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THE THOMPSON’S MODEL



§ The interconnection topology layout problem 
arises from the problem of producing efficient 
VLSI (Very Large Scale Integration) layouts on a 
silicon board. 

§ It was born in the ’40s, but it got a 
significative interest only relatively recently 
when the technology has allowed to layout 
circuits in two and three dimensions at 
reasonably low prices.
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Exemples of VLSI circuits:
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Model the circuit as a graph (nodes = ports, 
switches, etc. and edges = wires). 
There is a tight relation between the VLSI layout 
and the graph drawing.
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Drawing G of a graph G: it is a function 
mapping each node v in a distinct point 
G(v), and each edge (u,v) in an open Jordan 
curve G(u,v) not crossing any point that is 
the mapping of a node, starting in G(u) and 
arriving in G(v). 

The VLSI technology production imposes many
constraints:
§the device pressing the connections can only 
approximate slanting lines by tiny horizontal and 
vertical segments (Þorthogonal drawing);
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Orthogonal drawing: drawing of a 
graph where edges are represented as 
broken lines whose segments are 
horizontal or vertical (parallel to the 
coordinate axes) 



§ In order to avoid interference, it is necessary to 
keep wires far enough (Þgrid drawing);
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Grid drawing: drawing of a graph so 
that all nodes, crosses and bends of 
the edges are put on grid points 
(scaling property - resolution)

§Wires cannot cross; in order to avoid crossings, 
it is possible to route the crossing wires on the 
two separate sides of the board, introducing 
small “holes” trespassing the board from one 
side to the other; the number of such holes must 
be small, as their realization is rather expensive 
(Þcrossing number minimization)

§…
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§ The silicon is very expensive; so the layout 
must have a small area (Þarea minimization).

§Wires should not be too long, as the 
propagation delay is proportional to their 
length; in the case of layered topology, wires 
in the same layer should have (approximately) 
the same length, so to avoid synchronization 
problems 

                      (Þedge length minimization). 
9

In 1980 Thompson introduced a model that is  
consistent with all the mentioned constraints:

the layout of a topology G is a plane 
representation on a bunch of unit distance 
horizontal and vertical traces that maps:
§ nodes of G in the intersection points of the 
traces, 

§…
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§ edges of G in disjoint paths constituted by 
horizontal and vertical segments on traces; such 
paths cannot cross nodes that are not their 
extremes and they can cross each other only in 
correspondence of trace intersection points; 

§ Overlappings (edge-edge) are not allowed
§ Node-edge crosses are not allowed
§ “knock-knees” are not allowed

11
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ORTOGHONAL GRAPH DRAWING



Def. An orthogonal grid drawing of a graph G=(V,E) 
is a bijection mapping:

§ nodes v Î V on plane points G(v) at integer 
coordinates 

§ edges (v,w) Î E on not overlapping paths so that 
the images of their extremes G(v) and G(w) are 
connected by the corresponding paths. 

§ These paths are constituted by horizontal and 
vertical segments; the possible bends have 
integer coordinates

Obs. Only graphs with degree £ 4 can be correctly 
drawn. 13

So, the interconnection topology layout is an 
orthogonal grid drawing of the corresponding 
graph with the aim of minimizing the area, the 
number of crossings and the wire length. 

There is a huge literature in the GRAPH 
DRAWING area…
Shall we use the known algorithms for 
orthogonal grid drawing in order to solve the 
layout problem?

14



No: 
these algorithms guarantee some bounds on the 
optimization functions that hold FOR EACH 
input graph having the required input hypotheses
Instead, interconnection topologies are very 
structured graphs (usually regular, symmetric, 
recursively built, …), and, by exploiting these 
properties, it is possible to get better results. 
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§Graph drawing algorithms get a graph in input 
and draw it on the plane.

§ Layout algorithms are designed for a single 
special interconnection topology and so they 
get only its dimension in input.

§Obs. Improving an optimization function by 
“only” a constant factor is an important issue 
(especially the area): if a layout occupies ½ of 
the area of another one, it will cost the half!
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§ Result independently achieved by Leiserson [’80] and 
Valiant [’81].

§ H-tree: grid orthogonal rectilinear plane 
representation of an n-node complete binary tree in 
area O(n).

