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THE THOMPSON'S




THOMPSON'S MODEL (1)

= The interconnection topology layout problem
arises from the problem of producing efficient
VLSI (Very Large Scale Integration) layouts on a

silicon board.

= [t was born in the '40s, but it got a
significative interest only relatively recently
when the technology has allowed to layout
circuits in two and three dimensions at

reasonably low prices.

THOMPSON'S MODEL (2)

Exemples of VLSI circuits:
Intel 2004 Intel 2013 Intel 2023




THOMPSON'S MODEL (3)

Model the circuit as a graph (nodes = ports,
switches, etc. and edges = wires).

There is a tight relation between the VLSI layout
and the graph drawing.

/Drawinq I' of a graph G: it is a function \
mapping each node v in a distinct point

['(v), and each edge (u,v) in an open Jordan
curve I'(u,v) not crossing any point that is

the mapping of a node, starting in I'(u) and

eriving in T'(v). / @

THOMPSON'S MODEL (4)

The VLSI technology production imposes many
constraints:

=the device pressing the connections can only
approximate slanting lines by tiny horizontal and
vertical segments (=orthogonal drawing);

/Orthogonal drawing: drawing of a

graph where edges are represented as

broken lines whose segments are
horizontal or vertical (parallel to the

\coordinate axes) - @




THOMPSON'S MODEL (5)

= In order to avoid interference, it is necessary to
keep wires far enough (=grid drawing);

Grid drawing: drawing of a graph so

that all nodes, crosses and bends of
the edges are put on grid points
K(scaling property - resolution) )

THOMPSON'S MODEL (6)

= Wires cannot cross; in order to avoid crossings,
it is possible to route the crossing wires on the
two separate sides of the board, introducing
small "holes” trespassing the board from one
side to the other; the number of such holes must
be small, as their realization is rather expensive
(=crossing number minimization)




THOMPSON'S MODEL (7)

= The silicon is very expensive; so the layout
must have a small area (=area minimization).

= Wires should not be too long, as the
propagation delay is proportional to their
length; in the case of layered topology, wires
in the same layer should have (approximately)
the same length, so to avoid synchronization
problems

(=edge length minimization).

©

THOMPSON'S MODEL (8)

In 1980 Thompson introduced a model that is
consistent with all the mentioned constraints:

the layout of a topology G is a plane
representation on a bunch of unit distance
horizontal and vertical traces that maps:

=nodes of G in the intersection points of the
traces,



THOMPSON'S MODEL (9)

edges of G in disjoint paths constituted by
horizontal and vertical segments on traces; such
paths cannot cross nodes that are not their
extremes and they can cross each other only in
correspondence of trace intersection points;

Overlappings (edge-edge) are not allowed
Node-edge crosses are not allowed

*knock-knees” are not allowed

el

ORTOGHONAL GRAPH DRAWING



ORTHOGONAL GRID DRAWING (1)

Def. An orthogonal grid drawing of a graph G=(V,E)
is a bijection mapping:
=nodes v € V on plane points I'(v) at integer
coordinates

= edges (v,w) € E on not overlapping paths so that
the images of their extremes I'(v) and I'(w) are
connected by the corresponding paths.

= These paths are constituted by horizontal and
vertical segments; the possible bends have
integer coordinates

Obs. Only graphs with degree < 4 can be correctly
drawn. @

ORTHOGONAL GRID DRAWING (2)

So, the interconnection topology layout is an
orthogonal grid drawing of the corresponding
graph with the aim of minimizing the area, the

number of crossings and the wire length.

There is a huge literature in the GRAPH
DRAWING area...

Shall we use the known algorithms for
orthogonal grid drawing in order to solve the

layout problem?



ORTHOGONAL GRID DRAWING (3)

No:

these algorithms guarantee some bounds on the
optimization functions that hold FOR EACH
input graph having the required input hypotheses
Instead, interconnection topologies are very
structured graphs (usually regular, symmetric,
recursively built, ..), and, by exploiting these
properties, it is possible to get better results.

(i)

ORTHOGONAL GRID DRAWING (4)

= Graph drawing algorithms get a graph in input
and draw it on the plane.

= Layout algorithms are designed for a single
special interconnection topology and so they
get only its dimension in input.

= Obs. Improving an optimization function by
‘only” a constant factor is an important issue
(especially the area): if a layout occupies % of
the area of another one, it will cost the half!



