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THE THOMPSON’S MODEL



§ The interconnection topology layout problem
arises from the problem of producing efficient
VLSI (Very Large Scale Integration) layouts on a
silicon board.

§ It was born in the ’40s, but it got a
significative interest only relatively recently
when the technology has allowed to layout
circuits in two and three dimensions at
reasonably low prices.
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Exemples of VLSI circuits:
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Model the circuit as a graph (nodes = ports,
switches, etc. and edges = wires).
There is a tight relation between the VLSI layout
and the graph drawing.

5

Drawing G of a graph G: it is a function
mapping each node v in a distinct point
G(v), and each edge (u,v) in an open Jordan
curve G(u,v) not crossing any point that is
the mapping of a node, starting in G(u) and
arriving in G(v).

The VLSI technology production imposes many
constraints:
§the device pressing the connections can only
approximate slanting lines by tiny horizontal and
vertical segments (Þorthogonal drawing);
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Orthogonal drawing: drawing of a 
graph where edges are represented as

broken lines whose segments are 
horizontal or vertical (parallel to the 

coordinate axes)



§ In order to avoid interference, it is necessary to
keep wires far enough (Þgrid drawing);
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Grid drawing: drawing of a graph so
that all nodes, crosses and bends of
the edges are put on grid points
(scaling property - resolution)

§Wires cannot cross; in order to avoid crossings,
it is possible to route the crossing wires on the
two separate sides of the board, introducing
small “holes” trespassing the board from one side
to the other; the number of such holes must be
small, as their realization is rather expensive
(Þcrossing number minimization)
§…
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§ The silicon is very expensive; so the layout
must have a small area (Þarea minimization).

§Wires should not be too long, as the
propagation delay is proportional to their
length; in the case of layered topology, wires
in the same layer should have (approximately)
the same length, so to avoid synchronization
problems

(Þedge length minimization).
9

In 1980 Thompson introduced a model that is
consistent with all the mentioned constraints:

the layout of a topology G is a plane
representation on a bunch of unit distance
horizontal and vertical traces that maps:
§ nodes of G in the intersection points of the
traces,

§…
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§ edges of G in disjoint paths constituted by
horizontal and vertical segments on traces; such
paths cannot cross nodes that are not their
extremes and they can cross each other only in
correspondence of trace intersection points;
§Overlappings (edge-edge) are not allowed
§Node-edge crosses are not allowed
§ “knock-knees” are not allowed

11
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ORTOGHONAL GRAPH DRAWING



Def. An orthogonal grid drawing of a graph G=(V,E)
is a bijection mapping:

§ nodes v Î V on plane points G(v) at integer
coordinates

§ edges (v,w) Î E on not overlapping paths so that
the images of their extremes G(v) and G(w) are
connected by the corresponding paths.

§ These paths are constituted by horizontal and
vertical segments; the possible bends have
integer coordinates

Obs. Only graphs with degree £ 4 can be correctly
drawn. 13

So, the interconnection topology layout is an
orthogonal grid drawing of the corresponding
graph with the aim of minimizing the area, the
number of crossings and the wire length.

There is a huge literature in the GRAPH
DRAWING area…

Shall we use the known algorithms for
orthogonal grid drawing in order to solve the
layout problem?
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No:
these algorithms guarantee some bounds on the
optimization functions that hold FOR EACH
input graph having the required input hypotheses
Instead, interconnection topologies are very
structured graphs (usually regular, symmetric,
recursively built, …), and, by exploiting these
properties, it is possible to get better results.
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§Graph drawing algorithms get a graph in input
and draw it on the plane.

§ Layout algorithms are designed for a single
special interconnection topology and so they
get only its dimension in input.

§Obs. Improving an optimization function by
“only” a constant factor is an important issue
(especially the area): if a layout occupies ½ of
the area of another one, it will cost the half!
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§ This result has been independently achieved by Leiserson
[’80] and Valiant [’81].

§ H-tree: grid orthogonal rectilinear plane representation
of an n-node complete binary tree in area O(n).

