
1

THE ROUTING PROBLEM
i.e.
THE SHORTEST PATH PROBLEM
 and
THE LEAST COST PATH PROBLEM

Prof. Tiziana Calamoneri
Network Algorithms

A.A. 2025/26

THE PROBLEM
(already studied!)

3

Given a network:
§ When packets are sent from a computer to another
one through the network, each computer has to
route data on a path passing through intermediate
computers.

§ This is the very general routing problem.

4

Case 1. Not adaptive routing
A routing algorithm could try to send packets through
a network so that the length of the used path is
minimized. Such length can be measured in terms of
number of hops between pairs of computers.

If the network is modeled as a graph
(nodes = computers and edges = links), the problem
reduces to the shortest path problem between two
nodes.

5

Case 2. Adaptive Routing
It takes into account the traffic conditions: in order
to decide next step, the traffic is estimated, so the
packet is sent toward the zones of the network not
affected by traffic.

If the network is modeled by an edge-weighted graph
(nodes = computers, edges = links and weights =
dynamic values proportional to the traffic on the
connection), the problem reduces to the (dynamic)
least cost path problem.

6

cases 1 and 2. Adaptive and non adaptive routings (cntd)

Non adaptive routing:
§ Good results with consistent topology and traffic
§ Poor performance if traffic volume or topologies
change over time

§ Information about the entire network has to be
available

§ Each packet is routed through an outgoing edge in a
fixed way

§ Routing tables are used
7

cases 1 and 2. Adaptive and non adaptive routings (cntd)

Adaptive routing:
§ Good results when the network’s workload is high or
unbalanced

§ extra logic overhead in acquiring information, path
arbitration and deadlock avoidance

§ Decisions are based on current network state

§ Packets follow dynamically computed routes
§ Routers are able to communicate
§ Rather often re-calculations are necessary
§ Each router creates its own routing table 8

cases 1 and 2. Adaptive and non adaptive routings (cntd)

§ Half-adaptive routing:
§ it switches from one mode to another, depending on
the evaluation of current workload.

§ Half-adaptive algorithms make significant reduction
of complexity and overhead, though lose some path
diversity.

9

Case 3. Routing with faults
When the network is modeled as a graph, the length
(edge-weight) of an edge may also represent the
probability of its failing (used, for instance, in
networks of thelephone lines, or broadcasting
systems in computer networks or in transportation
routes). In all these cases, one is looking for the
route having the highest probability not to fail.
 More precisely…

10

case 3. Routing with faults (cntd)

§ Let p(e) be the probability that edge e does not fail.
Under the -not always realistic- assumption that
failings of edges occur independently of each other,
p(e1)·p(e2)·…·p(ek) gives the probability that the path
P=(e1,e2,…,ek) can be used without any faults.

§ We want to maximize this probability over all
possible paths with starting point a and arrival point
b…

11

case 3. Routing with faults (cntd)

§ Note. Since function log is monotonic increasing, the
maximum of the product p(e1)�p(e2)�…�p(ek) is reached
iff the logarithm of the product is maximum, i.e. iff:

 log p(e1)+log p(e2)+…+ log p(ek) is maximum.
§ log p(e) ≤ 0 for each e because p(e) ≤ 1.
§ Define w(e)=-log p(e), then w(e)≥0 for all e;
furthermore, we have to find a path from a to b for
which

 w(e1)+w(e2)+…+w(ek) becomes minimum.

§ Thus, our problem is reduced again to the
least cost path problem.

12

13

14

§ Let G=(V,E) be a graph; let w(e) be the length of each
edge e.

§ Many versions of the shortest path problem:

 ‣ All to all ‣ One to one

 ‣ One to all ‣ All to one

§ Lengths can be:

 ‣ All equal (unit length) ‣ Non negative

‣ Possibly negative but without negative cycles

 ‣ Creating possible negative cycles

15

§ Algorithm designed by Moore [‘59] for the one-to-all
shortest path problem and unit lenghts:

 … Breadth First Search (BFS) …

§ TH. G is connected iff at the end of the BFS
starting from node a, dist(a,b) < ∞ for each node b,
where dist is the distance in terms of number of
edges.