COMPLETE
BINARY TREE
LAYOUT

H-TREES (1)

= Result independently achieved by Leiserson ['80] and
Valiant ['81].

= H-tree: grid orthogonal rectilinear plane
representation of an n-node complete binary tree in
area O(n).

= The result is optimum (the area must be Q(n))

= Brent e Kung ['80] show that Q(n log n) area is
necessary if the leaves must lay on the border.

= Note: each binary tree is contained in a complete
binary tree, so we can exploit this approach to
represent every binary tree, but the area could be
not optimum anymore! @



H-TREES (2)
Inductive construction:
= h=0 °

= inductive step:

o h odd
h even
()
H-TREES (3)
An example:
h=0 e h=1 ooo

h=2 :I: h=4
b ‘i
Go)



H-TREES (4)

Th. The area occupied by an n-node H-tree is

2(n+1)+o(n).
Proof. Base cases: lg=wg=0; ®

1,=0; wi=2; e—eo—e

1,=2; w»=2;
General cases:
h odd: 1h=1h—1; Wh=2 Wh_1+2,' 9
h even: 1h:2 1h—1+2; WhH=W}H_ 1 e o—f-e

° h odd

Solving the recurrency equation...h.even |
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COMPLETE
GRAPH LAYOUT




COLLINEAR LAYOUT (1)

=« The Thompson model ['79] requires that the wires
coming out of each processing element are at most 4
(6 in 3D).

Problem: What if the degree is higher? (end of the
'90s)

Sol.: Non-constant node degree model:
= a node of degree d occupies a square of side 0(d)
(here the degree is n-1)

= the wires can run either horizontally or vertically

along grid lines. @

COLLINEAR LAYOUT (2)

= Layout proposed by Yeh and Parami ['98]

= Collinear layout with area n4/4 - optimal

= In a collinear layout, all nodes are placed on
the same line. Instead of computing its area, it
is usual to count the number of necessary

tracks.



COLLINEAR LAYOUT (3)

To obtain the collinear layout of the complete

graph:

=let a link be type-i if it connects two nodes
whose labels differ by i; so, the n(n-1)/2 links
can be classified into types 1, 2, .., n-1, and
there are n-i type-i links.

e
LA

NV .

- COLLINEAR LAYOGUT (4)

= place the n nodes, labeled 1 through n, along a row;

= place the type-1 links in one track,

= place the type-2 links in two tracks, where links
connecting odd nodes are put in one track and links
connecting even nodes are put in the other one

= place the type-i links in min(i, n-i) tracks

E—
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COLLINEAR LAYOUT (5)

Total number of tracks in this layout:

COLLINEAR LAYOUT (6)

Def. The bisection width of a network is the minimum
number of edges one has to cut to disconnect the
network into two equally sized sub-networks.

Property. The bisection width of the complete graph is
n2/4+o(n?).

Th. A lower bound on the number of tracks in the

collinear layout of a network is its bisection width (to

be proved later).

Cor. A lower bound on the number of tracks in the
collinear layout of the complete graph is n?/4+o(n2).

©



ORTHOGONAL LAYOUT (1)

Note. The area of the collinear layout is:

4
n
4

INES

ORTHOGONAL LAYOUT (2)

= Although the collinear layout leads to the
smallest possible number of tracks, layouts with
smaller area can be obtained.

= An area-efficient layout for complete graphs is
based on the previous collinear layout.

= W.l.o.g. n=m; x m, where m; and m; are ©(Vn)

=Each node can be labeled (i,j) with i=1, .., m; and

j:]., ey, Mo

©



ORTHOGONAL LAYOUT (3)

= Put node (i,j) at coordinates (i,j) on an m; x m, grid.

= Without entering into details:

4
Area="_+ o(n*)
16

=y
bl

ORTHOGONAL LAYOUT (4)

Th. A lower bound on the layout area of a network
is the square of its bisection width.

Reminder. The bisection width of the complete
graph is n2/4+o(n2).

Cor. A lower bound on the layout area of the
complete graph is n4/16+o(n4).



ORTHOGONAL LAYOUT (5)

Let us prove the theorem:

Th. [Thompson'79] A lower bound on the layout area
of a network is the square of its bisection width.

