
1

THE ROUTING PROBLEM
I.E.
THE SHORTEST PATH PROBLEM AND

THE LEAST COST PATH PROBLEM
Prof. Tiziana Calamoneri

Network Algorithms

A.A. 2023/24

THE PROBLEM
(already studied!)

3

Given a network:

§When packets are sent from a computer to
another one through the network, each
computer has to route data on a path passing
through intermediate computers.

§ This is the very general routing problem.

4

§Case 1. Not adaptive routing
A routing algorithm could try to send packets
through a network so that the length of the
used path is minimized. Such length can be
measured in terms of number of hops between
pairs of computers.

If the network is modeled as a graph
(nodes = computers and edges = links), the
problem reduces to the shortest path problem
between two nodes. 5

§Case 2. Adaptive Routing
It takes into account the traffic conditions: in
order to decide next step, the traffic is
estimated, so the packet is sent toward the
zones of the network not affected by traffic.

If the network is modeled by an edge-weighted
graph (nodes = computers, edges = links and
weights = dynamic values proportional to the
traffic on the connection), the problem reduces
to the (dynamic) least cost path problem.

6

cases 1 and 2. Adaptive and non adaptive routings (cntd)

§Non adaptive routing:

§Good results with consistent topology and traffic
§ Poor performance if traffic volume or topologies
change over time

§ Information about the entire network has to be
available

§ Each packet is routed through an outgoing edge
in a fixed way

§ Routing tables are used 7

cases 1 and 2. Adaptive and non adaptive routings (cntd)

§Adaptive routing:
§Good results when the network’s workload is
high or unbalanced

§ extra logic overhead in acquiring information,
path arbitration and deadlock avoidance

§Decisions are based on current network state
§ Packets follow dynamically computed routes
§ Routers are able to communicate
§ Rather often re-calculations are necessary
§ Each router creates its own routing table 8

cases 1 and 2. Adaptive and non adaptive routings (cntd)

§Half-adaptive routing:

§ it switches from one mode to another, depending
on the evaluation of current workload.

§Half-adaptive algorithms make significant
reduction of complexity and overhead, though
lose some path diversity.

9

§Case 3. Routing with faults
When the network is modeled as a graph, the
length (edge-weight) of an edge may also
represent the probability of its failing (used,
for instance, in networks of thelephone lines,
or broadcasting systems in computer networks
or in transportation routes). In all these cases,
one is looking for the route having the highest
probability not to fail.

More precisely…
10

case 3. Routing with faults (cntd)

§ Let p(e) be the probability that edge e does not
fail. Under the -not always realistic- assumption
that failings of edges occur independently of
each other, p(e1)�p(e2)�…�p(ek) gives the probability
that the path P=(e1,e2,…,ek) can be used without
any faults.

§We want to maximize this probability over all
possible paths with starting point a and arrival
point b…

11

case 3. Routing with faults (cntd)

§ Note. Since function log is monotonic increasing, the
maximum of the product p(e1)�p(e2)�…�p(ek) is reached
iff the logarithm of the product is maximum, i.e. iff:

log p(e1)+log p(e2)+…+ log p(ek) is maximum.
§ log p(e) ≤ 0 for each e because p(e) ≤ 1.
§ Define w(e)=-log p(e), then w(e)≥0 for all e;
furthermore, we have to find a path from a to b for
which

w(e1)+w(e2)+…+w(ek) becomes minimum.
§ Thus, our problem is reduced again to the
least cost path problem. 12

13

14

§ Let G=(V,E) be a graph; let w(e) be the length of
each edge e.

§ Many versions of the shortest path problem:

◼All to all ◼One to one

◼One to all ◼All to one

§ Lengths can be:

◼All equal (unit length) ◼Non negative

◼Possibly negative but without negative cycles

◼Creating possible negative cycles

15

§ Algorithm designed by Moore [‘59] for the one-to-
all shortest path problem and unit lenghts:
… Breadth First Search (BFS) …

§ TH. G is connected iff at the end of the BFS
starting from node a, dist(a,b) < ∞ for each node
b, where dist is the distance in terms of number
of edges.