§ The result is optimum (trivially the area must be W(n))

§ Brent e Kung [’80] show that it is necessary W(n log n)
area if the leaves are constrained to lay on the border.

§ Note: each binary tree is contained in a complete binary
tree, so we can exploit this approach to represent every
binary tree, but the area could be not optimum anymore!
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Inductive construction:

§ h=0

§ inductive step:
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h even
h odd
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h=0 h=1

h=2

h=3

h=4

An example:
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Th. The area occupied by an n-node H-tree is
2(n+1)+o(n).
Proof. Base cases: l0=w0=0; 

l1=0; w1=2; 
l2=2; w2=2; 

General cases:
h odd:   lh=lh-1; wh=2 wh-1+2;
h even:        lh=2 lh-1+2; wh=wh-1;    

Solving the recurrency equation…. ◼h even

h odd
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§ The Thompson model [‘79] requires that the wires
coming out of each processing element are at
most 4 (6 in 3D).

Problem: What if the degree is higher? (end of
the ’90s)

Sol.: Non-constant node degree model:
§ a node of degree d occupies a square of side
Θ(d) (here the degree is n-1)

§ the wires can run either horizontally or
vertically along grid lines.
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§ Layout proposed by Yeh and Parami [‘98]
§Collinear layout with area n4/4 - optimal

§ In a collinear layout, all nodes are placed on
the same line. Instead of computing its area, it
is usual to count the number of necessary
tracks.
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To obtain the collinear layout of the complete
graph:

§ let a link be type-i if it connects two nodes
whose labels differ by i; so, the n(n-1)/2 links
can be classified into types 1, 2, …, n-1, and
there are n-i type-i links.

§…
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§…
§ place the n nodes, labeled 1 through n, along a
row;

§ place the type-1 links in one track,
§ place the type-2 links in two tracks, where links
connecting odd nodes are put in one track and
links connecting even nodes are put in the other
one

§ place the type-i links in min(i, n-i) tracks
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Total number of tracks in this layout:
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substituting 
j=n-i

Def. The bisection width of a network is the
minimum number of edges one has to cut to
disconnect the network into two equally sized
sub-networks.

Property. The bisection width of the complete
graph is n2/4+o(n2).

Th. A lower bound on the number of tracks in the
collinear layout of a network is its bisection
width (to be proved later).

Cor. A lower bound on the number of tracks in the
collinear layout of the complete graph is
n2/4+o(n2). 28



Note. The area of the collinear layout is:
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n2

4

n2

n4

4

§Although the collinear layout leads to the
smallest possible number of tracks, layouts with
smaller area can be obtained.

§An area-efficient layout for complete graphs is
based on the previous collinear layout.

§W.l.o.g. n=m1 x m2, where m1 and m2 are Θ(√n)
§ Each node can be labeled (i,j) with i=1, …, m1 and
j=1, …, m2.
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§ Put node (i,j) at coordinates (i,j) on an m1 x m2 grid.
§ Without entering into details:
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Area = n
4

16
+o(n4 )

Th. A lower bound on the layout area of a network
is the square of its bisection width.
Reminder. The bisection width of the complete
graph is n2/4+o(n2).
Cor. A lower bound on the layout area of the
complete graph is n4/16+o(n4).
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Let us prove the theorem:

Th. [Thompson‘79] A lower bound on the layout area
of a network is the square of its bisection width.

Proof. Suppose that the bisection width of a
network G can be counted when partitioning its
nodes in two sets of k and n-k nodes, respectively.
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layout of G
n/2

n/2

width at least as large as 
the bisection width…
the same holds for the 
height… n

n/2

n/2
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Def. (reminder) Let N=2n (and n=log N);
an n-dim. Butterfly is a layered graph
having N (n+1) nodes (n+1 layers, with 2n

nodes each) and 2Nn edges.

The nodes are labeled with a pair (w, i),
where i is the layer of the node and w is
an n-bit binary number indicating the row
of the node.

Two nodes (w, i) and (w’, i’) are adjacent iff
i’=i+1 and:

§w=w’ (straight edge) or
§w e w’ differ in exactly the i-th bit
(cross edge).
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Layout proposed by D.S.Wise [’81]
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He writes: 
“This paper offers a result that can be 
described as a picture. […] The perceptive
reader may stop here, since the remainder of 
this paper only describes it.” 