§ Note. This claim is false if G is a digraph (indeed
the notion of connected graph does not exist on
digraphs: strong and weak connection…)

16

A parenthesis on BFS (and its cousin, DFS): it can be
used to detect connected components.
It is of fundamental importance and can be applied
to a wide range of CS fields.

17

For example it is useful to:
§ identify objects and scenes in images and videos

(vision),
§ analyze the structure and the evolution of evolving

(social, transportation, biological, …) networks (ntw
analysis),

§ identify clusters and communities in large datasets
(data mining),

§ group together similar spam messages to detect spam
campaigns (cybersecurity).

18

In data science:
Having a (huge) set of customers using each many
accounts, recognize the set of accounts related to the
same user.
Construct a graph:
nodes: accounts labeled with CustomerIDs (based on
the same credit card, same mobile number, etc.)
edges: between two accounts with the same
CustomerID.

19

The connected component algorithm creates
individual clusters to which we can assign the same
user.
We can then use these grouped accounts to provide
personalized recommendations or capture fraud (if an
account has done fraud in the past, it is highly
probable that the connected accounts are also
susceptible to fraud).

☞ student lesson on connected components

Let G=(V,E) be a graph or a digraph and let w: E→ ℝ be
an edge-weight function.
§ (G,w) is called network.
§ w(e) is called length (though including meanings such
as cost, capacity, weight, probability, …)
§ For each path P=(e1, e2, …, ek) (if G is a digraph, P is a
dipath), the length of P is defined as
w(P)=w(e1)+w(e2)+ …+w(ek).
§ Note. If w(e)=1 for each edge, the least cost path
problem reduces to the shortest path problem.

20

Given two nodes a and b, the distance d(a,b) is
defined as the minimum, over all the paths P
connecting a and b, of w(P).

Two problems arise:
§ PR.1: b could be unreachable from a
§ SOL.: define d(a,b)=∞ if b is unreachable from a

§ PR.2: the minimum could not exist (cycles of negative
length)

§ SOL.: only networks without cycles of negative length
are feasible

21a b1 -3 1

1 1

Negative lengths may occur!
Example: good shipment
§ A ship travels from port a to port b, where the route
(and possible intermediary ports) may be chosen freely.

§ The length w(x,y) signifies the profit gained by going
from x to y.
§ For some edges, the ship might have to travel empty
so that w(e) is negative for these edges: the profit is
actually a loss.
§ Replacing w(e) by –w(e) for all e in this network, the
shortest path represents the route which yields the
largest possible profit. 22

§ In general, when w represents a gain, it seems
natural to replace w(e) by –w(e) and look for least
cost paths, but this could introduce cycles of
negative weigth.

§ There exist good algorithms that find minimum
weight paths even when G contains cycles of
negative weight.

23

Also negative cycles may occur and even be useful!

Example: arbitrage opportunity in finance

§ Consider a market for financial transactions that is
based on trading commodities.

§ Imagine that you could convert 1000 USD to 950
EUR and then 950 EUR to 1020 CAD which you
convert back to 1007 USD, gaining money.

§ This situation is called arbitrage opportunity.

24

A table shows conversion rates among currencies:

This data can be modeled as a graph problem:

graph: complete directed graph

nodes: currencies

edge-weight: conversion rate 25

USD EUR GBP CHF CAD

USD 1 0.741 0.657 1.061 1.061

EUR 1.061 1 0.888 1.433 1.433

GBP 1.521 1.126 1 1.614 1.538

CHF 0.942 0.698 0.619 1 0.953

CAD 0.995 0.732 0.650 1.049 1

An arbitrage opportunity is a directed cycle such that
the product of the exchange rates is greater than one.

26

USD EUR GBP CHF CAD

USD 1 0.741 0.657 1.061 1.061

EUR 1.061 1 0.888 1.433 1.433

GBP 1.521 1.126 1 1.614 1.538

CHF 0.942 0.698 0.619 1 0.953

CAD 0.995 0.732 0.650 1.049 1

To formulate the arbitrage problem as a negative-cycle
detection problem, replace each weight by
its logarithm, negated (as we have already done).
With this change, computing path weights by
multiplying edge weights in the original problem
corresponds to adding them in the transformed
problem.