§ Note. This claim is false if G is a digraph (indeed
the notion of connected graph does not exist on
digraphs: strong and weak connection…)

Let G=(V,E) be a graph or a digraph and let w: E→ ℝ be
an edge-weight function.
§ (G,w) is called network.
§ w(e) is called length (though including meanings such
as cost, capacity, weight, probability, …)

§ For each path P=(e1, e2, …, ek) (if G is a digraph, P is a
dipath), the length of P is defined as
w(P)=w(e1)+w(e2)+ …+w(ek).
§ Note. If w(e)=1 for each edge, the least cost path
problem reduces to the shortest path problem.

16

Given two nodes a and b, the distance d(a,b) is
defined as the minimum, over all the paths P
connecting a and b, of w(P).

Two problems arise:
§ PR.1: b could be unreachable from a
§ SOL.: define d(a,b)=∞ if b is unreachable from a

§ PR.2: the minimum could not exist (cycles of
negative length)

§ SOL.: only networks without cycles of negative
length are feasible

17a b1 -3 1

1 1

Negative lengths may occur!
Example:
§ A ship travels from port a to port b, where the route
(and possible intermediary ports) may be chosen freely.

§ The length w(x,y) signifies the profit gained by going
from x to y.
§ For some edges, the ship might have to travel empty
so that w(e) is negative for these edges: the profit is
actually a loss.
§ Replacing w(e) by –w(e) for all e in this network, the
shortest path represents the route which yields the
largest possible profit. 18

§ In general, when w represents a gain, it seems
natural to replace w(e) by –w(e) and look for least
cost paths, but this could introduce cycles of
negative weigth.
§ There exist good algorithms that find minimum
weight paths even when G contains cycles of
negative weight.

19

In any solution:
§Cycles having negative length cannot exist (we
avoided them by hypthesis)

§Cycles having positive length cannot exist (by
contradiction: if one of them is in the
solution, the new solution without it has a
lower cost)

§Cycles having null length do not exist without
loss of generality: if one of them is in the
solution, the new solution without it has the
same cost and so is feasible, too

§ So: our solution does not contain any cycles
and hence it passes through at most n-1 edges. 20

§ In order to univocally determine a path from
a to b it is enough, for each node in such path,
starting from b and coming back, to store its
predecessor on the path.

§ To do it: for each node v in G define a
pointer pt(v), initially equal to NULL; at the
end, it points at the predecessor of v on the
path.

21

a

b

a

b

(already studied!) 22

§G=(V,E) directed with edge-weights possibly
negative
§ It solves the problem of the shortest path from
single source, hence it outputs the distances from
the (single) source to each node
§ It assumes that G does not contain any cycles
of negative length
§ It is based on the principle of relaxation
§ Time complexity: O(nm)

23

§G=(V,E) directed with non negative edge-
weights
§ It solves the problem of the shortest path
from single source, hence it outputs the
distances from the (single) source to each node
§ It is based on the principle of relaxation
§ Time complexity: either O(n2) or O(m log n)
§ The time complexity of the Dijkstra Algorithm
is better than the time complexity of the
Bellman-Ford Algorithm, but it is less versatile,
as it requires not negative edge weight edges.

24

§G=(V,E) directed with edge-weights possibly negative

§ It solves the problem of the all pairs shortest path,
hence it outputs a matrix with the distances from
each node to each other node

§ Repeatedly applying the algs treated before, varying
the source over all nodes in V :
§ Bellman-Ford: n O(nm)=O(n2m)
§Dijkstra: n O(n2) =O(n3) o n O(m log n)=O(mn log n)

§ Time complexity: O(n3) and negative edge weights are
allowed 25

§ For each node v, let d(v) be a function
representing an estimate of the weight of the
shortest path from s to v.

§At the beginning d(v)=∞ for each v

§One relaxation step is performed as follows:
§Given an edge (u,v)
§ If d(u)+w(u,v)<d(v)

d(v)=d(u)+w(u,w)
pt(v)=u

§ Time complexity of one relaxation step: O(1) 26

§Assume that G does not contain any cycles of
negative length
For each v initialize d(v) and p(v)
For i=1 to n-1 do

For each (u,v) relax v w.r.t. (u,v)

§ Time Complexity: O(nm)

27

O(n)+
|n-1 times

| mO(1)