§ The result is optimum (the area must be  W(n))
§ Brent e Kung [’80] show that W(n log n) area is 
necessary if the leaves must lay on the border.

§ Note: each binary tree is contained in a complete 
binary tree, so we can exploit this approach to 
represent every binary tree, but the area could be 
not optimum anymore! 18



Inductive construction:

§ h=0

§ inductive step:
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h even
h odd
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h=0 h=1

h=2

h=3

h=4

An example:
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Th. The area occupied by an n-node H-tree is 
2(n+1)+o(n).
Proof. Base cases: l0=w0=0; 
   l1=0; w1=2; 
   l2=2; w2=2; 

General cases: 
h odd:   lh=lh-1; wh=2 wh-1+2;
h even:        lh=2 lh-1+2; wh=wh-1;    

Solving the recurrency equation….       ◼h even

h odd
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§ The Thompson model [‘79] requires that the wires 
coming out of each processing element are at most 4 
(6 in 3D).

 Problem: What if the degree is higher? (end of the 
’90s)

 Sol.: Non-constant node degree model:
§ a node of degree d occupies a square of side Θ(d) 
(here the degree is n-1)

§ the wires can run either horizontally or vertically 
along grid lines.
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§ Layout proposed by Yeh and Parami [‘98]
§Collinear layout with area n4/4 - optimal
§ In a collinear layout, all nodes are placed on 
the same line. Instead of computing its area, it 
is usual to count the number of necessary 
tracks.
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To obtain the collinear layout of the complete 
graph:
§ let a link be type-i if it connects two nodes 
whose labels differ by i; so, the n(n-1)/2 links 
can be classified into types 1, 2, …, n-1, and 
there are n-i type-i links.

§… 
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§ …
§ place the n nodes, labeled 1 through n, along a row;
§ place the type-1 links in one track, 
§ place the type-2 links in two tracks, where links 
connecting odd nodes are put in one track and links 
connecting even nodes are put in the other one

§ place the type-i links in min(i, n-i) tracks
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Total number of tracks in this layout:
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substituting 
j=n-i

Def. The bisection width of a network is the minimum 
number of edges one has to cut to disconnect the 
network into two equally sized sub-networks.

Property. The bisection width of the complete graph is 
n2/4+o(n2).

Th. A lower bound on the number of tracks in the 
collinear layout of a network is its bisection width (to 
be proved later).

Cor. A lower bound on the number of tracks in the 
collinear layout of the complete graph is n2/4+o(n2).
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Note. The area of the collinear layout is:
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n2

4

n2

n4
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§Although the collinear layout leads to the 
smallest possible number of tracks, layouts with 
smaller area can be obtained.

§An area-efficient layout for complete graphs is 
based on the previous collinear layout.

§W.l.o.g. n=m1 x m2, where m1 and m2 are Θ(√n)
§ Each node can be labeled (i,j) with i=1, …, m1 and 
j=1, …, m2.
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§ Put node (i,j) at coordinates (i,j) on an m1 x m2 grid.
§ Without entering into details:
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Area = n
4

16
+o(n4 )

Th. A lower bound on the layout area of a network 
is the square of its bisection width.
Reminder. The bisection width of the complete 
graph is n2/4+o(n2).
Cor. A lower bound on the layout area of the 
complete graph is n4/16+o(n4).
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Let us prove the theorem:

Th. [Thompson‘79] A lower bound on the layout area 
of a network is the square of its bisection width.

Proof. Suppose that the bisection width of a 
network G can be counted when partitioning its 
nodes in two sets of k and n-k nodes, respectively.

33

layout of G
n/2

n/2

width at least as large as 
the bisection width…
the same holds for the 
height… n

n/2

n/2
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Def. (reminder) Let N=2n (and n=log N); 
an n-dim. Butterfly is a layered graph 
having N (n+1) nodes (n+1 layers, with 2n  
nodes each) and 2Nn edges. 

The nodes are labeled with a pair (w, i), 
where i is the layer of the node and w is 
an n-bit binary number indicating the row 
of the node.