27

In any solution:

§ Cycles having negative length cannot exist (we avoided
them by hypthesis)

§ Cycles having positive length cannot exist (by
contradiction: if one of them is in the solution, the new
solution without it has a lower cost)

§ Cycles having null length do not exist without loss of
generality: if one of them is in the solution, the new
solution without it has the same cost and so is feasible,
too

§ So: our solution does not contain any cycles and hence it
passes through at most n-1 edges. 28

§ In order to univocally determine a path from a to
b it is enough, for each node in such path, starting
from b and coming back, to store its predecessor
on the path.

§ To do it: for each node v in G define a pointer
pt(v), initially equal to NULL; at the end, it points
at the predecessor of v on the path.

29

a
b

a
b

(already studied!)

30

§ G=(V,E) directed with edge-weights possibly negative
§ It solves the problem of the shortest path from
single source, hence it outputs the distances from the
(single) source to each node
§ It assumes that G does not contain any cycles of
negative length
§ It is based on the principle of relaxation
§ Time complexity: O(nm)

31

§ G=(V,E) directed with non negative edge-weights
§ It solves the problem of the shortest path from
single source, hence it outputs the distances from
the (single) source to each node
§ It is based on the principle of relaxation
§ Time complexity: either O(n2) or O(m log n)
§ The time complexity of the Dijkstra Algorithm is
better than the time complexity of the Bellman-Ford
Algorithm, but it is less versatile, as it requires not
negative edge weight edges.

32

§ G=(V,E) directed with edge-weights possibly negative

§ It solves the problem of the all pairs shortest path,
hence it outputs a matrix with the distances from
each node to each other node

§ Repeatedly applying the algs treated before, varying
the source over all nodes in V :
§ Bellman-Ford: n O(nm)=O(n2m)

§ Dijkstra: n O(n2) =O(n3) o n O(m log n)=O(mn log n)

§ Time complexity: O(n3) and negative edge weights are
allowed 33

§ For each node v, let d(v) be a function representing an
estimate of the weight of the shortest path from s to v.

§ At the beginning d(v)=∞ for each v

§ One relaxation step is performed as follows:

§ Given an edge (u,v)

§ If d(u)+w(u,v)<d(v)

 d(v)=d(u)+w(u,w)

 pt(v)=u

§ Time complexity of one relaxation step: O(1)
34

§ Assume that G does not contain any cycles of
negative length
For each v initialize d(v) and p(v)

For i=1 to n-1 do

For each (u,v) relax v w.r.t. (u,v)

§ Time Complexity: Θ(nm)

35

Θ(n)+
|n-1 times

| m Θ(1)

36

0

∞

∞

∞

∞

6

7
1
2

8
-3
-4

7

-2
5

0

6

∞

∞

∞

6

7
1
2

8
-3
-4

7

-2
5i=1

0

∞

∞

∞

∞

6

7
1
2

8
-3
-4

7

-2
5

0

6

7

∞

∞

6

7
1
2

8
-3
-4

7

-2
5

0

6

7

∞

∞

6

7
1
2

8
-3
-4

7

-2
5

0

6

7

∞

8

6

7
1
2

8
-3
-4

7

-2
5

0

6

7

4

8

6

7
1
2

8
-3
-4

7

-2
5

0

6

7

4

8

6

7
1
2

8
-3
-4

7

-2
5

1

2
3

4

5

6

7

8

9
10

x: order of the edges
 : visited edges
 : predecessor

i=2

0

6

7

4

8

6

7
1
2

8
-3
-4

7

-2
5

0

6

7

4

8

6

7
1
2

8
-3
-4

7

-2
5

0

2

7

4

8

6

7
1
2

8
-3
-4

7

-2
5

0

2

7

4

2

6

7
1
2

8
-3
-4

7

-2
5

-

1

2
3

4

5

6

7

8

9
10

0

2

7

4

2

6

7
1
2

8
-3
-4

7

-2
5

-

-

i=3

x: order of the edges
 : visited edges
 : predecessor

0

2

7

4

2

6

7
1
2

8
-3
-4

7

-2
5

37

…
-

38

0

2

7

4

2

6

7
1
2

8
-3
-4

7

-2
5

-

b

a

c

d e

 (Let us consider predecessors in the
 same direction than original edges)