Properties:
1. (very important in a layered topology)

All the wires in the same layer are of
equal length.

Nevertheless, this length grows exponentially
with the layer.
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2. The longest path length from any input to any
output is linear in N (namely, 2(N-1)).

Indeed:
§All the paths have the same length.
§ For the sake of simplicity, consider the path
from the upper-left node to the lower-right
node: its length coincides with the diagonal of
the square having side 2(N-1), so it is 2(N-1).
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3. The layout is performed on the two sides of the
silicon board, so it can be considered a 2-layer
layout; one layer is composed of all diagonal wires
running from lower-left to upper-right -red lines-
and the other layer is composed of all diagonal
wires from lower-right to upper-left -black lines.
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PROs:
§ Good area : 2(N-1) ´ 2(N-1)= 2N2+o(N2).
§ Same wire length on each layer; this is not true in
every layout: in the classical drawing of the
butterfly network, for example, straight-edges on the
last layer have unit length while the cross-edges on
the same layer have a linear length in the input size
N; this is extremely bad, because synchronization of
the information flow goes lost;

§ The input and output nodes lie on the boundary of
the layout, and this can be required by some
applications.
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CONs:
§ “slanted” lines, so that the area of the layout is
measured by a rectangle whose sides are not parallel
to coordinate axes but lie at 45°; if we follow the
standard definition of layout area, it becomes 2(N-1)
´ 2(N-1)= 4N2+o(N2); indeed, the circumscribed square
with sides parallel to the coordinate axes has side
equal to the length of the path from the upper-left
node to the lower-right node, that is 2(N-1);

§ …
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CONs (cntd):

§ it is a ‘cheating’ layout, indeed the “knock-knees” are
not avoided but arranged in the layout thanks to some
devices that have no null area and so enlarge the
layout area.

§ The Wise layout “looks like” the usual representation.
Nevertheless, in order to get the Wise layout from the
usual representation, nodes must be permuted:
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§ Layout presented by G. Even and S. Even [’00],
and based on the notion of Layered Cross
Product (LCP):

§Def. A layered graph of l+1 layers G=(V0, V1, …,
Vl, E) consists of l+1 layers of nodes; Vi is the
(non-empty) set of nodes in layer i; E is a set
of directed edges: edge (u,v) connects two nodes
of two adjacent layers, that is, if u lies on layer
i then v lies on layer i+1.
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Def. [Even & Litman ’92] The LCP of two layered
graphs of l+1 layers each:

G1=(V01, V11, …, Vl1, E1) and G2=(V02, V12, …, Vl2, E2), is a
layered graph of l+1 layers, G=(V0, V1, …, Vl, E), where:

§ For every i=0, …, l, Vi = Vi1´Vi2 (i.e. each layer is
the cartesian product of the corresponding layers
in G1 and G2);

§ There is an edge (u,v) in G connecting nodes (u1,u2)
and (v1,v2) iff (u1,v1) and (u2,v2) are edges in G1

and G2, respectively.
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Even and Litman proved
that many well-known
topologies are the LCP of
simple structures (e.g.
trees).

Specifically, the butterfly
network is the LCP of two
complete binary trees, an
upward one and a
downward one.
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Exemples of LCP

The Projection Methodology (PM):
Let G1 and G2 two layered graphs of l+1 layers
each and let G denote their LCP. A layout of G
is obtained with the PM as follows:
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The Projection Methodology (cntd)

Consider a cube and draw the graph G1 on the xy face
so that:

§ (a) the y-coordinate of every node u e Vi
1 equals i

§ (b) the x-coordinate of every node is an integer.

Similarly, draw the graph G2 on the yz face

47

The Projection Methodology (cntd)

A three-dimensional drawing of the LCP G is
constructed in the cube as follows: 

§ if uÎVi1 is drawn in coordinates (xu, i, 0) and
vÎVi2 is drawn in coordinates (0, i, zv), then the
coordinates of node (u,v)ÎVi are (xu, i, zv).