Two nodes (w, i) and (w’, i’) are adjacent 
iff i’=i+1 and:

§w=w’ (straight edge) or
§w e w’ differ in exactly the i-th bit 
(cross edge).
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Layout proposed by D.S.Wise [’81] 
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He writes: 
“This paper offers a result that can be described as a 
picture. […] The perceptive reader may stop here, since 
the remainder of this paper only describes it.” 



Properties:
1. (very important in a layered topology)

 All the wires in the same layer are of
 equal length. 

Nevertheless, this length grows exponentially 
with the layer.
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2. The longest path length from any input to any 
output is linear in N (namely, 2(N-1)). 

Indeed:
§All the paths have the same length.

§ For the sake of simplicity, consider the path 
from the upper-left node to the lower-right 
node: its length coincides with the diagonal of 
the square having side 2(N-1), so it is 2(N-1). 38

 



3. The layout is performed on the two sides of the 
silicon board, so it can be considered a 2-layer 
layout; one layer is composed of all diagonal wires 
running from lower-left to upper-right -red lines- 
and the other layer is composed of all diagonal 
wires from lower-right to upper-left -black lines. 
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PROs:
§ Good area : 2(N-1) ´ 2(N-1)= 2N2+o(N2).

§ Same wire length on each layer; this is not true in 
every layout: in the classical drawing of the 
butterfly network, for example, straight-edges on the 
last layer have unit length while the cross-edges on 
the same layer have a linear length in the input size 
N; this is extremely bad, because synchronization of 
the information flow goes lost;

§ The input and output nodes lie on the boundary of 
the layout, and this can be required by some 
applications.

40

 



CONs:

§ “slanted” lines, so that the area of the layout is 
measured by a rectangle whose sides are not parallel 
to coordinate axes but lie at 45°; if we follow the 
standard definition of layout area, it becomes 2(N-1) 
´ 2(N-1)= 4N2+o(N2); indeed, the circumscribed square  
with sides parallel to the coordinate axes has side 
equal to the length of the path from the upper-left 
node to the lower-right node, that is 2(N-1);

§ …
41

 

CONs (cntd):
§ it is a ‘cheating’ layout, indeed the “knock-knees” 
are not avoided but arranged in the layout thanks to 
some devices that have no null area and so enlarge 
the layout area.

§ The Wise layout “looks like” the usual representation. 
Nevertheless, in order to get the Wise layout from 
the usual representation, nodes must be permuted:
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§ Layout presented by G. Even and S. Even [’00], 
and based on the notion of Layered Cross 
Product (LCP):

§Def. A layered graph of l+1 layers G=(V0, V1, …, 
Vl, E) consists of l+1 layers of nodes; Vi is the 
(non-empty) set of nodes in layer i; E is a set 
of directed edges: edge (u,v) connects two nodes 
of two adjacent layers, that is, if u lies on layer 
i then v lies on layer i+1.
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Def. [Even & Litman ’92] The LCP of two layered graphs of 
l+1 layers each:

G1=(V0
1, V1

1, …, Vl
1, E1) and G2=(V0

2, V1
2, …, Vl

2, E2), is a 
layered graph of l+1 layers, G=(V0, V1, …, Vl, E), where:

§ For every i=0, …, l, Vi = Vi
1´Vi

2 (i.e. each layer is the 
cartesian product of the corresponding layers in G1 
and G2);

§ There is an edge (u,v) in G connecting nodes (u1,u2) and 
(v1,v2) iff  (u1,v1) and  (u2,v2) are edges in G1 and G2, 
respectively.
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Even and Litman proved 
that many well-known 
topologies are the LCP of 
simple structures (e.g. 
trees).

 Specifically, the butterfly 
network is the LCP of two 
complete binary trees, an 
upward one and a 
downward one. 45

Exemples of LCP

The Projection Methodology (PM):
Let G1 and G2 two layered graphs of l+1 layers 
each and let G denote their LCP. A layout of G 
is obtained with the PM as follows: 
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The Projection Methodology (cntd)

Consider a cube and draw the graph G1 on the xy face 
so that:

§ (a) the y-coordinate of every node u e Vi
1 equals i 

§ (b) the x-coordinate of every node is an integer. 