28

0

∞

∞

∞

∞

6

7

1

2

8
-3

-4
7

-2
5

0

6

∞

∞

∞

6

7

1

2

8
-3

-4
7

-2
5

i=1

0

∞

∞

∞

∞

6

7

1

2

8
-3

-4
7

-2
5

0

6

7

∞

∞

6

7

1

2

8
-3

-4
7

-2
5

0

6

7

∞

∞

6

7

1

2

8
-3

-4
7

-2
5

0

6

7

∞

8

6

7

1

2

8
-3

-4
7

-2
5

0

6

7

4

8

6

7

1

2

8
-3

-4
7

-2
5

0

6

7

4

8

6

7

1

2

8
-3

-4
7

-2
5

1

2

3

4

5

6

7

8

9

10

x: order of the edges
: visited edges
: predecessor

i=2

0

6

7

4

8

6

7

1

2

8
-3

-4
7

-2
5

0

6

7

4

8

6

7

1

2

8
-3

-4
7

-2
5

0

2

7

4

8

6

7

1

2

8
-3

-4
7

-2
5

0

2

7

4

2

6

7

1

2

8
-3

-4
7

-2
5

-

1

2

3

4

5

6

7

8

9

10
0

2

7

4

2

6

7

1

2

8
-3

-4
7

-2
5

-

-

i=3

x: order of the edges
: visited edges
: predecessor

0

2

7

4

2

6

7

1

2

8
-3

-4
7

-2
5

29

…

30

0

2

7

4

2

6

7

1

2

8
-3

-4
7

-2
5

-

b

a

c

d e

(Let us consider predecessors in the
same direction than original edges)

Forwarding table of a:

b (a,d) as the shortest path is a-d-c-b
c (a,d) as the shortest path is a-d-c
d (a,d)
e (a,d) as the shortest path is a-d-c-b-e

Bellman-Ford Algorithm is used for Distance
Vector routing, an iterative, asynchronous and
distributed protocol:

§ c(x,v) = cost for (directed) link from x to v
§ Dx(y) = estimate of least cost from x to y; x mantains

distance vector Dx= [Dx(y) for each y neighbor of x]; for
each neighbor y, x mantains also Dy

§ Each node x periodically sends Dx to its neighbors
§ Neighbors update their own distance vector:

Dx(y)=min{ Dx(y), c(x,v)+Dv(y) }
§ x notifies neighbors when its distance vector changes
§ Over the time, Dx converges

An exemple: Routing Information Protocol (RIP) 31 32

¢ G=(V,E) directed with non negative edge-weights
¢ It partitions the nodes of G: nodes whose shortest

path from s has already been found (S) and all the
other nodes (V-S)

¢ Greedy algorithm

¢ At each step, let u be the node in V-S with
minimum value of d; add u to S and relax all the
edges outcoming from u

¢ Keep V-S in a priority queue (e.g. min heap)

33

¢ For each v initialize d(v) and pt(v)
¢ S=empty set
¢ Q=V
¢ While Q is not empty

• u=ExtractMin(Q)
• S=S U {u}
• For each edge (u,v)

outcoming from u
relax v w.r.t. (u,v)
Update Q

The time
complexity

depends on the
data structure

used to
implement Q:

Queue: O(n2)
Heap: O(m log n)
Fibonacci Heap:

O(m+n log n)
34

¢ For each v initialize d(v) and pt(v)
¢ S=empty set
¢ Q=V
¢ While Q is not empty

• u=ExtractMin(Q)
• S=S U {u}
• For each edge (u,v)

outcoming from u
relax v w.r.t. (u,v)
Update Q

Using heap:
Θ(n)
Θ(1)
Θ(n)

n times
| O(log n)
| Θ(1)
| Θ(deg u) times

| | Θ(1)
| | Θ(log n)

tot. O(n log n+ m log n)= O(m log n)

35

0

∞

∞

∞

∞

6

7

1

2

8
8

1
7

2
5

0

6

7

∞

∞

6

7

1

2

8
8

1
7

2
9

0

6

7

1

7

6

7

1

2

8
8

1
7

2
9

5

0

6

7

1

7

6

7

1

2

8
8

1
7

2
9

4

0

6

7

1

7

6

7

1

2

8
8

1
7

2
9

4

0

6

7

1

7

6

7

1

2

8
8

1
7

2
9

4

: visited edges
: predecessor
: nodes in S
: nodes in V-S

36

(Let us consider drawings of predecessors in the
same direction than original edges)