Proof. Suppose that the bisection width of a
network G can be counted when partitioning its
nodes in two sets of k and n-k nodes, respectively.

width at least as large as
the bisection width...
the same holds for the

height... 1)




BUTTERFLY NETWORK
(MEMORANDUM)
Def. (reminder) Let N=2» (and n=log N);
an n-dim. Butterfly is a layered graph
having N (n+1) nodes (n+1 layers, with 2»
nodes each) and 2Nn edges.

The nodes are labeled with a pair (w, i),

where i is the layer of the node and w is
an n-bit binary number indicating the row
of the node.

Two nodes (w, i) and (w’, i’) are adjacent
iff i'=i+1 and:
=w=w' (straight edge) or

=w e w' differ in exactly the i-th bit

(cross edge).

WISE LAYOUT (1)
Layout proposed by D.S.Wise ['81]
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He writes:
"This paper offers a result that can be described as a
picture. [...] The perceptive reader may stop here, since

the remainder of this paper only describes it." @



WISE LAYOUT (2)

Properties:
1. (very important in a layered topology)

All the wires in the same layer are of

equal length.

Nevertheless, this length grows exponentially

with the layer.

WISE LAYOUT (3)

SIS,
A AL

CAAAAAAAS

2. The longest path length from any input to any
output is linear in N (namely, 2(N-1)).

Indeed:
= All the paths have the same length.
= For the sake of simplicity, consider the path
from the upper-left node to the lower-right
node: its length coincides with the diagonal of

the square having side v2(N-1), so it is 2(N-1). ©



WISE LAYOUT (4)

s

3. The layout is performed on the two sides of the
silicon board, so it can be considered a 2-layer
layout; one layer is composed of all diagonal wires
running from lower-left to upper-right -red lines-
and the other layer is composed of all diagonal

wires from lower-right to upper-left -black lines.

WISE LAYOUT (5)

ISLs,

SIS NINS,

PROS: LS
= Good area : V2(N-1) x v2(N-1)= 2N2+o(N2,.

= Same wire length on each layer; this is not true in

every layout: in the classical drawing of the
butterfly network, for example, straight-edges on the
last layer have unit length while the cross-edges on
the same layer have a linear length in the input size
N; this is extremely bad, because synchronization of
the information flow goes lost;

= The input and output nodes lie on the boundary of
the layout, and this can be required by some @

applications.



WISE LAYOUT (6)

55
K55
020062076784
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CON:s:

= "slanted” lines, so that the area of the layout is

measured by a rectangle whose sides are not parallel
to coordinate axes but lie at 45°% if we follow the
standard definition of layout area, it becomes 2(N-1)
x 2(N-1)= 4N2+0(N2); indeed, the circumscribed square
with sides parallel to the coordinate axes has side
equal to the length of the path from the upper-left
node to the lower-right node, that is 2(N-1);

©

WISE LAYOUT (7)

CONs (cntd):

= it is a 'cheating’ layout, indeed the “knock-knees”
are not avoided but arranged in the layout thanks to
some devices that have no null area and so enlarge
the layout area.

= The Wise layout "looks like" the usual representation.
Nevertheless, in order to get the Wise layout from
the usual representation, nodes must be permuted:

ﬁ



EVEN AND EVEN LAYOUT (1)

« Layout presented by G. Even and S. Even ['0Q],
and based on the notion of Layered Cross
Product (LCP):

= Def. A layered graph of 1+1 layers G=(Vg, Vy, ...,
Vi, E) consists of 1+1 layers of nodes; V;is the
(non-empty) set of nodes in layer i; E is a set
of directed edges: edge (u,v) connects two nodes
of two adjacent layers, that is, if u lies on layer

i then v lies on layer i+l.

EVEN AND EVEN LAYOUT (2)

Def. [Even & Litman '92] The LCP of two layered graphs of
1+1 layers each:

G1=(Vol, V4L, .., V&, E) and G2=(Ve2, V42, .., V2 E2), is a
layered graph of 1+1 layers, G=(Vy, V4, .., Vi, E), where:
= For every i=0, .., 1, V, = V,1xV,2 (i.e. each layer is the

cartesian product of the corresponding layers in G!
and G2);

= There is an edge (u,v) in G connecting nodes (ul,u?) and
(viv2) iff (ul,vl) and (u?v?) are edges in G! and G2

respectively. o ® RPN
| X |
6 \@ \@/ <b,3).><.(c,3)
N N ©

@ o @



EVEN AND EVEN LAYOUT (3)

Exemples of G':xip Even and Litman proved

G1 G2

that many well-known
Y ? V topologies are the LCP of
simple structures (e.g.

trees).
% Specifically, the butterfly
o e network is the LCP of two

m w a.e)%%m complete binary trees, an
g weoeocs  ypward one and a

downward one.

