nodes, so that if there is an attack (or fault)
on a single link at any time, a guard is available
at the end of the link, and move across the link
to defend (or repair) the attack (or fault).
Simultaneously, the remaining guards reconfigure
themselves, possibly by repositioning on an

adjacent node, so that any later attack (or fault)
can also be protected. Thus, the model guarantees

protection against single link attacks/failures ad-
infinitum. )

A RELATED PROE

LEM: EVC (2)

Eternal vertex cover (EVC):

= the network is modeled as a graph;

=at most one defender is located at each node;
=an attacker can attack edges;

=a defender protects all the edges incident to the
nodes where gards are located; a guard must move
along the attacked edge to defend it;

= all the other guards can move traversing a single

edge. ©



A RELATED PROBLEM: EVC (3)

Given the subset of nodes with guards on them at
a certain instant, if it is not a vertex cover, then
the attacker can target any of the uncovered
edges to win the game.

Therefore, the defender must always ‘reconfigure”
one vertex cover into another in response to any
attack.

So, if a(G) is the cardinality of a min VC and
a*(G) the cardinality of a min eternal VC:

a(G) < a=(Q)

A RELATED PROBLEM: EVC (4)

Theorem. Let G be a connected graph and let V' be

a vertex cover inducing a connected subgraph.

Then a=(G) < |V'[+1.
Sketch of Proof.
=Select d in V\V'.

= Put a shadow guard s on'd

= P=path from d to the attacked
edge with gards on each node & &
= The shadow guard is on another @
= Repeat... é ® @




A RELATED PROBLEM: EVC (5)

Corollary. Let G be a connected graph and let V'
be a vertex cover inducing a subgraph. with k
connected components. Then a*(G) < |V'|+k.

Since V' can induce at most |V'| connected
components, a®(G) < 2|V’|.

It follows that:

A RELATED PROBLEM: EVC (6)

Theorem. Let G be a connected graph. Then:

a(G) < a=(G) < 2a (G).

Theorem. For any n 2 3, a®(C,) = a(C,) = [n/Z].

Proof.

SES RIS



A RELATED PROBLEM: EVC (7)

Theorem. For any n > 1, a*(P,) = n-1.

Sketch of proof. By contradiction, if two nodes
are outside the EVC, it is possible to design an
attack strategy that move them until they become
endpoints of the same edge and the attacker wins.

IZ" Some students’ lessons and master theses are

available on this topic