Forwarding table of a:

b (a,b)
c (a,b) as the shortest path is a-b-e-c
d (a,d)
e (a,b) as the shortest path is a-b-e

0

6

7

1

7

6

7

1

2

8
8

1
7

2
9

4

a

e

cb

d

Dijkstra Algorithm is used for dynamic routing
protocols.
§ Each router:

§ Keeps trace of its incident links
§ Whether the link is up or down
§ The cost on the link (varying in time)

§ Broadcasts the link state (flooding)
§ So, every router has a complete view of the graph

§ Runs Dijkstra Algorithm
§ To compute the shortest paths…
§ …and construct the forwarding table

§An exemple: Open Shortest Path First (OSPF) used
in the networks with Internet Protocol (IP) 37 38

Sometimes, it is not enough to calculate the
distances w.r.t. a certain node s: we need to know
the distances between all pairs of nodes.
§ G=(V,E) directed with any edge-weight.
§ Algorithm for the all-to-all shortest path

problem
§ Trick 1: all edges are in; the non-existing ones

have w=∞
§ Trick 2: in order to go from i to j you can

either go directly or passing through a third
node k

§ dynamic programming

39

Algorithm:
§ For each node i, initialize dist(i,i)=0
§ For each edge (i,j) initialize dist(i,j)=w(i,j)
§ For each node k

§ For each node i
§ For each node j

dist(i,j)=min{dist(i,j), dist(i,k)+dist(k,j)}

§ Time Complexity Θ(n3)

Θ(n)
O(n2)
n times
|n times
|| n times
||| Θ(1)

40

Difference Constraints:
¢ Let be given some tasks with precedence

constraints and running lengths, and an unlimited
(or limited by n=number of tasks) number of
processors:
¢ Each task i has:

• Starting time si
• Time to complete bi>0
• Constraint sj+bj≤si if task i can be started

after that task j has been completed
¢ First task can start at time 0
¢ When can we finish last task?

41

This is the Shortest Path Problem on directed
acyclic graphs:

¢ Define a graph having a node for each task
¢ Insert a dummy node v0 (that models time 0)
¢ Insert an arc (v0,i) for each task node i and
let 0 be its weight

¢ For each precedence constraint sj+bj≤si insert
an arc (j,i) with weight bj

¢ Optimal Solution: start each task i at time
equal to the length Li of the longest path
from v0 to i. All the tasks are surely
completed within time maxi (Li+bi) 42

To transform to the shortest path problem,
multiply all lengths and times by -1:

b1=2
b2=3
b3=1
b4=2
s3+b3 ≤ s2
s3+b3 ≤ s1

v0

1

3

2

4

1

1

3 1

2

4

43

§Up to now, in the routing problem we have
considered the network as a graph unknown to
the nodes and variable in time (faults, varying
traffic, etc.)

§Nevertheless, when the network is an
interconnection topology (and connects, for
example, processors), it is known and fixed in
time. Furthermore, efficiency is a primary issue.

§ Solutions having stronger properties than the
simple shortest path algorithms are required. 44

§With the development of semiconductor
industry, the number of cores integrated in a
single machine increases quickly and Network-on-
Chip (NoC) is proposed and is gradually replacing
the traditional on-chip interconnections such as
sharing buses and crossbars.

45

§An interconnection topology describes how the
processors are connected inside a multicore
machine.

§ The routing algorithm, which decides the paths
of packets, has significant impact on the latency
and throughput of the network, so it plays a
vital role in a well-performed network.

46

Many different types of routing models.
Here, we will focus on the store-and-forward
model (also known as the packet-switching
model):

§Data are divided into packets
§ Each packet is maintained as an entity that is
passed from node to node as it moves through
the network

§A single packet can cross each edge during
each step of the routing

§… 47

§Depending on the algorithm, packets may or
may not be piled up in queues located at each
node. When queues are allowed: effort to keep
them short.

§Global controller to precompute routing paths
not allowed: problem handled using only local
control

§…

48

§A routing problem is called one-to-one if at
most one packet must be addressed to every
node and each packet has a different
destination.