Forwarding table of a:

b (a,d) as the shortest path is a-d-c-b
c (a,d) as the shortest path is a-d-c
d (a,d)
e (a,d) as the shortest path is a-d-c-b-e

Bellman-Ford Algorithm is used for Distance Vector
routing, an iterative, asynchronous and distributed
protocol:

§ c(x,v) = cost for (directed) link from x to v
§ Dx(y) = estimate of least cost from x to y; x mantains
distance vector Dx= [Dx(y) for each y neighbor of x]; for
each neighbor y, x mantains also Dy

§ …

39

§ …

§ Each node x periodically sends Dx to its neighbors

§ Neighbors update their own distance vector:

 Dx(y)=min{ Dx(y), c(x,v)+Dv(y) }
§ x notifies neighbors when its distance vector changes

§ Over the time, Dx converges

An example: Routing Information Protocol (RIP)

40

41

¢ G=(V,E) directed with non negative edge-weights

¢ It partitions the nodes of G: nodes whose shortest
path from s has already been found (S) and all the
other nodes (V-S)

¢ Greedy algorithm

¢ At each step, let u be the node in V-S with minimum
value of d; add u to S and relax all the edges
outcoming from u

¢ Keep V-S in a priority queue (e.g. min heap)

42

¢ For each v initialize d(v) and pt(v)
¢ S=empty set
¢ Q=V
¢ While Q is not empty

• u=ExtractMin(Q)
• S=S U {u}
• For each edge (u,v)

 outcoming from u
relax v w.r.t. (u,v)
Update Q

The time
complexity depends

on the data
structure used to

implement Q:

Queue: O(n2)
Heap: O(m log n)
Fibonacci Heap:
 O(m+n log n)

43

¢ For each v initialize d(v) and pt(v)
¢ S=empty set
¢ Q=V
¢ While Q is not empty

• u=ExtractMin(Q)
• S=S U {u}
• For each edge (u,v)

 outcoming from u
relax v w.r.t. (u,v)
Update Q

Using heap:
 Θ(n)
 Θ(1)
 Θ(n)
n times
 | O(log n)
 | Θ(1)
 | Θ(deg u) times

 | | Θ(1)
 | | O(log n)

tot. O(n log n+ m log n)= O(m log n)

44

0

∞

∞

∞

∞

6

7
1
2

8
8
1

7

2
5

0

6

7

∞

∞

6

7
1
2

8
8
1

7

2
9

0

6

7

1

7

6

7
1
2

8
8
1

7

2
9

5

0

6

7

1

7

6

7
1
2

8
8
1

7

2
9

4

0

6

7

1

7

6

7
1
2

8
8
1

7

2
9

4

0

6

7

1

7

6

7
1
2

8
8
1

7

2
9

4

 : visited edges
 : predecessor
 : nodes in S
 : nodes in V-S

45

(Let us consider drawings of predecessors in the
 same direction than original edges)

Forwarding table of a:

b (a,b)
c (a,b) as the shortest path is a-b-e-c
d (a,d)
e (a,b) as the shortest path is a-b-e

0

6

7

1

7

6

7
1
2

8
8
1

7

2
9

4

a

e

cb

d

In Dijkstra’s own words:
«What is the shortest way to travel
from Rotterdam to Groningen, in general: from given
city to given city?
It is the algorithm for the shortest path.»
Nowadays, variations of the Dijkstra algorithm are
used extensively in GoogleMaps to find the shortest
routes.

46

Also used for dynamic routing protocols.