In other words, the nodes of G
are the intersections between the
lines orthogonal to plane xy and
passing through nodes of G1 and
the lines orthogonal to plane yz
and passing through nodes of G2.



The Projection Methodology (cntd)

A 2D drawing of G is obtained by projecting the 
3D drawing to the xz plane. 

Obs. It is possible to avoid constructing the 3D
representation by immediately using the
prolongations on plane xz of the projections of
nodes in layer i of G1 on the x-axis and of nodes
in layer i of G2 on the z-axis, i=0,…,l
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The PM may produce layouts that do not satisfy the
constraints required by the Thompson model.

For example, the drawing above is a grid drawing
but it is not an orthogonal drawing.
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 We now describe how rectilinear layouts of G can
be obtained via the PM. First, we formalize
necessary and sufficient conditions:

§ for the edges of the xz projection of G to be
along grid paths,

§ for nodes to be mapped to different grid points,
§ for not using any grid edge more than once.
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Four types of edges in the product graph G:
1. The product of two diagonal edges yields a

diagonal edge;
2. The product of a vertical edge and a diagonal

edge yields a vertical edge;
3. The product of a diagonal edge

and a vertical edge yields a
horizontal edge;

4. The product of two vertical edges
yelds a single grid point.
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In order to get a feasible layout through the PM,
we have to impose that the product of either
two diagonal edges or two vertical edges never
occurs. More precisely:
1. The PM generates a layout of G in which the
edges are grid lines if and only if the drawings
of G1 and G2 on the faces of the cube satisfy the
following condition: For every edge e e E,
exactly one of its factor is drawn diagonally.
This claim avoids overlappings of nodes of the
same layer, too.
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We need to impose that nodes in different
layers do not overlap:
2. The PM generates a layout of G in which at
most one node is mapped to each grid point if
and only if the sets {(xu, zv): u Î Vi1 e
v Î Vi2} are disjoint, for each
i=0, …, l.
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Consider now two diagonal edges (a,b) and (c,d) in
G1; the coordinates of nodes a, b, c, d are:

§ node a: (xa, i, 0);
§ node b: (xb, i+1, 0);
§ node c: (xc, j, 0);
§ node d: (xd, j+1, 0).

We say that these two edges are consistent if the
open intervals (xa, xb) and (xc, xd) are disjoint.
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3. The PM generates a layout of G in which no
grid edge is used twice if and only if for every
two inconsistent edges of one of the
multiplicands the following condition holds:
The two edges are not in the same layer of the
multiplicand, and on the two layers in which they
appear, there are no (straight) edges of the other
multiplicand which are collinear.
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Inconsistent edges on the same layer

 

Inconsistent edges on different layers

In order to produce a feasible layout, we need to
ensure that all three claims are satisfied.

Let us consider the Claims one by one:
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1. The PM generates a layout of G in which the
edges are grid lines if and only if the drawings
of G1 and G2 on the faces of the cube satisfy the
following condition: For every edge e e E, exactly
one of its factors is drawn diagonally.

A solution is to double the number of edge levels
so that the edges in the drawing of G1 are
diagonal in odd layers and straight in the even
layers, while the edges in the drawing of G2 are
straight in the odd layers and diagonal in the
even layers. 59

The doubling of the number of edge levels is
achieved by stretching each edge of the two
multiplicands to become a path of two edges.
In this way, we simulate the creation of edge
bends.
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2. The PM generates a layout of G in which at
most one node is mapped to each grid point if
and only if the sets{(xu, zv): u Î Vi1 e v Î Vi2} are
disjoint, for each i=0, …, l.

A simple way to guarantee that this condition will
hold is to make sure that no two nodes in the
drawing of G1 (G2), except for the two end-points
of the same straight edge, share the x-coordinate
(z-coordinate).
This is always possible if we opportunely enlarge
the drawings of the two factors. 61

3. The PM generates a layout of G in which no grid edge
is used twice if and only if for every two inconsistent
edges of one of the multiplicands, the following
condition holds:

§ The two edges are not in the same layer of the 
multiplicand, and 

§ on the two layers in which they appear, there are no 
(straight) edges of the other multiplicand which are 
collinear. 