§ In contrast, one-to-many and many-to-one

49 50

Def. Let N=2n (hence n=log N);
the n-dimensional Butterfly is a
layered graph with:
• N(n+1) nodes (n+1 layers with
2n nodes each) and

• 2Nn edges.
Nodes:
nodes correspond to pairs (w, i),
where:
• i is the layer of the node
• w is an n-bit binary number
that denotes the row of the
node.

…

51

def. of n-dimensional butterfly (cntd)

…
Edges:
Two nodes (w, i) e (w’, i’) are
linked by an edge iff i’=i+1 and
either:

¢w=w’ (straight edge) or
¢w and w’ differ in precisely
the i-th bit (cross edge)

52

¢ The nodes of the Butterfly are crossbar switches,
i.e. switches with two input and two output values
and can assume two states, cross and bar.
¢ Hence, the butterfly can be seen as a switching
network connecting 2N (N=2n) input units to 2N
output units trough a logN+1 layered network,
having N nodes each.
¢ …

48

BUTTERFLY NETWORK (3)

! The nodes of the Butterfly are crossbar switches, i.e.
switches with two input and two output values and can
assume two states, cross and bar.

! Hence, the butterfly can be seen as a switching network
connecting 2N (N=2n) input units to 2N output units
trough a logN+1 layered network, having N nodes each.

!  Input and output devices are usually processors and are
often omitted in the graphical representations for the
sake of simplicity.

53

¢ Input and output devices are usually processors
and are often omitted in the graphical
representations for the sake of simplicity.

54

The butterfly has a simple
recursive structure:
the one n-dim. butterfly
contains two (n-1)-dim.
butterflies as subgraphs (just
remove either the layer 0
nodes or the layer n nodes
of the n-dim. butterfly to
get two (n-1)-dimensional
butterflies).

55

For each pair of rows w and w’,
there exists a unique path of
length n (known as greedy path)
from (w,0) to (w’, n);
this path passes through each
layer exactly once, using a
cross-edge from layer i to layer
i+1 (i=0,…,n) iff w and w’ differ
in the i-th bit and using a
straight-edge otherwise.

000

001

010

011

100

101

110

111

w’

w

0 1 2 3

Problem of routing N packets from layer 0 to
layer n in an n-dimensional butterfly:
§ Each node (u,0) on layer 0 of the butterfly
contains a packet that is destined for node ("(u),
n) on layer n, where " :[1, N] → [1,N] is a
permutation.
§ In the greedy routing algorithm, each packet is
constrained to follow its greedy path.
§When there is only one packet to route, the
greedy algorithm performs very well.
§ Trouble can arise when many packets have to be
routed in parallel…

56

§Many greedy paths might pass
through a single node or edge.

§ Since only one of these packets
can use the edge at a time, one
of them must be delayed before
crossing the edge.

§ The butterfly is not able to route
each permutation without delays,
i.e. is a blocking network.

§ The congestion problem arising
in this example is not
significant. When N is larger,
however, the problem can be
much serious. In fact…

57

52

§Assume for simplicity that n is odd
(but similar results hold when n is
even), and consider edge
e=((00…0, (n-1)/2), (00…0,(n+1)/2))

§Node (00…0, (n-1)/2) is the root
of a complete binary tree
extending to the left having 2(n-1)/2

leaves
§Analogously to the right
§… 58

§ The permutation can be such that each greedy path
from a leaf of the left tree arrives to a leaf of
the right tree traverses e

§ There are 2(n-1)/2= $/2 possible such paths, and

thus 2(n-1)/2= $/2 packets may traverse e. So at

least one of them may be delayed by $/2 -1 steps.

§ It takes at least n=log N steps to traverse the
whole network and to route a packet to its
destination.

§ In this case, the greedy algorithm can take
$/2 +log N-1 steps to route a permutation. 59

In general:
Th. Given any routing problem on an n-
dimensional butterfly for which at most one
packet starts at each layer-0 node and at most
one packet is destined for each layer-n node,
the greedy algorithm will route all the packets
to their destinations in O($) steps.

Proof. …

60

Proof. For simplicity, assume that n is odd (but
the case n even is similar).

§ Let e be any edge in layer i, 0<i≤n, and define
ni to be the number of greedy paths that
traverse e

§ ni ≤2i-1 (left tree) and, similarly, ni≤2n-i (right
tree) so ni ≤min{2i-1, 2n-i}

§Any packet crossing e can be delayed by at most
the other ni-1 packets that want to cross the
edge.