Similarly, draw the graph G2 on the 
yz face
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The Projection Methodology (cntd)

A three-dimensional drawing of the LCP G is 
constructed in the cube as follows: 

§ if uÎVi
1 is drawn in coordinates (xu, i, 0) and 

vÎVi
2 is drawn in coordinates (0, i, zv), then the 

coordinates of node (u,v)ÎVi are (xu, i, zv). 

In other words, the nodes of G 
are the intersections between the 
lines orthogonal to plane xy and 
passing through nodes of G1 and 
the lines orthogonal to plane yz 
and passing through nodes of G2.



The Projection Methodology (cntd)

A 2D drawing of G is obtained by projecting the 
3D drawing to the xz plane. 

Obs. It is possible to avoid constructing the 3D 
representation by immediately using the 
prolongations on plane xz of the projections of 
nodes in layer i of G1 on the x-axis and of nodes 
in layer i of G2 on the z-axis, i=0,…,l 
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The PM may produce layouts that do not satisfy the 
constraints required by the Thompson model.

For example, the drawing above is a grid drawing 
but it is not an orthogonal drawing.
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We now describe how rectilinear layouts of G can 
be obtained via the PM. First, we formalize 
necessary and sufficient conditions:

§ for the edges of the xz projection of G to be 
along grid paths, 

§ for nodes to be mapped to different grid points, 

§ for not using any grid edge more than once.

52



 

Four types of edges in the product graph G:

1. The product of two diagonal edges yields a diagonal 
edge;

2. The product of a vertical edge and a diagonal edge 
yields a vertical edge;

3. The product of a diagonal edge 

  and a vertical edge yields a 

 horizontal edge;

4. The product of two vertical 
edges yelds a single grid point.
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In order to get a feasible layout through the PM, we 
have to impose that the product of either two 
diagonal edges or two vertical edges never occurs. 
More precisely:

1. The PM generates a layout of G in which the edges 
are grid lines if and only if the drawings of G1 and 
G2 on the faces of the cube satisfy the following 
condition: For every edge e e E, exactly one of its 
factor is drawn diagonally. 

This claim avoids overlappings of nodes of the same 
layer, too.
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We need to impose that nodes in different 
layers do not overlap:

2. The PM generates a layout of G in which at 
most one node is mapped to each grid point if 
and only if the sets {(xu, zv): u Î Vi

1 e 

v Î Vi
2} are disjoint, for each 

i=0, …, l. 
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Consider now two diagonal edges (a,b) and (c,d) in 
G1; the coordinates of nodes a, b, c, d are:

§ node a: (xa, i, 0); 

§ node b: (xb, i+1, 0); 

§ node c: (xc, j, 0); 

§ node d: (xd, j+1, 0).

We say that these two edges are consistent if the 
open intervals  (xa, xb) and (xc, xd) are disjoint. 56

 



3. The PM generates a layout of G in which no grid edge is 
used twice if and only if for every two inconsistent edges 
of one of the multiplicands the following condition holds: 

The two edges are not in the same layer, and on the two 
layers in which they appear, there are no (straight) edges 
of the other multiplicand which are collinear. 
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Inconsistent edges on the same layer

 

Inconsistent edges on different layers     

In order to produce a feasible layout, we need to 
ensure that all three claims are satisfied.

Let us consider the Claims one by one:
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1. The PM generates a layout of G in which the edges 
are grid lines if and only if the drawings of G1 and 
G2 on the faces of the cube satisfy the following 
condition: For every edge e e E, exactly one of its 
factors is drawn diagonally.

A solution is to double the number of edge levels so 
that the edges in the drawing of G1 are diagonal in 
odd layers and straight in the even layers, while the 
edges in the drawing of G2 are straight in the odd 
layers and diagonal in the even layers.
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The doubling of the number of edge levels is 
achieved by stretching each edge of the two 
multiplicands to become a path of two edges.

In this way, we simulate the creation of edge 
bends.
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2. The PM generates a layout of G in which at most 
one node is mapped to each grid point if and only if 
the sets{(xu, zv): u Î Vi

1 e v Î Vi
2} are disjoint, for each 

i=0, …, l. 

A simple way to guarantee that this condition will 
hold is to make sure that no two nodes in the drawing 
of G1 (G2), except for the two end-points of the same 
straight edge, share the x-coordinate (z-coordinate). 