Each router:
§ Keeps trace of its incident links

§ Whether the link is up or down
§ The cost on the link (varying in time)

§ Broadcasts the link state (flooding)
§ So, every router has a complete view of the graph

§ Runs Dijkstra Algorithm
§ To compute the shortest paths…
§ …and construct the forwarding table

An example: Open Shortest Path First (OSPF) used in
the networks with Internet Protocol (IP) 47

48

Sometimes, it is not enough to calculate the
distances w.r.t. a certain node s: we need to know
the distances between all pairs of nodes.
§ G=(V,E) directed with any edge-weight.
§ Algorithm for the all-to-all shortest path problem
§ Trick 1: all edges are in; the non-existing ones

have w=∞
§ Trick 2: in order to go from i to j you can either

go directly or passing through a third node k
§ dynamic programming

49

Algorithm:
§ For each node i, initialize dist(i,i)=0
§ For each edge (i,j) initialize dist(i,j)=w(i,j)
§ For each node k

§ For each node i
§ For each node j

dist(i,j)=min{dist(i,j), dist(i,k)+dist(k,j)}

§ Time Complexity Θ(n3)

Θ(n)
Θ(n2)
n times
|n times
|| n times
||| Θ(1)

50

Difference Constraints:
¢ Let be given some tasks with precedence constraints

and running lengths, and an unlimited (or limited by
n=number of tasks) number of processors:
¢ Each task i has:

• Starting time si
• Time to complete bi>0
• Constraint sj+bj≤si if task i can be started after

that task j has been completed
¢ First task can start at time 0

¢ When can we finish last task?

51

This is the Shortest Path Problem on directed acyclic
graphs:

• Define a graph having a node for each task

• Insert a dummy node v0 (that models time 0)

• Insert an arc (v0,i) for each task node i and let 0 be
its weight

• For each precedence constraint sj+bj≤si insert an arc
(j,i) with weight bj

• Optimal Solution: start each task i at time equal to
the length Li of the longest path from v0 to i. All the
tasks are surely completed within time maxi (Li+bi)

52

To transform to the shortest path problem, multiply all
lengths and times by -1:

b1=2
b2=3
b3=1
b4=2
s3+b3 ≤ s2
s3+b3 ≤ s1

v0

1

3

2
4

1

1

3 1

2

4

53

Social networks’ friendship:
Often, social networks suggest the list of friends that a
particular user may know.
The Dijkstra algorithm is usually applied using the
shortest path between users measured through handshakes
or connections among them.

54

§ Up to now, in the routing problem we have
considered the network as a graph unknown to the
nodes and variable in time (faults, varying traffic,
etc.)

§ Nevertheless, when the network is an interconnection
topology (and connects, for example, processors), it is
known and fixed in time. Furthermore, efficiency is
a primary issue.

§ Solutions having stronger properties than the simple
shortest path algorithms are required.

55

§ With the development of semiconductor industry, the
number of cores integrated in a single machine
increases quickly and Network-on-Chip (NoC) is
proposed and is gradually replacing the traditional
on-chip interconnections such as sharing buses and
crossbars.

56

§ An interconnection topology describes how the
processors are connected inside a multicore machine.

§ The routing algorithm, which decides the paths of
packets, has significant impact on the latency and
throughput of the network, so it plays a vital role in
a well-performed network.

57

Many different types of routing models.
Here, we will focus on the store-and-forward model
(also known as the packet-switching model):

§ Data are divided into packets
§ Each packet is maintained as an entity that is
passed from node to node as it moves through the
network

§ A single packet can cross each edge during each
step of the routing

§ … 58

§ Depending on the algorithm, packets may or may not
be piled up in queues located at each node. When
queues are allowed: effort to keep them short.

§ Global controller to precompute routing paths not
allowed: problem handled using only local control

§ …

59

A routing problem is called one-to-one if at most
one packet must be addressed to every node and each
packet has a different destination.
In contrast, one-to-many and many-to-one

60

61

Def. Let N=2n (hence n=log N);
the n-dimensional Butterfly is a
layered graph with:
• N(n+1) nodes (n+1 layers with 2n

nodes each) and
• 2Nn edges.