This condition is harder to enforce and is a severe
limitation of this technique. For this reason, we limit to
networks, each of which is the LCP of two trees.
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The butterfly network is the LCP of two binary trees,
one drawn upward and one drawn downward. (We
dedicate a column to each vertex to prevent vertices of
the layout from colliding.)

Proceed as follows:
§ Draw one tree next to the xy plane and the other
next to the yz plane

§ Construct their LCP in 3D inside the cube, in such a
way that the two trees are the projections of the
resulting butterfly on the xy and yz planes

§ The projection of this 3D figure on the floor is a
planar layout of the butterfly
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This layout has the following

properties:
§ It’s symmetric !
§ Its height and its width are H=W=2(N-1), so its
area is 4N2+o(N2) "

§ Input and output nodes are not on the boundary "
§All the edges on the same layer has the same
length !
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§WISE - PROs:
§ relatively small area
§ It “looks like” a butterfly
§ Input/output nodes on the boundary

§WISE - CONs:
§ knock-knees
§ “slanted” grid

§ EVEN & EVEN - PROs:
§ It eliminates all the flaws

§ EVEN & EVEN - CONs:
§ Larger area
§ input/output nodes inside the layout
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With the aim of optimizing the layout area,
other layout algorithms have been proposed:

§Dinitz [’98] proves that the area of the Even
& Even layout can be decreased by means of
some local adjustments, so to achieve area
11/6 N2+o(N2)

§ Later, Avior et al. [’98] prove that any
butterfly layout cannot have area smaller
than N2 + o(N2) if “slanted” drawing is not
allowed, and they provide an algorithm
producing a layout of optimal area.
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Finally, Dinitz et al. [’99] prove that, if a
“slanted” drawing is allowed, area 1/2 N2+o(N2)
is necessary and sufficient.

These works definitively close the optimal area
layout problem of the Butterfly network.
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OPTIMAL AREA LAYOUT 
OF THE BUTTERFLY NETWORK
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The two papers that provide an optimal area
layout base their results on the following lemma:
Lemma: For any non-negative integers j, k,
0≤j≤j+k≤n, the subgraph of the n-dim. Butterfly
induced by the nodes of levels j, j+1, …, j+k is the
disjoint union of 2n-k copies of k-dimensional
butterflies.
In particular,if j=0 and k=n-1:
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Hence, an (n-1)-dimensional butterfly can be
built as a pair of (n-2)-dim. butterflies
connected by one node layer and one edge layer.
If we cut out the input and output nodes from
an n-dim. Butterfly, we get:
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Each one of 
these (n-2)-dim. 
Butterflies can 
be, in turn, cut
into many
smaller
butterflies:
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The previous layout can be better specified as
follows:
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?

Each rectangle contains a Butterfly that can be
represented, either horizontally or vertically, layer
by layer as follows:
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Obs.: this layout is far from being optimal;
nevertheless it allows to produce a final optimal
layout.



It remains to connect the small rectangular butterflies:
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In the case of slanted layout, it can be bent along the
line:
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It is possible to prove tight lower and upper
bounds on the layout area for both the models
(usual and slanted).

The interested students can look at:
§A. Avior, T.C., S. Even, A. Litman, A.L. Rosenberg:
A Tight Layout of the Butterfly Network. Theory
of Computing Systems 31, 1998.

§Y. Dinitz, S. Even, M. Zapolotsky: A Compact
Layout of the Butterfly. J. of Interconnection
Networks 4, 2003. 77
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Widely used for parallel computation, thanks to its
nice properties (high regularity, logarithmic diameter,
good fault tolerance, …).

Def. The n-dimensional Hypercube, Qn, has N=2n nodes
and ½n2n edges. Each node is labeled with an n-bit
binary string, and two nodes are linked with an edge
iff their binary strings differ in precisely one bit.

The edges of the hypercube can be naturally
partitioned according to the dimensions that they
traverse and Qn can be seen as Qn-1 º Qn-1…
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Qn can be built by joining with an edge nodes in 
two different copies of  Qn-1 if they have the same
label.