This is always possible if we opportunely enlarge the 
drawings of the two factors.
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3. The PM generates a layout of G in which no grid edge 
is used twice if and only if for every two inconsistent 
edges of one of the multiplicands, the following 
condition holds: 

§ The two edges are not in the same layer of the 
multiplicand, and 

§ on the two layers in which they appear, there are no 
(straight) edges of the other multiplicand which are 
collinear. 

This condition is harder to enforce and is a severe 
limitation of this technique. For this reason, we limit to 
networks, each of which is the LCP of two trees. 
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The butterfly network is the LCP of an upward and 
a downward binary. (We dedicate a column to each 
vertex to prevent vertices of the layout from 
colliding.)
Proceed as follows: 

§Draw one tree on the xy plane and the other on 
the yz plane 

§Construct their LCP in 3D inside the cube with 
the PM

§ The projection of this 3D figure on the floor is a 
planar layout of the butterfly 
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This layout has the following 

properties:
§ It’s symmetric !

§ Its height and its width are H=W=2(N-1), so its 
area is 4N2+o(N2) "

§ Input and output nodes are not on the boundary "

§All the edges on the same layer has the same 
length ! 65

§ WISE - PROs:
§ relatively small area

§ It “looks like” a butterfly

§ Input/output nodes on the boundary

§ WISE - CONs:
§ knock-knees 

§ “slanted” grid

§ EVEN & EVEN - PROs:
§ It eliminates all the flaws

§ EVEN & EVEN - CONs:

§ Larger area

§ input/output nodes inside the layout 66



With the aim of optimizing the layout area, 
other layout algorithms have been proposed:

§Dinitz [’98] proves that the area of the Even 
& Even layout can be decreased by means of 
some local adjustments, so to achieve area 
11/6 N2+o(N2)

§ Later, Avior et al. [’98]  prove that any 
butterfly layout cannot have area smaller 
than N2 + o(N2) if “slanted” drawing is not 
allowed, and they provide an algorithm 
producing a layout of optimal area.
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Finally, Dinitz et al. [’99] prove that, if a 
“slanted” drawing is allowed, area 1/2 N2+o(N2) 
is necessary and sufficient.

These works definitively close the optimal area 
layout problem of the Butterfly network.
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OPTIMAL AREA LAYOUT 
OF THE BUTTERFLY 

NETWORK

69

The two papers that provide an optimal area layout 
base their results on the following lemma:

Lemma: For any non-negative integers j, k, 0≤j≤j+k≤n, 
the subgraph of the n-dim. Butterfly induced by the 
nodes of levels j, j+1, …, j+k is the disjoint union of 
2n-k copies of k-dimensional butterflies.

In particular,if j=0 and k=n-1:
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Hence, an (n-1)-dimensional butterfly can be 
built as a pair of (n-2)-dim. butterflies 
connected by one node layer and one edge layer.

If we cut out the input and output nodes from 
an n-dim. Butterfly, we get:
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Each one of 
these (n-2)-dim. 
Butterflies can 
be, in turn, cut 
into many 
smaller 
butterflies:
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The previous layout can be better specified as 
follows:
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?

Each rectangle contains a Butterfly that can be 
represented, either horizontally or vertically, layer 
by layer as follows:
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Obs.: this layout is far from being optimal; 
nevertheless it allows to produce a final optimal 
layout.



It remains to connect the small rectangular butterflies: 
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In the case of slanted layout, it can be bent along the 
line:
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It is possible to prove tight lower and upper 
bounds on the layout area for both the models 
(usual and slanted).

The interested students can look at:
§ A. Avior, T.C., S. Even, A. Litman, A.L. Rosenberg: A 
Tight Layout of the Butterfly Network. Theory of 
Computing Systems 31, 1998.

§ Y. Dinitz, S. Even, M. Zapolotsky: A Compact Layout 
of the Butterfly. J. of Interconnection Networks 4, 
2003. 77
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Widely used for parallel computation, thanks to its 
nice properties (high regularity, logarithmic diameter, 
good fault tolerance, …).