EVEN AND EVEN LAYOUT (4)

The Projection Methodology (PM):

Let G! and G? two layered graphs of 1+1 layers
each and let G denote their LCP. A layout of G
is obtained with the PM as follows:

©



EVEN AND EVEN LAYOUT (5)

The Projection Methodology (cntd)

Consider a cube and draw the graph G! on the xy face
so that:

= (a) the y-coordinate of every node u e V! equals i

= (b) the x-coordinate of every node is an integer.

Similarly, draw the graph G? on the

yz face

=

EVEN AND EVEN LAYOUT (6)

The Projection Methodology (cntd)

A three-dimensional drawing of the LCP G is
constructed in the cube as follows:
=if ueV,! is drawn in coordinates (x,, i, O) and
veV;? is drawn in coordinates (O, i, z,), then the
coordinates of node (u,v)eV; are (x,, i, z,).

In other words, the nodes of G
are the intersections between the
lines orthogonal to plane xy and
passing through nodes of G! and
the lines orthogonal to plane yz
and passing through nodes of G2




EVEN AND EVEN LAYOUT (7)

The Projection Methodology (cntd)

A 2D drawing of G is obtained by projecting the
3D drawing to the xz plane.

=

EVEN AND EVEN LAYOUT (8)

Obs. It is possible to avoid constructing the 3D
representation by immediately using the
prolongations on plane xz of the projections of
nodes in layer i of G! on the x-axis and of nodes
in layer i of G2 on the z-axis, i=0,...,1

N
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EVEN AND EVEN LAYOUT-(S
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The PM may produce layouts that do not satisfy the

constraints required by the Thompson model.

For example, the drawing above is a grid drawing
but it is not an orthogonal drawing.

V'“

5y
EVEN AND EVEN LAYOUT (K@—ﬁ»

Y

We now describe how rectilinear layouts of G can

be obtained via the PM. First, we formalize

necessary and sufficient conditions:

= for the edges of the xz projection of G to be
along grid paths,

= for nodes to be mapped to different grid points,

= for not using any grid edge more than once.

()



EVEN AND EVEN LAYOUT (11)

Four types of edges in the product graph G:
The product of two diagonal edges yields a diagonal

edge;
The product of a vertical edge and a diagonal edge
yields a vertical edge; A

Y
The product of a diagonal edge 31 O/o
and a vertical edge yields a 1*; &2 ;
horizontal edge; o0—0 o

g3 g5

The product of two vertical
edges yelds a single grid point. oﬁo EEE C};

=

EVEN AND EVEN LAYOUT (12)

In order to get a feasible layout through the PM, we
have to impose that the product of either two
diagonal edges or two vertical edges never occurs.

More precisely:

1. The PM generates a layout of G in which the edges
are grid lines if and only if the drawings of G! and
G? on the faces of the cube satisfy the following
condition: For every edge e e E, exactly one of its
factor is drawn diagonally.

This claim avoids overlappings of nodes of the same

layer, too.

(-2)



EVEN AND EVEN LAYOUT (13)

We need to impose that nodes in different

layers do not overlap:

2. The PM generates a layout of G in which at

most one node is mapped to each grid point if

and only if the sets {(x,, z,): u e Vil e

v e V;2} are disjoint, for each

i=0, .., L.
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EVEN AND EVEN LAYOUT (14)

Consider now two diagonal edges (a,b) and (c,d) in

Gl: the coordinates of nodes a, b, ¢, d are:

=  node a: (x5, 1, O);
= node b: (xb, i+1, 0);
= node c: (x., j, 0);

(

= node d: xd,]l 0).

We say that these two edges are consistent if the

open intervals (x, xp) and (x., x4) are disjoint. ©



EVEN AND EVEN LAYOUT (15)

3. The PM generates a layout of G in which no grid edge is
used twice if and only if for every two inconsistent edges
of one of the multiplicands the following condition holds:

The two edges are not in the same layer, and on the two
layers in which they appear, there are no (straight) edges
of the other multiplicand which are collinear.