Obs.: These edges form a perfect matching.

Q2

00 01

10 11

000

Q3

001

010
011

100 101

110 111

Q4

0000 0001

0010
0011

0100 0101

0110 0111

1000 1001

1010
1011

1100 1101

1110
1111
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Property: Qn has diameter log N.
Sketch of proof. Any two nodes

u=u1u2…ulogN and v=v1v2…vlogN

are connected by the path:
u1u2…ulogNv1u2…ulogNv1v2…ulogN…v1v2…vlogN

There are pairs of nodes requiring exactly log N
steps. n

000

Q3

001

010
011

100 101

110 111
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Reminder: The bisection width of a network is the
minimum number of edges one has to cut to disconnect
the network into two equally sized subnetworks.

Property. BW(Qn)=N/2.

Q4

0000 0001

0010
0011

0100 0101

0110 0111

1000 1001

1010
1011

1100 1101

1110
1111

Sketch of proof. the green
edges (i.e. in a single dim.)
divide the hypercube into
two equally sized sub-
networks; they are N/2 and
it is not possible to cut a
smaller number of edges to
get the same result.
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Th. A lower bound on the layout area of a
network is the square of its bisection width
(already proved).
Cor. Each layout of Qn has area at least N2/4.

In the following: layout with area 4/9N2+o(N2),
that hence is almost optimal (far from the lower
bound by a factor of 1.7) [Yeh, Varvarigos, Parhami, ‘99].

Reminder: In a collinear layout all nodes are
placed on the same line. Instead of computing its
area, it is usual to count the number of necessary
tracks.

We start with a 2-dim. Hypercube, and inductively
move to hypercubes of higher dimensions:

§Q2:
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00 01

10 11

00 01 10 11

2 tracks



§ If n odd: Assume that we have a collinear
layout for Qn-1 that requires f(n-1) tracks:
Qn
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2 tracks

001 011 101 111000 010 100 110

2 tracks 1 track

Tot. f(n)=2f(n-1)+1 tracks

§ If n is even: To obtain the collinear layout of
Qn we start with the layouts of four Qn-2s:
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f(n+2)=4f(n)+2



§ Th. The number of tracks required for the collinear
layout of Qn is 2/3N (with N=2n no. of nodes).

§ Proof. We solve the following recurrence equation:
§ f(n)=2f(n-1)+1 if n odd
§ f(n)=4f(n-2)+2 if n even
§ f(2)=2
Even case:
f(n)=4f(n-2)+2=42f(n-4)+4x2+2=
=43f(n-6)+25+23+2=…=
=…when n-2k=2 iff k=(n-2)/2…=
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4k f (n− 2k)+ 2 ⋅ 4i
i=0

k−1

∑ =

= 4
n−2
2 f (2)+ 2 4i

i=0

n−2
2
−1

∑ = 2 4i
i=0

n−2
2

∑ ≅ 2 ⋅ 4
n−2
2
+1

3
=
2
3
2n = 2

3
N

(proof cntd)

The odd case is analogous. n

The area of this layout is (2/3N+n) x (nN).

Th. Qn can be laid out in 4/9N2+o(N2) area.
Sketch of Proof. Let n=n1+n2.
Let us use 2n1 copies of the collinear layout of
Qn2, each placed along a row.
We connect the 2n1 nodes that belong to the same
column vertically according to the collinear layout
of a Qn1. 88
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Figure 1. collinear layouts of (a) a 2-cube and
(b) a 4-cube. (c) A 2-D layout of a 5-cube.

lower boundN2 4 [which follows from the fact that the area
of a graph is at least equal to B2 [19, 25], where B N 2 is
the bisection width of a hypercube, or from Lemma 5.1 of
Section 5 since a total exchange task in a hypercube requires
N 2 steps [20]. The proposed hypercube layout has max-
imum wire length N 3 o N , which is (slightly) shorter
than the best previous result [10] for hypercubes of (cur-
rently) practical sizes (e.g.,N 214 16K), and has smaller
area by a factor of 2 25 o 1 at the same time. Note that
we can move the longer wires (and other wires belong to the
same tracks) to the first 2n2 1 horizontal tracks (or the first
2n1 1 vertical tracks, respectively) in order to (slightly) re-
duce the maximum wire length.