Def. The n-dimensional Hypercube, Qn, has N=2n nodes 
and ½n2n edges. Each node is labeled with an n-bit 
binary string, and two nodes are linked with an edge 
iff their binary strings differ in precisely one bit.

The edges of the hypercube can be naturally 
partitioned according to the dimensions that they 
traverse and Qn can be seen as Qn-1 º Qn-1…
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Qn can be built by joining with an edge nodes in 
two different copies of  Qn-1 if they have the same 
label.
 Obs.: These edges form a perfect matching.

Q2

00 01

10 11

000

Q3

001

010
011

100 101

110 111

Q4

0000 0001

0010
0011

0100 0101

0110 0111

1000 1001

1010
1011

1100 1101

1110
1111
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Property: Qn has diameter log N.

Sketch of proof. Any two nodes 
u=u1u2…ulogN and v=v1v2…vlogN 

are connected by the path:
u1u2…ulogNv1u2…ulogNv1v2…ulogN…v1v2…vlogN

There are pairs of nodes requiring exactly log N 
steps.                 n

000

Q3

001

010
011

100 101

110 111
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Reminder: The bisection width of a network is the 
minimum number of edges one has to cut to disconnect 
the network into two equally sized subnetworks.

Property. BW(Qn)=N/2.

Q4

0000 0001

0010
0011

0100 0101

0110 0111

1000 1001

1010
1011

1100 1101

1110
1111

Sketch of proof. the green 
edges (i.e. in a single dim.) 
divide the hypercube into 
two equally sized sub-
networks; they are N/2 and 
it is not possible to cut a 
smaller number of edges to 
get the same result.
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Th. A lower bound on the layout area of a 
network is the square of its bisection width 
(already proved).

Cor. Each layout of Qn has area at least N2/4.

In the following: layout with area 4/9N2+o(N2), 
that hence is almost optimal (far from the lower 
bound by a factor of 1.7) [Yeh, Varvarigos, Parhami, ‘99].

Reminder: In a collinear layout all nodes are 
placed on the same line. Instead of computing its 
area, it is usual to count the number of necessary 
tracks.

We start with a 2-dim. Hypercube, and inductively 
move to hypercubes of higher dimensions:

§Q2:
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00 01

10 11

00 01 10 11

2 tracks



§ If n odd: Assume that we have a collinear 
layout for Qn-1 that requires f(n-1) tracks: 
Qn

85

2 tracks

001 011 101 111000 010 100 110

2 tracks 1 track

Tot. f(n)=2f(n-1)+1 tracks

§ If n is even: To obtain the collinear layout of 
Qn we start with the layouts of four Qn-2s:
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f(n+2)=4f(n)+2



§ Th. The number of tracks required for the collinear 
layout of Qn is 2/3N (with N=2n no. of nodes).

§ Proof. We solve the following recurrence equation:
§ f(n)=2f(n-1)+1 if n odd

§ f(n)=4f(n-2)+2 if n even
§ f(2)=2
Even case:
f(n)=4f(n-2)+2=42f(n-4)+4x2+2=

=43f(n-6)+25+23+2=…=
=…when n-2k=2 iff k=(n-2)/2…=
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4k f (n− 2k)+ 2 ⋅ 4i
i=0

k−1

∑ =

= 4
n−2
2 f (2)+ 2 4i

i=0

n−2
2
−1

∑ = 2 4i
i=0

n−2
2

∑ ≅ 2 ⋅ 4
n−2
2
+1

3
=
2
3
2n = 2

3
N

(proof cntd) 

The odd case is analogous.       n

The area of this layout is (2/3N+n) x (nN).

Th. Qn can be laid out in 4/9N2+o(N2) area.

Sketch of Proof. Let n=n1+n2.

Let us use 2n1 copies of the collinear layout of 
Qn2, each placed along a row.