Inconsistent edges on the same layer Inconsistent edges on different layers
7 \
| 5
! b
| — ¢
E |~ Ommmm—O
zy

EVEN AND EVEN LAYOUT (16)

In order to produce a feasible layout, we need to
ensure that all three claims are satisfied.

Let us consider the Claims one by one:



EVEN AND EVEN LAYOUT (17)

1. The PM generates a layout of G in which the edges
are grid lines if and only if the drawings of G! and
G? on the faces of the cube satisfy the following
condition: For every edge e e E, exactly one of its

factors is drawn diagonally.

A solution is to double the number of edge levels so
that the edges in the drawing of G! are diagonal in
odd layers and straight in the even layers, while the
edges in the drawing of G? are straight in the odd
layers and diagonal in the even layers.

EVEN AND EVEN LAYOUT (18)

R

The doubling of the number of edge levels is
achieved by stretching each edge of the two
multiplicands to become a path of two edges.

In this way, we simulate the creation of edge
bends.



EVEN AND EVEN LAYOUT (19)

2. The PM generates a layout of G in which at most
one node is mapped to each grid point if and only if
the sets{(x,, z,): u € V;! e v e V2] are disjoint, for each
i=0, .., L.

A simple way to guarantee that this condition will
hold is to make sure that no two nodes in the drawing
of G! (G?), except for the two end-points of the same
straight edge, share the x-coordinate (z-coordinate).

This is always possible if we opportunely enlarge the

drawings of the two factors.

EVEN AND EVEN LAYOUT (20)

3. The PM generates a layout of G in which no grid edge
is used twice if and only if for every two inconsistent
edges of one of the multiplicands, the following
condition holds:
« The two edges are not in the same layer of the
multiplicand, and
= on the two layers in which they appear, there are no
(straight) edges of the other multiplicand which are
collinear.
This condition is harder to enforce and is a severe
limitation of this technique. For this reason, we limit to
networks, each of which is the LCP of two trees.
©



EVEN AND EVEN LAYOUT (21)

R A

D input

' )

EVEN AND EVEN LAYOUT (22)

The butterfly network is the LCP of an upward and
a downward binary. (We dedicate a column to each
vertex to prevent vertices of the layout from
colliding.)

Proceed as follows:

= Draw one tree on the xy plane and the other on
the yz plane

= Construct their LCP in 3D inside the cube with
the PM

= The projection of this 3D figure on the floor is a
planar layout of the butterfly @



EVEN AND EVEN LAYOUT (23

This layout has the following

properties:

= [t's symmetric =

= Its height and its width are H=W=2(N-1), so its
area is 4N2+o(N2) -

« Input and output nodes are not on the boundary

= All the edges on the same layer has the same

length == ©

COMPARING THE TWO TECHNIQUES
= WISE - PROs:
= relatively small area
= It "looks like" a butterfly
= Input/output nodes on the boundary
= WISE - CON:s:
= knock-knees
= “slanted” grid
= EVEN & EVEN - PROs:
= It eliminates all the flaws
= EVEN & EVEN - CONs:
= Larger area

= input/output nodes inside the layout @



OTHER RESULTS (1)

With the aim of optimizing the layout area,
other layout algorithms have been proposed:

=« Dinitz ['98] proves that the area of the Even
& Even layout can be decreased by means of
some local adjustments, so to achieve area
11/6 N2+o(N2)

=L ater, Avior et al. ['98] prove that any
butterfly layout cannot have area smaller
than N2 + o(N2) if “slanted” drawing is not
allowed, and they provide an algorithm
producing a layout of optimal area.

©

OTHER RESULTS (2)

Finally, Dinitz et al. ['99] prove that, if a
"slanted” drawing is allowed, area 1/2 N2+o(N?2)

is necessary and sufficient.

These works definitively close the optimal area
layout problem of the Butterfly network.



OPTIMAL AREA LAYOUT
OF THE BUTTERFLY
NETWORK

OPTIMAL AREA LAYOUT - IDEA (1)

The two papers that provide an optimal area layout

base their results on the following lemma:

Lemma: For any non-negative integers j, k, Os<jsj*ksn,
the subgraph of the n-dim. Butterfly induced by the
nodes of levels j, j*1, ..., j*+k is the disjoint union of

27k copies of k-dimensional butterflies.

In particular,if j=0 and k=n-1:




OPTIMAL AREA LAYOUT - IDEA (2)

Hence, an (n-1)-dimensional butterfly can be
built as a pair of (n-2)-dim. butterflies
connected by one node layer and one edge layer.