An enhanced-cube is a hypercube with one additional
outgoing link per node leading to a random node [21]. A
folded hypercube [1] is a hypercube with one additional link
per node, where each node S has a link connecting it to the
node whose label is the bitwise complement of S. By adding
additional links to the hypercube layout of Theorem 2.2, we
can lay out a folded hypercube in 49

36N
2 o N2 area, and

an enhanced-cube in 25
9 N

2 o N2 area. More precisely,
we first lay out an N-node hypercube in a square of side
2
3N o N . To lay out an additional link, we need at most an
additional vertical track and an additional horizontal track,
in addition to the two ending segments connecting the link
to two nodes.

Since there are N 2 additional links in a folded hyper-
cube, we need at most N 2 extra vertical and horizontal
tracks to accommodate all the diameter links. Therefore, the

area for the layout of a folded hypercube is

7
6
N o N

7
6
N o N

49
36
N2 o N2

Since there are N additional links in an enhanced-cube, we
need at most N vertical and horizontal tracks to accommo-
date all the additional links. Therefore, the area for the lay-
out of an enhanced-cube is 25

9 N
2 o N2 .

The preceding layouts for folded hypercubes and
enhanced-cubes improve the areas of the corresponding lay-
outs given in [21] by constant factors.

2.2. Efficient layouts for CCC and reduced hyper-
cubes

An n-dimensional cube-connected cycles (CCC) graph is
obtained by replacing each node in an n-cube with an n-node
cycle [16]. A reduced hypercube, RH log2 n log2 n [29],
can be obtained by replacing each n-node cycle in a CCC
with a log2 n-dimensional hypercube.

Theorem 2.3 An N-node CCC or RH log2 n log2 n can be
laid out in

4N2

9 log2
2N

o
N2

log2N

area.

Proof: We first lay out an n-cube using the 2-D layout intro-
duced in Subsection 2.1, and then lay out the n-node cycles
within each of the hypercube nodes. Since the size of an n-
dimensional CCC is N n2n and its area is dominated by
its hypercube links, which requires 2n 2 9 o 2n area, an
N-node CCC can be laid out in

4N2

9 log2
2N

o
N2

log2N

area. Using the same layout method, the reduced hypercube
can be laid out in asymptotically the same area.

In [16], layouts of area 2N2

log2
2N

o N2

log2N and 4N2

3 log2
2N

o N2

log2N
were proposed for the CCC graph. Our layout has

area smaller than that of the layouts given in [16] by a factor
of at least 3 o 1 , and smaller than that of the more recent
layouts given in [7] by a factor of 1 125 o 1 . The layout
area given in Theorem 2.3 is within a factor of 1  7 o 1
from the lower bound given in [7] and is the best result re-
ported thus far for the CCC network.

(proof cntd)

Reminder: Qk needs of
2/32k tracks
# of horiz. tracks (rows):
2n1 copies x 2/32n2 tracks
Additive height (nodes):
2n1 copies x n2

Total heigth:
2n1 x (2/32n2+ n2)=
2/32n1+n2+n2 2n1

…

Figure 1. collinear layouts of (a) a 2-cube and
(b) a 4-cube. (c) A 2-D layout of a 5-cube.

lower boundN2 4 [which follows from the fact that the area
of a graph is at least equal to B2 [19, 25], where B N 2 is
the bisection width of a hypercube, or from Lemma 5.1 of
Section 5 since a total exchange task in a hypercube requires
N 2 steps [20]. The proposed hypercube layout has max-
imum wire length N 3 o N , which is (slightly) shorter
than the best previous result [10] for hypercubes of (cur-
rently) practical sizes (e.g.,N 214 16K), and has smaller
area by a factor of 2 25 o 1 at the same time. Note that
we can move the longer wires (and other wires belong to the
same tracks) to the first 2n2 1 horizontal tracks (or the first
2n1 1 vertical tracks, respectively) in order to (slightly) re-
duce the maximum wire length.