§…
61

§…
§As this packet traverses layers 1, 2, …, n, the
total delay encountered can be at most:

62

€

(ni −1)
i=1

n

∑ = (ni −1)
i=1

(n+1)/ 2

∑ + (ni −1)
i=(n+3)/ 2

n

∑ ≤ (2i−1 −1) + (2n− i −1)
i=(n+3)/ 2

n

∑
i=1

(n+1)/ 2

∑ ≤

€

≤ 2(n+1)/ 2 + 2(n−1)/ 2 − n =O(N) − n =O(N) n

=(n+1)/2+1
= (2 j −1)

j=0

(n+1)/2−1

∑ = (2 j −1)
j=0

(n−3)/2

∑
recalling
that

2 j = 2k+1 −1
j=0

k

∑

§Despite the fact that the greedy routing
algorithm performs poorly in the worst case,
the greedy algorithm is very useful in practice.

§ For many useful classes of permutations, the
greedy algorithm runs in n steps, which is
optimal and, for most permutations, the greedy
algorithm runs in n + o(n) steps.

§As a consequence, the greedy algorithm is
widely used in practice.

63

§A possibility to avoid a routing with delays is
providing a non blocking topology.

§ Beneš network has this property
§ It consists of two back-to-back butterflies

64

§ The n-dimensional Beneš network has 2n+1 layers,
each with 2n nodes.

§ The first and last n+1 layers in the network form an
n-dimensional Butterfly (the middle layer is shared).

§Not surprisingly, the Beneš network is very similar to
the Butterfly, in terms of both its computational
power and its network structure.

65

§ The reason for defining the Beneš network is
that it is an excellent example of a
rearrangeable network.

§Def. A network with N inputs and N outputs is
said to be rearrangeable if for any one-to-one
mapping π of the inputs to the outputs (i.e. for
any permutation), we can construct edge-
disjoint paths in the network linking the i-th
input to the π(i)-th output for 1≤i≤N.

66

§ In the case of the n-dimensional Beneš
network, we can have two inputs for each node
at layer 0 and two outputs for each node at
layer 2n, and still connect every permutation of
inputs to outputs with edge-disjoint paths.

§Hence, in this case, # of inputs=2n+1.

67 68

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

3
9
8
12
15
13
7
5
4
10
1
2
16
7
11
14

It seems extraordinary that we can find edge-
disjoint paths for any permutation. Nevertheless,
the result is true, and it is even fairly easy to
prove, as we show in the following:

Th. Given any one-to-one mapping π of 2n+1

inputs to 2n+1 outputs on an n-dimensional
Beneš network, there is a set of edge-disjoint
paths from the inputs to the outputs connecting
input i to output π(i) for 1≤i≤2n+1.

Proof. … 69

Proof. By induction on n.
§ Basis: if n=0, the Beneš network consists of a
single node (i.e. a single 2x2 switch) and the
result is obvious.

§ Induction: assume that the result is true for an
(n-1)-dim. Beneš network

§ Key observation: the middle 2n-1 layers of an n-
dim. Beneš network comprise two (n-1)-dim.
Beneš networks:

70

71

§Hence, for each path, it will be sufficient to
decide whether it is to be routed through the
upper sub-Beneš network or through the lower
sub-Beneš network.

72

48

B
U

T
T

E
R

F
L

Y N
E

T
W

O
R

K
 (3)

!
 T

h
e n

odes of th
e B

u
tterfly are crossbar sw

itch
es, i.e.

sw
itch

es w
ith

 tw
o in

pu
t an

d tw
o ou

tpu
t valu

es an
d can

assu

m
e tw

o states, cross an
d bar.

!
 H

en
ce, th

e bu
tterfly can

 be seen
 as a sw

itch
in

g n
etw

ork
con

n
ectin

g 2N
 (N

=
2

n) in
pu

t u
n

its to 2N
 ou

tpu
t u

n
its

trou
gh

 a logN
+

1 layered n
etw

ork, h
avin

g N
 n

odes each
.

!
 In

pu
t an

d ou
tpu

t devices are u
su

ally processors an
d are

often
 om

itted in
 th

e graph
ical represen

tation
s for th

e
sake of sim

plicity.