Nodes:
 nodes correspond to pairs (w, i), where:

• i is the layer of the node
• w is an n-bit binary number that

denotes the row of the node.
 …

62

def. of n-dimensional butterfly (cntd)

…

Edges:

 Two nodes (w, i) e (w’, i’) are linked
by an edge iff i’=i+1 and either:

¢w=w’ (straight edge) or
¢w and w’ differ in precisely the
i-th bit (cross edge)

63

¢ The nodes of the Butterfly are crossbar switches, i.e.
switches with two input and two output values and
can assume two states, cross and bar.
¢ Hence, the butterfly can be seen as a switching
network connecting 2N (N=2n) input units to 2N
output units trough a logN+1 layered network, having N
nodes each.
¢ …

48

BUTTERFLY NETWORK (3)

! The nodes of the Butterfly are crossbar switches, i.e.
switches with two input and two output values and can
assume two states, cross and bar.

! Hence, the butterfly can be seen as a switching network
connecting 2N (N=2n) input units to 2N output units
trough a logN+1 layered network, having N nodes each.

!  Input and output devices are usually processors and are
often omitted in the graphical representations for the
sake of simplicity.

64

¢ Input and output devices are usually processors and
are often omitted in the graphical representations for
the sake of simplicity.

65

The butterfly has a simple
recursive structure:
the one n-dim. butterfly
contains two (n-1)-dim.
butterflies as subgraphs (just
remove either the layer 0
nodes or the layer n nodes of
the n-dim. butterfly to get
two (n-1)-dimensional
butterflies).

66

For each pair of rows w and w’,
there exists a unique path of length
n (known as greedy path) from (w,0)
to (w’, n);
this path passes through each layer
exactly once, using a cross-edge
from layer i to layer i+1 (i=0,…,n) iff
w and w’ differ in the i-th bit and
using a straight-edge otherwise.

0 1 2 3

000

001

010

011

100

101

110

111

w’

w

Problem of routing N packets from layer 0 to layer n
in an n-dimensional butterfly:
§ Each node (u,0) on layer 0 of the butterfly contains
a packet that is destined for node ($(u), n) on layer
n, where $:[1, N]→ [1,N] is a permutation.

§ In the greedy routing algorithm, each packet is
constrained to follow its greedy path.

§ When there is only one packet to route, the greedy
algorithm performs very well.

§ Trouble can arise when many packets have to be
routed in parallel…

67

Many greedy paths might pass
through a single node or edge.
Since only one packet can use the
edge at a time, the other ones must
be delayed before crossing the edge.

The butterfly is not able to route
each permutation without delays, i.e.
is a blocking network.
The arising congestion problem can
be serious. In fact… 68

52

Assume for simplicity that n is odd
(but similar results hold when n is
even), and consider edge
 e=((00…0, (n-1)/2), (00…0,(n+1)/2))

Node (00…0, (n-1)/2) is the root of a
complete binary tree extending to the
left having 2(n-1)/2 leaves
Analogously to the right
…

69

The permutation can be such that each greedy path
from a leaf of the left tree arrives to a leaf of the
right tree traverses e.

There are 2(n-1)/2= %/2 possible such paths, and thus

2(n-1)/2= %/2 packets may traverse e. So at least one of

them may be delayed by %/2	-1 steps.
It takes at least n=log N steps to traverse the whole
network and to route a packet to its destination.
In this case, the greedy algorithm can take

%/2	+log N-1 steps to route a permutation.
70

In general:
Th. Given any routing problem on an n-dimensional
butterfly for which at most one packet starts at
each layer-0 node and at most one packet is
destined for each layer-n node, the greedy
algorithm will route all the packets to their
destinations in O(%) steps.
Proof. …

71

Proof. For simplicity, assume that n is odd (but the
case n even is similar).