We connect the 2n1 nodes that belong to the same 
column vertically according to the collinear layout 
of a Qn1. 88
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Figure 1. collinear layouts of (a) a 2-cube and
(b) a 4-cube. (c) A 2-D layout of a 5-cube.

lower boundN2 4 [which follows from the fact that the area
of a graph is at least equal to B2 [19, 25], where B N 2 is
the bisection width of a hypercube, or from Lemma 5.1 of
Section 5 since a total exchange task in a hypercube requires
N 2 steps [20]. The proposed hypercube layout has max-
imum wire length N 3 o N , which is (slightly) shorter
than the best previous result [10] for hypercubes of (cur-
rently) practical sizes (e.g.,N 214 16K), and has smaller
area by a factor of 2 25 o 1 at the same time. Note that
we can move the longer wires (and other wires belong to the
same tracks) to the first 2n2 1 horizontal tracks (or the first
2n1 1 vertical tracks, respectively) in order to (slightly) re-
duce the maximum wire length.

An enhanced-cube is a hypercube with one additional
outgoing link per node leading to a random node [21]. A
folded hypercube [1] is a hypercube with one additional link
per node, where each node S has a link connecting it to the
node whose label is the bitwise complement of S. By adding
additional links to the hypercube layout of Theorem 2.2, we
can lay out a folded hypercube in 49

36N
2 o N2 area, and

an enhanced-cube in 25
9 N

2 o N2 area. More precisely,
we first lay out an N-node hypercube in a square of side
2
3N o N . To lay out an additional link, we need at most an
additional vertical track and an additional horizontal track,
in addition to the two ending segments connecting the link
to two nodes.

Since there are N 2 additional links in a folded hyper-
cube, we need at most N 2 extra vertical and horizontal
tracks to accommodate all the diameter links. Therefore, the

area for the layout of a folded hypercube is

7
6
N o N

7
6
N o N

49
36
N2 o N2

Since there are N additional links in an enhanced-cube, we
need at most N vertical and horizontal tracks to accommo-
date all the additional links. Therefore, the area for the lay-
out of an enhanced-cube is 25

9 N
2 o N2 .

The preceding layouts for folded hypercubes and
enhanced-cubes improve the areas of the corresponding lay-
outs given in [21] by constant factors.

2.2. Efficient layouts for CCC and reduced hyper-
cubes

An n-dimensional cube-connected cycles (CCC) graph is
obtained by replacing each node in an n-cube with an n-node
cycle [16]. A reduced hypercube, RH log2 n log2 n [29],
can be obtained by replacing each n-node cycle in a CCC
with a log2 n-dimensional hypercube.

Theorem 2.3 An N-node CCC or RH log2 n log2 n can be
laid out in

4N2

9 log2
2N

o
N2

log2N

area.

Proof: We first lay out an n-cube using the 2-D layout intro-
duced in Subsection 2.1, and then lay out the n-node cycles
within each of the hypercube nodes. Since the size of an n-
dimensional CCC is N n2n and its area is dominated by
its hypercube links, which requires 2n 2 9 o 2n area, an
N-node CCC can be laid out in

4N2

9 log2
2N

o
N2

log2N

area. Using the same layout method, the reduced hypercube
can be laid out in asymptotically the same area.

In [16], layouts of area 2N2

log2
2N

o N2

log2N and 4N2

3 log2
2N

o N2

log2N
were proposed for the CCC graph. Our layout has

area smaller than that of the layouts given in [16] by a factor
of at least 3 o 1 , and smaller than that of the more recent
layouts given in [7] by a factor of 1 125 o 1 . The layout
area given in Theorem 2.3 is within a factor of 1  7 o 1
from the lower bound given in [7] and is the best result re-
ported thus far for the CCC network.

(proof cntd)

Reminder: Qk needs of

2/32k tracks

# of horiz. tracks (rows):

2n1 copies x 2/32n2 tracks

Additive height (nodes):

2n1 copies x n2

Total heigth:

2n1 x (2/32n2+ n2)=

2/32n1+n2+n2 2n1

…

Figure 1. collinear layouts of (a) a 2-cube and
(b) a 4-cube. (c) A 2-D layout of a 5-cube.

lower boundN2 4 [which follows from the fact that the area
of a graph is at least equal to B2 [19, 25], where B N 2 is
the bisection width of a hypercube, or from Lemma 5.1 of
Section 5 since a total exchange task in a hypercube requires
N 2 steps [20]. The proposed hypercube layout has max-
imum wire length N 3 o N , which is (slightly) shorter
than the best previous result [10] for hypercubes of (cur-
rently) practical sizes (e.g.,N 214 16K), and has smaller
area by a factor of 2 25 o 1 at the same time. Note that
we can move the longer wires (and other wires belong to the
same tracks) to the first 2n2 1 horizontal tracks (or the first
2n1 1 vertical tracks, respectively) in order to (slightly) re-
duce the maximum wire length.