If we cut out the input and output nodes from
an n-dim. Butterfly, we get:

@

OPTIMAL AREA LAYOUT - IDEA (3)

Each one of
these (n-2)-dim.
Butterflies can

be, in turn, cut

into man y NN ;0;0;0;0::;0:&0‘0@’(1
smaller
butterflies:
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OPTIMAL AREA LAYOUT - IDEA (4)

The previous layout can be better specified as
follows:

=

Qe0e

3000 0080
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OPTIMAL AREA LAYOUT - IDEA (5)

Each rectangle contains a Butterfly that can be
represented, either horizontally or vertically, layer

by layer as follows:

channel channel

ronting routing

i
il

Obs.: this layout is far from being optimal;
nevertheless it allows to produce a final optimal

layout.

@



OPTIMAL AREA LAYOUT - IDEA (6)

It remains to connect the small rectangular butterflies:

NONNONALN

AARRANAN

@

OPTIMAL AREA LAYOUT - IDEA (7)

In the case of slanted layout, it can be bent along the

line:

/

/

/

//

NONNOALN




OPTIMAL AREA LAYOUT - IDEA (8)

It is possible to prove tight lower and upper
bounds on the layout area for both the models

(usual and slanted).

The interested students can look at:
= A. Avior, T.C,, S. Even, A. Litman, A.L. Rosenberg: A
Tight Layout of the Butterfly Network. Theory of
Computing Systems 31, 1998.

= Y. Dinitz, S. Even, M. Zapolotsky: A Compact Layout
of the Butterfly. J. of Interconnection Networks 4,

2003. @

LAYOUT OF THE
HYPERCUBE NETWORK

N
N/




THE HYPERCUBE (1)

Widely used for parallel computation, thanks to its
nice properties (high regularity, logarithmic diameter,
good fault tolerance, ...).

Def. The n-dimensional Hypercube, Q,, has N=2% nodes
and %2n2"” edges. Each node is labeled with an n-bit
binary string, and two nodes are linked with an edge

iff their binary strings differ in precisely one bit.

The edges of the hypercube can be naturally
partitioned according to the dimensions that they

traverse and Q, can be seen as Q. ;= Q_ ;...

THE HYPERCUBE (2)

Q, can be built by joining with an edge nodes in

two different copies of Q. ;if they have the same
label.
Obs.: These edges form a perfect matching. @



THE HYPERCUBE (3)

Property: Q, has diameter log N.
Sketch of proof. Any two nodes

U:U1U2...UlogN and V:V1V2...V109N
are connected by the path:
UqU2:UiogN VU2 UiogN V1 V2 UlogN s V1V 21 ViggN
There are pairs of nodes requiring exactly log N

steps. |

©

THE HYPERCUBE (4)

Reminder: The bisection width of a network is the
minimum number of edges one has to cut to disconnect
the network into two equally sized subnetworks.

Property. BW(Q,)=N/2.
Sketch of proof. the green
edges (i.e. in a single dim.)
divide the hypercube into
two equally sized sub-
networks; they are N/2 and

it is not possible to cut a
smaller number of edges to @

get the same result.



THE HYPERCUBE (5)

Th. A lower bound on the layout area of a
network is the square of its bisection width

(already proved).
Cor. Each layout of Q, has area at least N2/4.

In the following: layout with area 4/9N2+o(N2),
that hence is almost optimal (far from the lower
bound by a factor of 1.7) [Yeh, Varvarigos, Parhami, ‘99].

()

COLLINEAR LAYOUT (1)

Reminder: In a collinear layout all nodes are
placed on the same line. Instead of computing its
area, it is usual to count the number of necessary

tracks.

We start with a 2-dim. Hypercube, and inductively

move to hypercubes of higher dimensions:

'! ooom

2 tracks




COLLINEAR LAYOUT (2)

= If n odd: Assume that we have a collinear

layout for Q,_; that requires f(n-1) tracks:

Qn

‘I. |
o] oo forofor [ oo

2 tracks 2 tracks

i

1 track

Tot. f(n)=2f(n-1)+1 tracks @

COLLINEAR LAYOUT (3)

=If n is even: To obtain the collinear layout of
Q, we start with the layouts of four Q,_s:

=]

L

o]

= ol |
|0000||0001||0010||0011||0100|0101||0110||0111|| 1000||1001||1010||1011 |11

00||1101”1110||1

]
111|

f(n+2)=4f(n)+2



COLLINEAR LAYOUT (4)

= Th. The number of tracks required for the collinear
layout of Q, is 2/3N (with N=22 no. of nodes).