Let e be any edge in layer i, 0<i≤n, and define ni to
be the number of greedy paths that traverse e

ni ≤2i-1 (left tree) and, similarly, ni≤2n-i (right tree) so
ni ≤min{2i-1, 2n-i}

Any packet crossing e can be delayed by at most the
other ni-1 packets that want to cross the edge.
…

72

…
As this packet traverses layers 1, 2, …, n, the total
delay encountered can be at most:

73

€

(ni −1)
i=1

n

∑ = (ni −1)
i=1

(n+1)/ 2

∑ + (ni −1)
i=(n+3)/ 2

n

∑ ≤ (2i−1 −1) + (2n− i −1)
i=(n+3)/ 2

n

∑
i=1

(n+1)/ 2

∑ ≤

€

≤ 2(n+1)/ 2 + 2(n−1)/ 2 − n =O(N) − n =O(N) n

=(n+1)/2+1
= (2 j −1)

j=0

(n+1)/2−1

∑ = (2 j −1)
j=0

(n−3)/2

∑
recalling

that
2 j = 2k+1 −1

j=0

k

∑

Despite the fact that the greedy routing algorithm
performs poorly in the worst case, the greedy
algorithm is very useful in practice.
For many useful classes of permutations, the greedy
algorithm runs in n steps, which is optimal and, for
most permutations, the greedy algorithm runs in
n + o(n) steps.
As a consequence, the greedy algorithm is widely
used in practice.

74

A possibility to avoid a routing with delays is
providing a non blocking topology.
Beneš network has this property.
It consists of two back-to-back butterflies…

75

The n-dimensional Beneš network has 2n+1 layers, each
with 2n nodes.
The first and last n+1 layers form an n-dimensional
Butterfly (the middle layer is shared).
Not surprisingly, the Beneš network is very similar to the
Butterfly, in terms of both its computational power and
its network structure.

76

The reason for defining the Beneš network is that
it is an excellent example of a rearrangeable
network.
Def. A network with N inputs and N outputs is said
to be rearrangeable if for any one-to-one mapping
π of the inputs to the outputs (i.e. for any
permutation), we can construct edge-disjoint paths
in the network linking the i-th input to the π(i)-th
output for 1≤i≤N.

77

In the case of the n-dimensional Beneš network, we
can have two inputs for each node at layer 0 and
two outputs for each node at layer 2n, and still
connect every permutation of inputs to outputs
with edge-disjoint paths.
Hence, in this case, # of inputs=2n+1.

78

79

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

3
9
8
12
15
13
7
5
4
10
1
2
16
7
11
14

It seems extraordinary that we can find edge-disjoint
paths for any permutation. Nevertheless, the result is
true, and it is even fairly easy to prove, as we show in
the following:

Th. Given any one-to-one mapping π of 2n+1 inputs to
2n+1 outputs on an n-dimensional Beneš network, there
is a set of edge-disjoint paths from the inputs to the
outputs connecting input i to output π(i) for 1≤i≤2n+1.
Proof. …

80

Proof. By induction on n.
Basis: if n=0, the Beneš network consists of a single
node (i.e. a single 2x2 switch) and the result is
obvious.

Induction: assume that the result is true for an (n-
1)-dim. Beneš network
Key observation: the middle 2n-1 layers of an n-dim.
Beneš network comprise two (n-1)-dim. Beneš
networks:
… 81

82

Hence, for each path, it will be sufficient to decide
whether it is to be routed through the upper sub-
Beneš network or through the lower sub-Beneš
network.

83

48

B
U

T
T

E
R

F
L

Y N
E

T
W

O
R

K
 (3)

!
 T

h
e n

odes of th
e B

u
tterfly are crossbar sw

itch
es, i.e.

sw
itch

es w
ith

 tw
o in

pu
t an

d tw
o ou

tpu
t valu

es an
d can

assu

m
e tw

o states, cross an
d bar.

!
 H

en
ce, th

e bu
tterfly can

 be seen
 as a sw

itch
in

g n
etw

ork
con

n
ectin

g 2N
 (N

=
2

n) in
pu

t u
n

its to 2N
 ou

tpu
t u

n
its

trou
gh

 a logN
+

1 layered n
etw

ork, h
avin

g N
 n

odes each
.

!
 In

pu
t an

d ou
tpu

t devices are u
su

ally processors an
d are

often
 om

itted in
 th

e graph
ical represen

tation
s for th

e
sake of sim

plicity.