An enhanced-cube is a hypercube with one additional
outgoing link per node leading to a random node [21]. A
folded hypercube [1] is a hypercube with one additional link
per node, where each node S has a link connecting it to the
node whose label is the bitwise complement of S. By adding
additional links to the hypercube layout of Theorem 2.2, we
can lay out a folded hypercube in 49

36N
2 o N2 area, and

an enhanced-cube in 25
9 N

2 o N2 area. More precisely,
we first lay out an N-node hypercube in a square of side
2
3N o N . To lay out an additional link, we need at most an
additional vertical track and an additional horizontal track,
in addition to the two ending segments connecting the link
to two nodes.

Since there are N 2 additional links in a folded hyper-
cube, we need at most N 2 extra vertical and horizontal
tracks to accommodate all the diameter links. Therefore, the

area for the layout of a folded hypercube is

7
6
N o N

7
6
N o N

49
36
N2 o N2

Since there are N additional links in an enhanced-cube, we
need at most N vertical and horizontal tracks to accommo-
date all the additional links. Therefore, the area for the lay-
out of an enhanced-cube is 25

9 N
2 o N2 .

The preceding layouts for folded hypercubes and
enhanced-cubes improve the areas of the corresponding lay-
outs given in [21] by constant factors.

2.2. Efficient layouts for CCC and reduced hyper-
cubes

An n-dimensional cube-connected cycles (CCC) graph is
obtained by replacing each node in an n-cube with an n-node
cycle [16]. A reduced hypercube, RH log2 n log2 n [29],
can be obtained by replacing each n-node cycle in a CCC
with a log2 n-dimensional hypercube.

Theorem 2.3 An N-node CCC or RH log2 n log2 n can be
laid out in

4N2

9 log2
2N

o
N2

log2N

area.

Proof: We first lay out an n-cube using the 2-D layout intro-
duced in Subsection 2.1, and then lay out the n-node cycles
within each of the hypercube nodes. Since the size of an n-
dimensional CCC is N n2n and its area is dominated by
its hypercube links, which requires 2n 2 9 o 2n area, an
N-node CCC can be laid out in

4N2

9 log2
2N

o
N2

log2N

area. Using the same layout method, the reduced hypercube
can be laid out in asymptotically the same area.

In [16], layouts of area 2N2

log2
2N

o N2

log2N and 4N2

3 log2
2N

o N2

log2N
were proposed for the CCC graph. Our layout has

area smaller than that of the layouts given in [16] by a factor
of at least 3 o 1 , and smaller than that of the more recent
layouts given in [7] by a factor of 1 125 o 1 . The layout
area given in Theorem 2.3 is within a factor of 1  7 o 1
from the lower bound given in [7] and is the best result re-
ported thus far for the CCC network.

(proof cntd)

Reminder: 

heigth= 2/32n1+n2+n2 2n1

The width is computed 
analogously, switching the 
roles of n1 and n2.
Total width:
2/32n1+n2+n1 2n2
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Area=(2/3N+n1 2n2)(2/3N+n2 2n1)=
=4/9N2+o(N2) if n1 and n2 are o(N), e.g. if 
n1=Θ(n2)≅n/2.

☞ possible students’ lessons
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§ The diffusion of the 3D layout has increased in 
the last thirty years.

§ The topology is lain out on a series of slices.

§ Further optimization of the wire length and 
number of bends

§  Less silicon used.
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Def. A 3D layout of a topology G is a 1-1 function 
between G and the 3D grid such that:
• the nodes are mapped into grid points;

it is better if they lie on the external slice to 
minimize: energy consuming, production of heat and 
difficulty of connection with other devices

• the wires are mapped on grid paths so that:
• these paths are edge-disjoint;
• there are no “knock-knees”
• these paths do not cross any mapping of a node that 
is not an extreme of the corresponding wire.

Aim: minimizing volume and keeping wires short.
 ☞ possible students’ lessons 93