§ The only constraints we have to consider to
decide whether paths use the upper or lower
subnetworks are that paths from inputs 2i-1 and
2i must use different subnetworks for 1 ≤ i ≤ 2n,
and that paths to outputs 2i-1 and 2i must use
different sub-networks.

§…easy…

73

48

B
U

T
T

E
R

F
L

Y N
E

T
W

O
R

K
 (3)

!
 T

h
e n

odes of th
e B

u
tterfly are crossbar sw

itch
es, i.e.

sw
itch

es w
ith

 tw
o in

pu
t an

d tw
o ou

tpu
t valu

es an
d can

assu

m
e tw

o states, cross an
d bar.

!
 H

en
ce, th

e bu
tterfly can

 be seen
 as a sw

itch
in

g n
etw

ork
con

n
ectin

g 2N
 (N

=
2

n) in
pu

t u
n

its to 2N
 ou

tpu
t u

n
its

trou
gh

 a logN
+

1 layered n
etw

ork, h
avin

g N
 n

odes each
.

!
 In

pu
t an

d ou
tpu

t devices are u
su

ally processors an
d are

often
 om

itted in
 th

e graph
ical represen

tation
s for th

e
sake of sim

plicity.

74

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

3
9
8
12
15
13
7
5
4
10
1
2
16
7
11
14

75

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

3
9
8
12
15
13
7
5
4
10
1
2
16
7
11
14

And so on…

Summary of the steps:
§We start by routing the first path through the
upper sub-network.

§We next satisfy the constraint generated at the
output by routing the corresponding path through
the lower sub-network.

§We keep on going back and forth through the
network, satisfying constraints at the inputs by
routing through the upper sub-network and
satisfying constraints at the outputs by routing
through the lower sub-network.
…

76

§…
§ Eventually, we will close the loop by routing a
path through the lower sub-network (in response
to an output constraint) that shares an input
switch with the first path that was routed.

§ If any additional paths needs to be routed, we
con- tinue as before, starting over again with
an arbitrary unrouted path.

§ In this way, all paths can be assigned to the
upper or lower sub-networks without conflict.

77

§ This algorithm is called looping algorithm.

§ It is easy to see that all paths can be assigned to
the upper or lower sub-networks without conflict:

§ By construction, if we start going to the upper
sub-network, we will arrive to the corresponding
output in the upper sub-network and we will
leave it to the lower sub-network, and so on.

§…

78

§…

§ For parity reason, when a loop is close, we will
correctly arrive from the right sub-network.

§ The remainder of the path routing and switch
setting is handled by induction in the sub-
networks. n

79

§ In the case that each layer 0 node of the n-
dimensional Beneš network has just one input
and each layer 2n node has just one output, then
the paths from the inputs to the outputs can be
constructed so as to be node-disjoint (instead of
only edge-disjoint):

§…

80

§ Th. Given any one-to-one mapping of π of 2n

inputs to 2n outputs in an n-dim. Beneš
network, there is a set of node-disjoint paths
from the inputs to the outputs connecting input
i to output π(i) for 1≤i≤2n.

§ Proof. Identical to the previous one, but the
paths needing to use different Beneš networks
are now i and i+2n-1, 1≤i≤2n-1 (and not 2i-1 and
2i). n

81

2n-1

§ Exemple: n=2, hence 2n-1=2

82

1

2

3

4

1

2

3

4

Drawbacks of the looping algorithms (both
versions):

§we do not know how to set the switches on-
line. In other words, each switch needs to be
told what to do by a global control that has
knowledge of the permutation being routed
§ There exist numerous methods for overcoming
this difficulty (not studied here).

§ every time a new permutation must be routed,
Θ(N log N) time is necessary to re-set switches.

83

Another important and widely used intercon-
nection topology is the mesh:
§ For integers m and n, the m × n mesh Mm,n has
node-set {1,2,...,m}×{1,2,...,n}.

§ The edges of Mm,n connect nodes ⟨i, j⟩ and ⟨i′, j′⟩
just when |i − i′| + |j − j′| = 1.

§ The path induced by the set of nodes {i} ×
{1,2,...,n} (resp., the set {1,2,...,m} × {j}) is the ith
row (resp., the jth column) of Mm,n

For the convenience of physical layout, mesh is the
most used topology in Network-on-Chip design.
Routing algorithms on mesh: ☞ student lesson

84