= Proof. We solve the following recurrence equation:
= f(n)=2f(n-1)+1 if n odd
= f(n)=4f(n-2)+2 if n even
= £(2)=2
Even case:
f(n)=4f(n-2)+2=42f(n-4)+4x2+2=
=43f(n-6)+2°+23+2=...=
-.when n-2k=2 iff k=(n-2)/2..= 4 f(n-2k)+ 3 2-4'=

n-2 n-2 n-2

—-1 +1

42 2 2

n-2 N A
=4? f(2)+2;4 =2;4 =2 ——=32"=2N @

COLLINEAR LAYOUT (5)

(proof cntd)

The odd case is analogous. N
The area of this layout is (2/3N+n) x (nN).

Th. Q, can be laid out in 4/9N2+o(N2?) area.
Sketch of Proof. Let n=n;+n..

Let us use 271 copies of the collinear layout of
Q.», each placed along a row.

We connect the 27! nodes that belong to the same
column vertically according to the collinear layout

of a in-



COLLINEAR LAYOUT (6)

(proof cntd)

Reminder: Q, needs of
2,32 tracks

# of horiz. tracks (rows):
2nl copies x 2/3272 tracks
Additive height (nodes):
2nl copies x n;

Total heigth:

201 x (2/3282+ n,)=

2/32n1+n2+n2 2n1

COLLINEAR LAYGUT (7)”

(proof cntd)

Reminder:
= 2/32n1+n2+n2 2nl
The is computed

analogously, switching the
roles of n; and n..

2/32n1+n2+n1 2n2

1
[ 11 LI
e 1t |
00000} ][ o001, ]| 00010} || 00011 ]| 00100}, Tl 00101 ]{00110]; || 00111}
1] ]
| [ 11 1 | |
[, 11 [1 11 11 11, .
010005 | 010015 01010 (01011 H5| 011005 | 011015 [ 01110 [ 01111
1 ]
| [ 11 LI | |
[« 1 [1 11 1 1. )
10000}, || 10001, ||10010F, [[10011F |[10100F |[10101F |[10110F [[10111F
1 ]
| [ 11 1 | |
[« 1 1. [ [ 11y !
11000[| 11001 | 11010[-| 11011| 11100| 11101 | 11110 | 11111 F
10 ]
| 11 1 | |
[—— 11 [H— 1 [——1T1 H—
00000}, ]| 00001F; ]| 00010}, || 00011F ]| 0o100f; || 00101 ]| 00110f || 00111 ]
10 1
| [ 1 1 | |
[, o [ 11, 11 11 1. )
01000 | 01001 | 010105 | 01011 H [ 01100 | 01101 [ 01110 | 01111}
11 ]
| [ 11 1 | |
[ 11 I1 11, 1 11, )
10000f, |[10001f; ||10010}, [[10011f; || 10100F, |[ 10101, || 10110} [|10111];
11 ]
| [ 11 11 | |
[, 11 I1 11 1 11, )
11000 [ 11001 | 11010H] 11011 [ 11100[ 11101 -] 11110 ] 11111

Area:(2/3N+n1 21’12)(2/3N+n2 an):
=4/9N2+0(N?) if n; and n, are o(N), e.g. if

n;=0(n,)=n,,.




3D LAYCOUT PROBLEM (1)

The diffusion of the 3D layout has increased in
the last thirty years.

The topology is lain out on a series of slices.

Further optimization of the wire length and
number of bends

Less silicon used.

3D Structure 2D Stucture

CUG; ;009
RE=2]

o
ooooooooo

Via Hole Wiring (@)




3D LAYOUT PROBLEM (2)

Def. A 3D layout of a topology G is a 1-1 function
between G and the 3D grid such that:
* the nodes are mapped into grid points;
it is better if they lie on the external slice to
minimize: energy consuming, production of heat and
difficulty of connection with other devices
* the wires are mapped on grid paths so that:
 these paths are edge-disjoint;
* there are no “knock-knees”
* these paths do not cross any mapping of a node that
is not an extreme of the corresponding wire.
Aim: minimizing volume and keeping wires short.

@