An enhanced-cube is a hypercube with one additional
outgoing link per node leading to a random node [21]. A
folded hypercube [1] is a hypercube with one additional link
per node, where each node S has a link connecting it to the
node whose label is the bitwise complement of S. By adding
additional links to the hypercube layout of Theorem 2.2, we
can lay out a folded hypercube in 49

36N
2 o N2 area, and

an enhanced-cube in 25
9 N

2 o N2 area. More precisely,
we first lay out an N-node hypercube in a square of side
2
3N o N . To lay out an additional link, we need at most an
additional vertical track and an additional horizontal track,
in addition to the two ending segments connecting the link
to two nodes.

Since there are N 2 additional links in a folded hyper-
cube, we need at most N 2 extra vertical and horizontal
tracks to accommodate all the diameter links. Therefore, the

area for the layout of a folded hypercube is
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Since there are N additional links in an enhanced-cube, we
need at most N vertical and horizontal tracks to accommo-
date all the additional links. Therefore, the area for the lay-
out of an enhanced-cube is 25

9 N
2 o N2 .

The preceding layouts for folded hypercubes and
enhanced-cubes improve the areas of the corresponding lay-
outs given in [21] by constant factors.

2.2. Efficient layouts for CCC and reduced hyper-
cubes

An n-dimensional cube-connected cycles (CCC) graph is
obtained by replacing each node in an n-cube with an n-node
cycle [16]. A reduced hypercube, RH log2 n log2 n [29],
can be obtained by replacing each n-node cycle in a CCC
with a log2 n-dimensional hypercube.

Theorem 2.3 An N-node CCC or RH log2 n log2 n can be
laid out in

4N2

9 log2
2N

o
N2

log2N

area.

Proof: We first lay out an n-cube using the 2-D layout intro-
duced in Subsection 2.1, and then lay out the n-node cycles
within each of the hypercube nodes. Since the size of an n-
dimensional CCC is N n2n and its area is dominated by
its hypercube links, which requires 2n 2 9 o 2n area, an
N-node CCC can be laid out in

4N2

9 log2
2N

o
N2

log2N

area. Using the same layout method, the reduced hypercube
can be laid out in asymptotically the same area.

In [16], layouts of area 2N2

log2
2N

o N2

log2N and 4N2

3 log2
2N

o N2

log2N
were proposed for the CCC graph. Our layout has

area smaller than that of the layouts given in [16] by a factor
of at least 3 o 1 , and smaller than that of the more recent
layouts given in [7] by a factor of 1 125 o 1 . The layout
area given in Theorem 2.3 is within a factor of 1  7 o 1
from the lower bound given in [7] and is the best result re-
ported thus far for the CCC network.

(proof cntd)

Reminder:
heigth= 2/32n1+n2+n2 2n1

The width is computed
analogously, switching the
roles of n1 and n2.
Total width:
2/32n1+n2+n1 2n2

90

Area=(2/3N+n1 2n2)(2/3N+n2 2n1)=
=4/9N2+o(N2) if n1 and n2 are o(N), e.g. if
n1=Θ(n2)≅n/2.
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§ The diffusion of the 3D layout has increased in
the last thirty years.

§ The topology is lain out on a series of slices.
§ Further optimization of the wire length and

number of bends
§ Less silicon used.
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Def. A 3D layout of a topology G is a 1-1 function
between G and the 3D grid such that:
• the nodes are mapped into grid points;

it is better if they lie on the external slice to
minimize: energy consuming, production of heat and
difficulty of connection with other devices

• the wires are mapped on grid paths so that:
• these paths are edge-disjoint;
• there are no “knock-knees”
• these paths do not cross any mapping of a node that
is not an extreme of the corresponding wire.

Aim: minimizing volume and keeping wires short. 93

The students interested in this topic can look at:
- L. Torok and I. Vrto. Layout Volumes of the

Hypercube. Proc. Graph Drawing ’04.
- T.C. and A. Massini. Three Dimensional Layout of

Hypercube Networks. Networks 47, 2006.

☞ possible students’ lessons
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