The only constraints we have to consider to decide
whether paths use the upper or lower subnetworks are
that paths from inputs 2i-1 and 2i must use different
subnetworks for 1 ≤ i ≤ 2n, and that paths to outputs
2i-1 and 2i must use different sub-networks.
…easy…

84

48

B
U

T
T

E
R

F
L

Y N
E

T
W

O
R

K
 (3)

!
 T

h
e n

odes of th
e B

u
tterfly are crossbar sw

itch
es, i.e.

sw
itch

es w
ith

 tw
o in

pu
t an

d tw
o ou

tpu
t valu

es an
d can

assu

m
e tw

o states, cross an
d bar.

!
 H

en
ce, th

e bu
tterfly can

 be seen
 as a sw

itch
in

g n
etw

ork
con

n
ectin

g 2N
 (N

=
2

n) in
pu

t u
n

its to 2N
 ou

tpu
t u

n
its

trou
gh

 a logN
+

1 layered n
etw

ork, h
avin

g N
 n

odes each
.

!
 In

pu
t an

d ou
tpu

t devices are u
su

ally processors an
d are

often
 om

itted in
 th

e graph
ical represen

tation
s for th

e
sake of sim

plicity.

85

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

3
9
8
12
15
13
7
5
4
1
01
2
16
7
11
14

86

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

3
9
8
12
15
13
7
5
4
10
1
2
16
7
11
14

And so on…

Summary of the steps:
§ We start by routing the first path through the upper
sub-network.

§ We next satisfy the constraint generated at the
output by routing the corresponding path through
the lower sub-network.

§ …

87

§ …
§ We keep on going back and forth through the
network, satisfying constraints at the inputs by
routing through the upper sub-network and
satisfying constraints at the outputs by routing
through the lower sub-network.

§ Eventually, we will close the loop by routing a path
through the lower sub-network (in response to an
output constraint) that shares an input switch with
the first path that was routed.

§ … 88

§ …
§ If any additional paths needs to be routed, we
con- tinue as before, starting over again with an
arbitrary unrouted path.

§ In this way, all paths can be assigned to the upper
or lower sub-networks without conflict.

89

§ This algorithm is called looping algorithm.
§ It is easy to see that all paths can be assigned to
the upper or lower sub-networks without conflict:

§ By construction, if we start going to the upper sub-
network, we will arrive to the corresponding output
in the upper sub-network and we will leave it to
the lower sub-network, and so on.

§ …

90

§ …
§ For parity reason, when a loop is close, we will
correctly arrive from the right sub-network.

§ The remainder of the path routing and switch
setting is handled by induction in the sub-networks.
 n

91

In the case that each layer 0 node of the n-
dimensional Beneš network has just one input and
each layer 2n node has just one output, then the paths
from the inputs to the outputs can be constructed so
as to be node-disjoint (instead of only edge-disjoint):
…

92

Th. Given any one-to-one mapping of π of 2n inputs
to 2n outputs in an n-dim. Beneš network, there is a
set of node-disjoint paths from the inputs to the
outputs connecting input i to output π(i) for 1≤i≤2n.

Proof. Identical to the previous one, but the paths
needing to use different Beneš networks are now i
and i+2n-1, 1≤i≤2n-1 (and not 2i-1 and 2i). n

93
2n-1

§ Example: n=2, hence 2n-1=2

94

1
2
3
4

1

2

3

4

Drawbacks of the looping algorithms (both versions):

§ we do not know how to set the switches on-line.
In other words, each switch needs to be told what
to do by a global control that has knowledge of
the permutation being routed

§ there exist numerous methods for overcoming this
difficulty (not studied here).

§ every time a new permutation must be routed,
Θ(N log N) time is necessary to re-set switches.

95

Another important and widely used interconnection
topology is the mesh:
§ For integers m and n, the m × n mesh Mm,n has node
set {1,2,...,m}×{1,2,...,n}.

§ The edges of Mm,n connect nodes (i, j) and (i′, j ′) just
when |i − i′| + |j − j ′| = 1.

§ The path induced by the set of nodes {i} × {1,2,...,n}
(resp., the set {1,2,...,m} × {j}) is the i-th row (resp., the
j-th column) of Mm,n

For the convenience of physical layout, mesh is the
most used topology in Network-on-Chip design.

Routing algorithms on mesh: ☞ student lesson 96

